
Partial Deduction for Structural Synthesis of ProgramsMihhail Matskin, Jan Komorowski, John KrogstieDepartment of Computer SystemsNorwegian University of Science and TechnologyN-7033 Trondheim, Norwayfmisha, jankog@idt.unit.no, john.krogstie@ac.comAbstractThe notion of partial deduction known from logic programming is de�ned in theframework of Structural Synthesis of Programs (SSP). Partial deduction for uncondi-tional computability statements in SSP is de�ned. Completeness and correctness ofpartial deduction in the framework of SSP are proven. Several tactics and stoppingcriteria are suggested.1 IntroductionThe main motivation for this work is to provide incremental formal program developmentin the framework of the proof-as-programs approach [3, 13]. In our case, it is StructuralSynthesis of Programs [16, 20] (hence abbreviation SSP). In SSP, a speci�cation at handis transformed into a set of formulae of a logical language complete with respect to in-tuitionistic propositional logic. A problem to be solved is formulated as a theorem to beproven in this logic. A program is then extracted from the proof of the theorem. Thisapproach has been implemented (see, for instance, [21]) and commercialized. It can befurther strengthened by applying a principle similar to Partial Deduction as known in logicprogramming [7, 12, 9].In this paper, we formulate the principle of partial deduction for SSP and prove its cor-rectness and completeness in the new framework.The rest of the paper is organized as follows. A brief informal introduction to SSP isgiven in Sect. 2. The next section presents partial deduction in SSP. Stopping criteria andtactics are discussed in Sect. 4. Concluding remarks are given in Sect. 5, where the use ofpartial SSP is briey discussed. It is assumed that the reader is acquainted with partialdeduction in logic programming.2 Introduction to Structural Synthesis of Programs (SSP)A formal foundation of SSP was developed by Mints and Tyugu [16, 20] and applied ina number of programming systems [21]. Here we give a brief introduction to the methodand de�ne notions which will be used later in the paper. First, the LL language of SSP isde�ned. Then inference rules are formulated using sequent notation. Program extractionis discussed next. It is obtained by extending the LL language.2.1 Logical language (LL)The logical language of SSP has only the following kinds of formulae:1

1. Propositional variables: A;B;CA propositional variable A corresponds to an object variable a from the source prob-lem, and it expresses the fact that a value of the object variable can be computed.A propositional variable will be termed an atom in the following.2. Unconditional computability statements:A1& : : :&Ak ! BThis expresses computability of the value of the object variable b corresponding toB from values of a1 : : : ak corresponding to A (A is an abbreviation for A1& : : : &Ak). A will be termed the body of the statement, whereas B is termed the head.Thus body (A ! B) = A and head (A ! B) = B.3. Conditional computability statements(A1 ! B1)& : : :&(An ! Bn)! (C ! D)A conditional computability statement such as (A ! B) ! (C ! D) expressescomputability of d from c depending on the computation of b from a. We also use(A! B) as an abbreviation for (A1 ! B1)& : : :&(An ! Bn).In the statement (A! B) ! (C ! D), (A! B) will be termed the body of thestatement, whereas (C ! D) will be termed the head. The functions head and bodyare de�ned as above, whereas body(body((A ! B) ! (C ! D))) = A etc.2.2 Structural Synthesis RulesA sequent notation is used for the derivation rules. A sequent � ` X , where � is a listof formulae and X is a formula, means that the formula X is derivable from the formulaeappearing in �. Axioms have a form of �; X ` X .In order to be able to extract programs from proofs, the language LL is extended asfollows. We write A �!f B where f is a term representing the function which computesb from a1; : : : ; an. Analogously, we write (A �!g B) ! (C ����!F (g;c) D) where g is a termrepresenting function which is synthesized in order to compute B from A and F is a termrepresenting computation of D from C depending on g and c (g is a tuple of terms).Following the notation in [20], A(a) means that a is a term whose evaluation gives thevalue of the object variable corresponding to logical variable A. In the logical axiomswhich are written as �; X(x) ` X(x), x is a variable or a constant.The resulting language is termed LL1. The inference rules (SSR1) are as follows:� 1. (! -) ` A �!f V ; � ` A(a)� ` V (f(a))� 2. (! +) �; A ` B(b)� ` A ��!�a:b B

