
1

Taming the multi-core beast

Professor Brian Vinter

Concurrency vs. Parallelism

Designing parallel systems is very hard

• But sometimes necessary

• Designing concurrent systems is surprisingly easy

Concurrent systems can transparently utilize an underlying

parallel system

If your program is concurrent, and with sufficient concurrent

operations, you don’t have to design for a specific number

of processors

Parallelism

News flash: Moore's law is dead

• Since October 2004

This means that increased performance must come from using

more processors

How much of a Pentium 4 processor is actual processing

power?

Next generation processors are all multi-core

Concurrency

Concurrency it the natural way of things

Serial algorithms are just the way we are trained…

All (most) new CPUs are hardware threaded

• Why? (hint: how far is a nano-second?)

The basic assumption behind hardware threading is that your

application is multithreaded

• Otherwise there is little advantage….

2

Natural Concurrency

Example: Network server

If a network server is servicing many clients

• How to figure out which is active?

• How to prioritize connections?

Network server: In olden times

listen(socket)
for i in clients:

socket[i]=accept(socket)

for (i=0; i< num_clients; i++)
FD_SET(sockets[i], &recvfds);

select(clients+1, recvfds, NULL, NULL, NULL)

j=0
for (i=0; i< num_clients; i++)

if FD_ISSET(recvfds, i){
add_to_active(i) //ok we will cheat here and use blackbox code
j++

}

my_qsort(active_set)//And some more blackbox code her

for (i=0; i<j; i++)
service(active_set[i].socket)

Network server: Now

listen(socket,1)
while (1){

client = accept(socket)
thread(priority, service, client)

}
And here the number of clients is not fixed beforehand!

Java ThreadingJava Threading

‘‘If you can get away with it, avoid using threads. Threads can be difficult to use, and
they make programs harder to debug.’’

‘‘Component developers do not have to have an in-depth understanding of threads
programming: toolkits in which all components must fully support multithreaded
access, can be difficult to extend, particularly for developers who are not expert at

threads programming.’’

<java.sun.com/products/jfc/tsc/articles/threads/threads1.html>

3

‘‘It is our basic belief that extreme caution is warranted when designing and building multi-threaded
applications … use of threads can be very deceptive … in almost all cases they make debugging,
testing, and maintenance vastly more difficult and sometimes impossible. Neither the training,
experience, or actual practices of most programmers, nor the tools we have to help us, are
designed to cope with the non-determinism … this is particularly true in Java … we urge you to
think twice about using threads in cases where they are not absolutely necessary …’’

<java.sun.com/products/jfc/tsc/articles/threads/threads1.html>

Java Threading Niagra

Suns new CPU

• Designed for Java

8 processor cores on a CPU

32 HW threads on a CPU

So while threading should be avoided - according to Sun- you do need

at least 32 to make the thing perform

We should aim at millions – just to be sure we are ready for the next
generation CPU

Communicating Sequential
Processes

A mathematical theory for specifying and verifying
complex patterns of behavior arising from
interactions between concurrent objects.

CSP has a formal, and compositional, semantics
that is in line with our informal intuition about the
way things work.

CSP deals with processes, networks of processes and
various forms of synchronization / communication
between processes.

A network of processes is also a process - so CSP
naturally accommodates layered network structures
(networks of networks).

So, what is CSP?

4

0

1

1

2

3

5

8

13

21

34

.

.

FibonacciIntFibonacciInt

out

PairsIntPairsInt

0011

FibonacciIntFibonacciInt (out) = (out) = PrefixIntPrefixInt (1, d, a) ||(1, d, a) ||
PrefixIntPrefixInt (0, a, b) ||(0, a, b) ||
Delta2Int (b, out, c) ||Delta2Int (b, out, c) ||
PairsIntPairsInt (d, c)(d, c)

a

cd

b

CSP Example Verification

A powerful feature in concurrent design is composition

If you design very small functionalities in each process you can verify
their correctness

If you combine such small processes in a communicating network you
can verify that that network is correct

You then have a new (larger) process you know to be correct and can
be used to build larger components again

Motivating Example

Most hardware is build using concurrency designs because:
• Parallelism – all the hardware exist at all times

• Concurrency – you cannot determine the order and timing of all events

• Verification – you cannot distribute a patch to existing hardware

The Pentium processor and Windows 95 were siblings
• Both with app 15MLOC

We found 5 errors in the Pentium……

Hyperthreading

First Virtual CPU

Second Virtual CPU

INT Unit FP Unit

5

Multi-core architectures

Multi-cores comes out of necessity

Some are well planned

Some are hacks

Dual-core (trivial)