� 3. (! - -) ` (A �!g B)! (C ����!F (g;c) V); �; A ` B(b);� ` C(c)�;� ` V (F (�a:b; c))A problem to be solved is formulated as a theorem to be proven. An example theoremand its proof are given in the next section.It is somewhat surprising but LL with simple implicative formulae is equivalent to the in-tuitionistic propositional calculus. The intuitionistic completeness of SSR was proven [16].In addition, an experiment with a programming system based on SSR was done [22]. Inthis experiment, all intuitionistic propositional theorems (about 100 formulae) containedin [6] were proven automatically.2.3 A Speci�cation LevelWhereas the LL1 language speci�es the internal language for structural synthesis, higherlevel languages are de�ned for expressing problem speci�cations. One of these, the NUTlanguage [21], is used in the sequel. It is an object-oriented language where methods andstructural relations can be translated into formulae of the LL1 language.The working example in this paper is a de�nition of the inverter, and-port and nand-portof logical circuits.ELEMENTvar Delay:numeric;INVERTERsuper ELEMENT;vir InINV, OutINV: bool;rel inv: InINV -> OutINVfOutINV := not InINVgINVERTER is a subclass of ELEMENT, having two virtual boolean primitive typespeci�ers InINV and OutINV. Virtual components can be used in computations, but theirvalues are not contained in the value of the object. The method inv speci�es computationsof OutINV from InINV which are performed by sequence of statements (body of the method)in the curly brackets. Actually, we can consider this method as a language constructionfor InINV �!f OutINV where f refers to the body of the method, i. e. to fOutINV :=not InINVg.ANDsuper ELEMENT;vir InAND1, InAND2, OutAND: bool;rel and: InAND1,InAND2->OutANDfOutAND:=InAND1 & InAND2gNANDsuper INVERTER;super AND;vir InNAND1, InNAND2, OutNAND: bool;rel InAND1 = InNAND1; InAND2 = InNAND2;OutNAND = OutINV; InINV = OutAND;nand: InNAND1, InNAND2 -> OutNANDfspecificationg

Symbol "=" denotes equality methods which are transformed into two formulae of LL1.For example, InAND1 = InNAND1 can be transformed into InAND1 ��!asg InNAND1 andInNAND1 ��!asg InAND1, where asg is the name of the standard function performingassignment. specification in the last method indicates that a function for the nandmethod has not been developed yet.The interested reader can �nd a full description of NUT in [23].The description of the classNAND can be now transformed into the following set of logicalformulae (called problem-oriented axioms), where and, inv and asg indicate methods whichimplement the corresponding formulae:` InINV ��!inv OutINV ;` InAND1&InAND2 ��!and OutAND;` InAND1 ��!asg InNAND1;` InNAND1 ��!asg InAND1;` InAND2 ��!asg InNAND2;` InNAND2 ��!asg InAND2;` OutNAND ��!asg OutINV ;` OutINV ��!asg OutNAND;` InINV ��!asg OutAND;` OutAND ��!asg InINV ;The theorem to be proven is ` InNAND1; InNAND2! OutNAND. Using the set offormulae and the inference rules from Sect. 2.2, the following proof can be made:InNAND1(in1) ` InNAND1(in1);` InNAND1 ��!asg InAND1;InNAND2(in2) ` InNAND1(in2);InNAND2 ��!asg InAND2InNAND2(in2) ` InAND(asg(in2)) (! �)InNAND1(in1) ` InAND1(asg(in1))` InAND1&InAND2��!and OutANDInNAND1(in1); InNAND2(in2) ` OutAND(and(asg(in1); asg(in2)) (! �)` OutAND ��!asg InINV ;InNAND1(in1); InNAND2(in2) ` InINV (asg(and(asg(in1); asg(in2))) (! �)` InINV ��!inv OutINV ;InNAND1(in1); InNAND2(in2) ` OutINV (inv(asg(and(asg(in1); asg(in2))) (! �)` OutINV ��!asg OutNANDInNAND1(in1); InNAND2(in2) ` OutNAND(asg(inv(asg(and(asg(in1); asg(in2)))) (! �)` InNAND1&InNAND2������������������������������!�in1 in2:asg(inv(asg(and(asg(in1);asg(in2)))) OutAND (! +) Q.E.D.The extracted program is as follows�in1 in2:asg(inv(asg(and(asg(in1); asg(in2)))))or in a simpli�ed form �in1 in2:inv(and(in1; in2))The example considered here is, of course, very small. The approach is, however, scalable.Problem speci�cations containing thousands of variables and computability statementshave been developed [17].

3 Partial deduction in SSPPartial deduction (a.k.a. partial evaluation in logic programming) is a specialization princi-ple related to the law of syllogism [12, 8]. Our motivation for transferring Partial Deduction(PD) to the framework of SSP is based on the following observations:� PD provides a specialization of logic programs. The most important features of PDis that more e�cient programs can be generated. E�ciency for a residual programcan be discussed in terms of the size of derivation trees.The same observation is true for SSP. Residual program speci�cation can be moree�cient in terms of synthesis of programs.� Our experience with the NUT system shows that users are not always able to spec-ify completely goals such as A ! G. In many cases, the user knows/ remembersonly the input parameters of the problem and s/he does not care about the out-put parameters. In this case, s/he is satis�ed with result that everything that iscomputable from inputs is computed. For example, the user may know that inputsof the problem are values for InNAND1 and InNAND2 of the NAND element and s/hewould like to know which other values can be computed. This feature is supportedby the program statement compute, e.g. NAND.compute(InNAND1, InNAND2). Thisproblem arises especially for speci�cations containing a large number of variables(very large circuits). These goals are hardly expressible in LL1. The problem isthat one would take into account a set of all variables of the speci�cation and allsubsets of this set. Additionally, an order over the subsets has to be de�ned andpossible output parameters considered as a disjunction of the subsets. This is a veryine�cient approach.On the other hand PD allows us to make e�cient derivations even if the outputparameters of the problem are unknown. This issue will be discussed in Sect. 4.� A problem similar to the above mentioned one, but with another type of incomplete-ness, may also arise. Consider a situation in which the user knows outputs of problembut s/he is not able to specify inputs. Actually, this relates mostly to debugging ofspeci�cations. If the original problem is not solvable, what should be added into theproblem speci�cation in order to make it solvable?Also in this case PD provides a good framework for making assumptions.It is possible to apply PD at di�erent levels in the framework of SSP:� At the LL1 speci�cation.� At the resulting functional expressions.� At the meta-speci�cation.Here we consider the �rst of the above cases and, in particular, the unconditional com-putability statements of LL1. The second case has been studied elsewhere and by numer-ous authors, see, for instance, [2, 1, 5]. Work has also been done on applying PD at themeta-speci�cation level [4, 15].Before moving further on we formalize the notion PD in the SSP framework.3.1 Partial deduction of LL1 speci�cationsIt is natural to informally express PD of unconditional computability statements as follows.

Let A;B and C be propositional variables and A �!f B;B �!h C;C �!g D be un-conditional computability statements. Some possible partial deductions are the following:A ������!�a:h(f(a)) C, A ��������!�a:g(h(f(a))) D, B ������!�b:g(h(b)) D. It is easy to notice that the �rstpartial deduction corresponds to forward chaining (from inputs to outputs), the third onecorresponds to backward chaining (from outputs to inputs) and the second one to eitherforward or backward chaining.The main di�erence between our de�nition of PD and the ones considered in [12, 8, 9] are:(i) the use of logic speci�cations rather then logic programs and (ii) the use of intuitionistic(propositional) logic rather then classical (�rst order) logic.De�nition 1 (LL1 speci�cation) Let U be a set of unconditional computability state-ments A �!f B and S be a set of conditional computability statements (A �!g B)! (C ����!F (g;c)D) then P = U [S is called a LL1 speci�cation.De�nition 2 (LL1 unconditional resultant) An LL1 unconditional resultant isan unconditional computability statement A ����!