L1

L2

L1

L2

Dual-core

L1

L2

L1

L1 L1

Quad-core

L2
L1 L1

6

Skip ahead

XBox 360

Components

3 PowerPC cores

• 2 threads pr core

• 3.2 GHz

R500 Graphics Processor

• 500MHz

• 48 Pipelines

256 MB RAM

Xenon

3-Way Symmetric Multi-Processor
• IBM PowerPC Architecture®

• Specialized Function VMX

• 3.2GHz

• Shared 1 MByte L2

• Front Side Bus / PHY – 21.6 GB/sec

• Phase Locked Loops

165 M Transistors
• IBM – 90nm SOI

7

Layout Layout of the Xenon

GPU

Custom ATI Graphics Processor

• 10MB DRAM

• 48-way parallel floating point

• Unified shader architecture

• 500 million triangles per sec

• 16 gigasamples/sec

• 48 billion shader operations/sec

GPU

8

Memory

256 MB of 700MHz GDDR3 RAM – unified memory architecture

22.4 GB/s interface bus bandwidth

256 GB/s memory bandwith to EDRAM

21.6 GB/s front-side bus

Rendering ThreadRendering ThreadRendering Thread

Game ThreadGame Thread

Good Multithreading (according to MS)

Main Thread

Physics

Rendering Thread

Animation/
Skinning

Particle Systems

Networking

File I/O

Another Paradigm: Cascades
Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Input

Physics

AI

Rendering

Present

Frame 1Frame 2Frame 3Frame 4

Advantages:

• Synchronization points are few and well-defined

Disadvantages:

• Increases latency

Basic Thread Management

CreateThread()

• Watch dwStackSize

SuspendThread(), ResumeThread()

• Probably a bad idea—can lead to deadlocks

TerminateThread() – not available

XSetThreadProcessor()

• proc / 2 = core

• proc % 2 = hw thread

WaitForSingleObject(), CloseHandle()

9

Fibers

Cooperative software pseudothreads

Do not preempt

ConvertThreadToFiber()

CreateFiber()

SwitchToFiber()

Context switches are 7-9× faster than software threads

CSP

Program your application as a CSP network

• Make sure you have enough processes

• Enough >> 6

With shared cache we can let all 6 HW threads use the same

scheduler

• But we can also let L1 dictate a 2x3 scheduler

CSP

PPC PPC PPCPPC PPC PPC

Advantages of CSP

No consideration of the underlying architecture when

determining parallelism

• Porting to other architectures is easy

Dynamic load balancing

10

Problems with CSP

No modern tools exists

CPS kernel must be implemented with knowledge of the

architecture

• This should be really easy on this architecture though

Problems with CSP

No modern tools exists

CPS kernel must be implemented with knowledge of the

architecture

• This should be really easy on this architecture though
News Flash:

CSP.Net

(www.cspdotnet.com)

CSP.NET

Channel

The CSP.NET channel is a generic rendez-vous channel

Writer
Process

Writer
Process

Writer
Process

Reader
Process

Reader
Process

Reader
Process

CSP.NET

Example - ReaderWriter

public class Writer : Process
{

private IChannelOut<int> chan;

public Writer(IChannelOut<int> chan)
{

this.chan = chan;
}

public override void Run()
{

for (int i = 0; i < 100; i++)
chan.Write(i);

}
}

11

CSP.NET

Example - ReaderWriter

public class Reader : Process
{

private IChannelIn<int> chan;

public Reader(IChannelIn<int> chan)
{

this.chan = chan;
}

public override void Run()
{

for (int i = 0; i < 50; i++)
Console.WriteLine(chan.Read());

}
}

CSP.NET

Example - ReaderWriter

class Program
{

static void Main(string[] args)
{

CspManager.StackSize = 131072;

Channel<int> chan = new Channel<int>();

new Parallel(new Writer(chan),
new Reader(chan),
new Reader(chan)).Run();

}
}

HPC for Fun and Profit

The CELL processor and the

challenges it will present to us…

Whatever happened with the P4@4GHz?

It should have arrived in October 2004

• The cancellation equaled the death of
Moores law

• Which is not really true

What are we going to do for
performance?

12

The challenges

Memory Wall

• Latency induced bandwidth limitations

Power Wall

• Must improve efficiency and performance equally

Frequency Wall

• Diminishing returns from deeper pipelines

Supercomputing

Year Rank Manufacturer Computer Procs Rpeak
1993 1 TMC CM-5 1024 131
2002 500 IBM Power3 132 198

CELL

Next generation CPU from

• Sony

• Toshiba

• IBM

Heterogeneous multi-core CPU

Basics

Multi-core microprocessor (9 cores)

~250M transistors

~235mm2

Top frequency >5 GHz

9 cores, 10 threads

> 200+ GFlops (SP) @3.2 GHz

> 20+ GFlops (DP) @3.2 GHz

Up to 25.6GB/s memory B/W

Up to 50+ GB/s I/O B/W

13

CELL Philosophy

If something is not inherently good
Why keep adding it?