�a:f(a) G where f is a term representingthe function which computes G from potentially composite functions over a1,: : : ,anThe assumption that G is an atom can be relaxed by transformation of A �!f G intofA �!f G1; :::; A�!f Gmg and vice versa.In our de�nitions we use the notion of computation rule (or selection function) from logicprogramming [11].De�nition 3 (Derivation of an LL1 unconditional resultant) Let < be a �xed com-putation rule. A derivation of a LL1 unconditional resultant R0 is a �nite sequenceof LL1 resultants: R0)C R1)C R2)C : : : ; where,(1) for each j, Rj is an unconditional computability statement of the formB1&:::&Bi&:::&Bn �����������������!�b1:::bi:::bn:f(b1;:::;bi;:::;bn) Gand Rj+1 (if any) is of the form:B1&:::&C&:::&Bn �����������������!�b1:::c:::bn:f(b1;:::;h(c);:::bn) Gif � the <-selected atom in Rj is Bi and� there exists an unconditional computability statement C �!h Bi 2 P called thematching computability statement. Bi is called the matching atom.(2) for each j, Rj is an unconditional computability statement of the formA1&:::&Ai&:::&Am ������������������!�a1:::ai:::am:f(a1;:::;ai;:::;am) Fand Rj+1 (if any) is of the form:

A1&:::&Ai&:::&Am ����������������������!�a1:::ai:::am:h(ai;f(a1;:::;ai;:::;am)) Hif � the <-selected atoms in Rj are Ai and/or F . F denotes a conjunction of F(heads of computability statements) from resultants R0; :::; Rj� there exists an unconditional computability statement Ai&F �!h H 2 Pcalled the matching computability statement. Ai; F are called the matching atoms.(3) If Rj+1 does not exist, Rj is called a leaf resultant.De�nition 3 gives two ways of derivating resultants. (1) corresponds to backward deriva-tions and (2) corresponds to forward derivations. We will use terms derivation form (1)and derivation form (2), correspondingly.De�nition 4 (Partial deduction of a propositional goal) A partial deduction ofa propositional goal A! G in a speci�cation P is the set of leaf resultants derived fromG ! G (derivation form (1) and in this case A cannot be selected atoms) or from A !(derivation form (2) and in this case G cannot be selected atom).The assumption that G is an atom can be relaxed to allow a conjunction of atoms,A ! G, and a partial deduction of A ! G in P is the union of partial deductions ofG =fA ! G1; : : : ; A! Gmg in P . These partial deductions are called residual uncondi-tional computability statements.De�nition 5 (Partial deduction of an LL1 speci�cation) A partial deduction ofa LL1 speci�cation P wrtG is a speci�cation P 0 (also called a residual LL1 speci�cation)obtained from P by replacing computability statements having Gi in their heads (derivationform (1)) or only variables from A in their bodies (derivation form (2)) by correspondingpartial deductions.The notions of correctness and completeness are de�ned as follows. Let P be a LL1speci�cation, A! G a propositional goal, and P 0 a partial deduction of P wrt to A! G.De�nition 6 (Correctness of partial deduction of LL1 speci�cation) The function(or its computational equivalent) for the computation of A ! G is derivable (can be ex-tracted from a proof of A! G) from P if it is derivable from P 0.Completeness is the converse:De�nition 7 (Completeness of partial deduction of LL1 speci�cations) The func-tion (or its computational equivalent) for the computation of A ! G is derivable (can beextracted from a proof of A! G) from P 0 if it is derivable from P .Our de�nitions of correctness and completeness require only derivation of a function whichimplements the goal (all functions which satisfy this criteria are computational equiva-lents). This may correspond, for example, to the following case. Let an LL1 speci�cationcontains computability statements C �!h B and C �!f B. Then functions f and h arecomputational equivalents.The notions of correctness and completeness are de�ned with respect to the possibility ofproving the goal and extracting a function from the proof [10]. Our proof of correctnessand completeness is based on proving that derivation of LL1 unconditional resultant is aderivation (proof + program extraction) in a calculus corresponding to the LL1 language.

Lemma 1 Derivation form (1) of LL1 unconditional resultants is a derivation by SSR1inference rules.Proof Consider the case, whenRj = B1&:::&Bi&:::&Bn �����������������!�b1:::bi:::bn:f(b1;:::;bi;:::;bn) Gor in a short form Rj = B1&B2&B3 �����������!�b1b2b3:f(b1;b2;b3) Gand the matching computability statement is C �!h B2According to De�nition 3 the LL1 unconditional resultant will beB1&C&B3 ������������!�b1cb3 :f(b1;h(c);b3) GRj and the matching computability statement have the form of the following problem-oriented axioms in the calculus for LL1 language:` B1&B2&B3 �����������!�b1b2b3:f(b1;b2;b3) G` C �!h B2Given these axioms, the following derivation is obtained by SSR1 inference rules:C(c) ` C(c); B1(b1) ` B1(b1); B3(b3) ` B3(b3); C �!h B2;C(c) ` B2(h(c)); ` B1&B2&B3 �����������!�b1b2b3 :f(b1;b2;b3) G; (! �)B1(b1); C(c); B3(b3) ` G((�b1b2b3:f(b1; b2; b3))(b1; h(c); b3)) (! �)` B1&C&B3 �������������������������!�b1cb3:((�b1b2b3:f(b1;b2;b3))(b1;h(c);b3)) G (! +)After a simpli�cation of the �-expression under the arrow in the last sequent we end upwith B1&C&B3 ������������!�b1cb3 :f(b1;h(c);b3) G which is equal to the LL1 unconditional resultant.The above derivation is a derivation of the inference rule which corresponds to the PDstep: ` B1&B2&B3 �����������!�b1b2b3:f(b1;b2;b3) G; ` C �!h B2` B1&C&B3 ������������!�b1cb3 :f(b1;h(c);b3) GIf the unconditional computability statements are in the form of resultants and matchingstatements (see De�nition 3), then a derivation in the calculus corresponding to the LL1language will be done in accordance to the derived inference rule. Q.E.D.Lemma 2 Derivation form (2) of LL1 unconditional resultants is a derivation by SSR1inference rules.

Proof The proof of Lemma 2 is analogous to the proof of Lemma 1. The only di�erenceis in the derivation of the inference rule for PD. We describe only the essential part of theproof and omit the part of the proof which is common with the previous proof.Rj and matching computability statements in calculus for LL1 language have the form ofthe following problem-oriented axioms:` A1&A2&A3 ������������!�a1a2a3:f(a1;a2;a3) F` A2&F �!h HHence, the following derivation is obtained by SSR1 inference rules:A1(a1) ` A1(a1); A2(a2) ` A2(a2); A3(a3) ` A3(a3);A1&A2&A3 ������������!�a1a2a3:f(a1;a2;a3) FA1(a1); A2(a2); A3(a3) ` F ((�a1a2a3:f(a1; a2; a3))(a1; a2; a3));` A2&F �!h H (! �)A1(a1); A2(a2); A3(a3) ` H(h(a2; (�a1a2a3:f(a1; a2; a3))(a1; a2; a3))) (! �)` A1&A2&A3 �������������������������������!�a1�a2�a3 h(a2;(�a1a2a3:f(a1;a2;a3))(a1;a2;a3))) F (! +)A simpli�cation of the �-expression in the last sequent leads toA1&A2&A3 ����������������!�a1a2a3:h(a2;f(a1;a2;a3)) Fwhich is equal to the LL1 unconditional resultant.The above derivation is a derivation of the inference rule which corresponds to the PDstep: ` A1&A2&A3 ������������!�a1a2a3:f(a1;a2;a3) F ; ` A2&F �!h H` A1&A2&A3 ����������������!�a1a2a3:h(a2;f(a1;a2;a3)) HIn case of a conjunction F in the matching computability statement, a set of resultantsRj (0 > j > j+1) for all Fi from F is considered. Q.E.D.Theorem 1 (Correctness and Completeness of PD in LL1 speci�cation) PartialDeduction of a LL1 speci�cation is correct and complete.Proof of the theorem immediately follows from Lemma 1 and Lemma 2. Since PD is aproof by SSR1 inference rules proof of A ! G in P 0 is a subproof of A ! G in P wherepaths to resultants are replaced by the derived resultants themselves. It means that bothspeci�cations P and P 0 are equal with respect to derivation of the goal and extraction ofa program.Until now we have considered only unconditional computability statements as sources forPD. In case of conditional computability statements, the main framework for de�nitions isthe same. However, particular de�nitions become more complicated. PD with conditionalcomputability statements is out of the scope of this paper.