Addressing the challenges with CELL

Multi-Core Non-Homogeneous Architecture

• Control Plane vs. Data Plane processors

• Attacks Power Wall

3-level Model of Memory

• Main Memory, Local Store, Registers

• Attacks Memory Wall

Large Register File & SW Controlled Branching

• Allows deeper pipelines

• Attacks Frequency Wall

CELL Overview PPE

64 bit Power CPU

128 bit VMX

• If you want this thing to do graphics

32 KB + 32 KB Level 1 cache

• Instruction and data

512 KB Level 2 cache

2 hardware threads

In order execution so no need for lwsync

14

SPE SPE

RISC like organization

• 32 bit fixed instructions

• Clean design – unified Register file

User-mode architecture

• No translation/protection within SPU

• DMA is full Power Arch protect/x-late

VMX-like SIMD dataflow

• Broad set of operations (8 / 16 / 32 Byte)

• Graphics SP-Float

• IEEE DP-Float

Unified register file

• 128 entry x 128 bit

256KB Local Store

• Combined I & D

• 16B/cycle L/S bandwidth

• 128B/cycle DMA bandwidth

The SPE Register file

128 general purpose registers

• 2KB!!!

May be used in any size

The SPE Register file

15

SPE is a SCB

Instructions Execution Pipe Latency

Word arithmetics Even 2
Word shift and rotate Even 4
SP Multiply add Even 6
Int Multiply add Even 7
Byte ops Even 4
Quadword shift,etc Even 4
Load/Store Odd 6
Channel access Odd 6
Branch Odd 3

Local store

Default Size is 256KB / SPE

Using the Local Store is going to be all
important for performance

• Load from LS in 6 cycles

• Enqueue DMA transfer in 20 cycles

• 16B/cycle L/S bandwidth

• 128B/cycle DMA bandwidth

Data capacity The Network

16

Power

Power consumption is in the 80W range

• But it seems to be used correctly

Programming the beast

For optimal performance we need to keep 10
threads running

• 2 PPC threads

• 8 SPE threads

For these threads to run wee need to keep filling
the Local Stores

• Thus another 8 DMA engines

This means we need to keep 18 functional units
active at any time!!!

DMA transfers at all times… The responsibility returns to the programmer

Now we have to fetch the memory in advance

• No more relying on caches for performance

• No more having to write your code to match the
cache behavior

Now we have to do branch prediction

• You have to hint the CPU if a branch is taken or
not

The SPE has two special pipelines

• One for load, store and branch

• One for arithmetic operations

17

Programming the CELL

Slice the processor

• Use each SPE for something special

Pipeline the processor

• Combine the SPEs for execution

Bag of tasks

CSP

Sliced CELL

Take the SPE processors and use them as special purpose

processors

Each processor is dedicated to each processor

Sliced CELL

SPE SPE SPE SPE SPE

AI Physics Action Graphics Sound

Sliced CELL

SPE SPE SPE SPE SPE

18

Advantages of slicing

Really really easy

Easy to develop and test in components

Problems with slicing

Will you have exactly 7 dedicated tasks?
• More than 7?

• Less than 7?

Will each task require equal amount of processing power?

Will all tasks be able to run at the same time?

What is the communication between tasks?

Pipelined CELL

Divide your application into a software pipeline

Complex operations are split over multible SPEs

Pipelined CELL

19

Advantages of pipelining

Allow high ’operations per second’ for inherently sequential

code

Only nearest neighbor communication

Problems with pipelining

Splitting operations in a pipeline is often hard and sometimes

impossible

Making sure that all steps are equally hard is impossible

Communication can be very high

• Because we are exchanging intermediate data

Bag of Tasks

SPE SPE SPE SPE

SPE SPE SPE SPE

PPC

Bag of Tasks

SPE SPE SPE SPE

SPE SPE SPE SPE

Bag of
tasks

20

CSP the CELL

Program your application as a CSP network

• Make sure you have enough processes

• Enough >> 7

Let the scheduler place processes on SPEs

• Each SPE schedules locally

CSP

CSP

SPE SPE SPE SPE

SPE SPE SPE SPE

Performance

21

Protein Folding CELL Performance Protein folding

Protein Folding

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

CPUs

CELL@3.2GHZ

P4@2GHz

P4@3.2GHZ (normalized)

7.58x

Successive Over Relaxation Successive Over Relaxation

22

Double precision not as impressive

0

20

40

60

80

100

120

140

P4 CELL

SOR

3.11x

Conclusions

Next generation hardware is going to be
really cool

It’s also going to be much harder to
program efficiently

Control is going to return to the
programmer

Thanks to

IBM for a fruitful collaboration

Mohammad Jowkar for doing all the
actual work with evaluating the CELL
processor and many of the figs