4 Partial Deduction tacticsPD is a very simple principle and its practical value is limited without de�ning appropriatestrategies. These are called tactics and refer to the selection and stopping criteria. Wedescribe them informally.4.1 Selection criteriaSelection functions (computation rules) de�ne which formula should be tried next forderivation of resultant. We consider the following possible selection criteria.1. Unconditional computability statements are selected �rst and if there is no uncondi-tional computability statements that can be applied to derivation of resultant then aconditional statement (if any) is selected.This is the main selection criterion which is implemented in the NUT system. Thiscriterion keeps simplicity of derivation when it is possible. However it does not saywhich unconditional/conditional statement to choose next if more then one statementis applicable at the same time.2. Priority based selection criteria.These criteria require binding priorities to computability statements. They should bedone by user. Synthesis with priorities was considered in some work on SSP. The mostreasonable base for priorities is an estimated computational cost of function/programwhich implements computations speci�ed by computability statements. Wheneverit is possible to obtain such costs, the criterion allows to synthesize more e�cientprogram. This criterion allows to make decision when the same objects can becomputed by di�erent functions. Until now the criterion was implemented onlyexperimentally.3. Only a speci�ed set of computability statements is used in the derivation.This criterion requires partitioning of the set of statements. It is not realistic toask the user to point out particular computability statements which could be usedin derivation. However, such partitioning can be done on the level of the speci�ca-tion language. For example, the user can specify that s/he would like to performcomputations on objects of class NAND only and then only computability state-ments derived from this class description are considered for the derivations. Thiscriterion is implemented and widely used in the NUT system and it is a feature ofobject-orientation rather than of the logical part of the system (message sending toan object means that the context of computations/ derivations is restricted by thisobject).4. A mixture of forward and backward derivations.This is quite interesting but a less investigated criterion. The idea is to developderivation forms (1) and (2) (see Sect. 2) concurrently or in parallel. It meansthat computability statements are selected to support derivations of both resultantsin some order. It can be strict alteration or some other criterion. We think thatsuch criteria should be investigated in more detail in the context of distributedcomputations. Another application of this approach was investigated in the contextof debugging of speci�cations [14].We would like to notice that the above criteria are not mutually exclusive but rathercomplementary to each other.4.2 Stopping criteriaStopping criteria de�ne when to stop derivation of resultants. They can be combined freelywith all the selection criteria above. We suggest the following stopping criteria.

1. Stepwise: The user is queried before each derivation which of the possible deriva-tions s/he wants to perform. Actually, this stopping criterion can be of interest indebugging and providing the user with traces of the derivation process.2. Restricted: A goal is given together with an indicator of the maximum depth of thederivation. This criteria is of a similar virtue as the previous one.3. Goal-based: A derivation stops when resultant is equal to the goal. This criterionallows to synthesize a program when the goal is completely de�ned. A more inter-esting case is specialization of this criterion to a mixture of forward and backwardderivations. In this case, a derivation can stop when bodies of resultants of deriva-tion form (1) (backward derivation) are included in the union of bodies and headsof resultants of derivation form (2) (forward derivation).4. Exhaustive: A derivation stops when no new resultants are available. This is the casewhen goals are not speci�ed completely (Sect. 3) or when problem is not solvable(derivation of the goal can not be done).The last stopping criteria is very important for PD and makes possible deriving programsfrom incompletely speci�ed goals. Notice that the Goal � based criterion allows to deriveprograms in case of completely speci�ed goals.5 Concluding remarksThe notion of partial deduction has been transferred from logic programming to the frame-work of SSP. Our main results are a de�nition of partial deduction in this framework, aproof of completeness and correctness of PD in the framework and a set of selection criteriafor utilizing them together with a set of stopping criteria.In addition to the theoretical interest partial SSP de�nes a method for synthesis of pro-grams in the case of incompletely speci�ed goal. One speci�c application of the partialdeduction technique in connection with SSP is to support debugging of LL1-speci�cations.In case of a non-solvable problem (a propositional goal cannot be derived) PD of an LL1speci�cation contains the set of all possible derivations and is a good starting point forreasoning about possible inconsistency and/or incompleteness of the speci�cation [14].This paper has focused on partial deduction of the unconditional computability statements.We have only pointed out that the approach can be extended to the case of conditionalcomputability statements. This and tactics supporting a mixture of backward and forwardderivations of resultants will be investigated in future.References[1] M. Z. Ariola and Arvind. A syntactic approach to program transformation. In Pro-ceedings of the symposium on Partial Evaluation and Semantics-Based Program Ma-nipulation (PEPM'91), pages 116{129. ACM press, 1991.[2] D. Bj�rner, A. P. Ershov, and N. D. Jones, editors. Partial Evaluation and MixedComputation, Gammel Avern�s, October 18{24 1987. North-Holland.[3] R.L. Constable, S.F. Allen, H.M. Bromley et al. Implementing mathematics with theNurpl Proof development system Prentice-Hall, 1986.[4] H-M. Haav and M. Matskin. Using partial deduction for automatic propagationof changes in OODB. In H. Kangassalo et al, editor, Information Modeling andKnowledge Bases IV, pages 339{352. IOS Press, 1993.[5] N. D. Jones, C. K. Gomard, and P. Sesoft. Partial Evaluation and Automatic ProgramGeneration. Prentice Hall, Englewood Cli�s, NJ, 1993.

[6] S. Kleene. Introduction to metamathematics. Amsterdam, North-Holland, 1952.[7] J. Komorowski. A Speci�cation of An Abstract Prolog Machine and Its Application toPartial Evaluation. PhD thesis, Department of Computer and Information Science,Link�oping University, Link�oping, Sweden, 1981.[8] J. Komorowski. Partial evaluation as a means for inferencing data structures in anapplicative language: a theory and implementation in the case of Prolog. Proc. of theACM Symp. Principles of Programming Languages, ACM, pp. 255{267, 1982.[9] J. Komorowski. A Prolegomenon to partial deduction. Fundamenta Informaticae,18(1):41{64, January 1993.[10] I. Krogstie and M. Matskin. Incorporating partial deduction in structural synthesisof program. Technical Report 0802-6394 5/94, IDT, NTH, Trondheim, Norway, June1994.[11] J. W. Lloyd. Foundations of logic programming. Springer Verlag, second edition,1987.[12] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. ,Journal of Logic Programming, 1991:11:217-242, also: Technical Report CS-87-09(revised 1989), University of Bristol, England, July 1989.[13] Z. Manna, R. Waldinger. A Deductive approach to program synthesis. ACM Trans.on Programming Languages and Systems, 2(1):294:327, Jan, 1980.[14] M. Matskin. Debugging in programming systems with structural synthesis of programs(in Russian). Software, 4:21{26, 1983.[15] M. Matskin and J. Komorowski. Partial deduction and manipulation of classes andobjects in an object-oriented environment. In Proceedings of the First Compulog-Network Workshop on Programming Languages in Computational Logic, Pisa, Italy,April 6-7 1992.[16] G. Mints and E. Tyugu. Justi�cation of structural synthesis of programs. Science ofComputer Programming, 2(3):215{240, 1982.[17] J. Pahapill. Programmpaket zur modeliering der hydromachinen systeme. 6. Fachta-gung Hydraulik und Pneumatik, Magdeburg, pp. 609-617, 1985.[18] D. A. Schmidt. Static properties of partial evaluation. In Bj�rner et al. [2], pages465{483.[19] E. Tyugu. The structural synthesis of programs. In Algorithms in Modern Mathemat-ics and Computer Science, number 122 in Lecture Notes in Computer Science, pages261{289, Berlin, 1981. Springer-Verlag.[20] E. Tyugu. Knowledge-Based Programming. Turing Institute press, 1988.[21] E. Tyugu. Three new-generation software environments. Communications of theACM, 34(6):46{59, June 1991.[22] B. Volozh, M. Matskin, G. Mints, E. Tyugu. Theorem proving with the aid of programsynthesizer Cybernetics, 6:63-70, 1982.[23] T. Uustalu, U. Kopra, V. Kotkas, M. Matskin and E. Tyugu. The NUT LanguageReport. The Royal Institute of Technology (KTH),TRITA-IT R 94:14, 51 p., 1994.

