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Abstract

When looking for new and faster parallel sorting
algorithms for use in massively parallel systems
it is tempting to investigate promising alterna�
tives from the large body of research done on
parallel sorting in the �eld of theoretical com�
puter science� Such �theoretical� algorithms
are mainly described for the PRAM �Parallel
RandomAccess Machine� model of computation
�	
� ��� This paper shows how this kind of in�
vestigation can be done on a simple but versa�
tile environment for programming and measur�
ing of PRAM algorithms �	�� 	��� The practical
value of Cole�s Parallel Merge Sort algorithm
�	��		� have been investigated by comparing it
with Batcher�s bitonic sorting ���� The O�logn�
time consumption of Cole�s algorithm implies
that it must be faster than bitonic sorting which
is O�log� n� time�if n is large enough� How�
ever� we have found that bitonic sorting is faster
as long as n is less than 	�� � 	���� i�e� more
than 	 Giga Tera items�� Consequently� Cole�s
logarithmic time algorithm is not fast in prac�
tice�

� Introduction and Motivation

The work reported in this paper is an at�
tempt to lessen the gap between theory and
practice within the �eld of parallel computing�
Within theoretical computer science� parallel al�
gorithms are mainly compared by using asymp�
totical analysis �O�notation�� This paper gives
an example on how the analysis of implemented
algorithms on �nite problems provides new and
more practically oriented results than those tra�
ditionally obtained by asymptotical analysis�

Parallel Complexity Theory�A Rich

Source for

Parallel Algorithms

In the past years there has been an increased in�
terest in parallel algorithms� In the �eld of par�
allel complexity theory the so calledNick�s Class
�NC� has been given a lot of attention� Prob�
lems belonging to this complexity class may be
solved by algorithms with polylogarithmic �i�e�
of O�logk�n�� where k is a constant and n is the
problem size� running time and a polynomial
requirement for processors� A lot of parallel al�
gorithms have recently been presented to prove
membership in this class for various problems�
This kind of algorithms are frequently denoted
NC�algorithms� Although the main motivation
for these new algorithms often is to show that
a given problem is in NC� the algorithms may
also be taken as proposals for parallel algorithms
that are �fast in practice��

The Gap Between Theory and Practice

Unfortunately� it may be very hard to assess the
practical value of NC�algorithms�

Asymptotical analysis Order�notation is a
very useful tool when the aim is to prove mem�
bership of complexity classes or if asymptotic
behavior for some other reason is �detailed
enough�� It makes it possible to describe and
analyze algorithms at a very high level� How�
ever� it also makes it possible to hide �willingly
or unwillingly� a lot of details which cannot be
omitted when algorithms are compared for �re�
alistic� problems of large but limited size�

	



Unrealistic machine model Few of these
theoretical algorithms are described as imple�
mentations on real machines� Their descriptions
are based on various computational models� A
computational model is the same as an abstract
machine� One such model is the CREW PRAM�

Details are swept under the rug Most NC�
algorithms originating from parallel complexity
theory are presented on a very high level and in
a compact manner� One reason is probably that
parallel complexity theory is a �eld that to a
large extent overlaps with mathematics�where
the elegance and advantages of compact descrip�
tions are highly appreciated� Another reason
may be found in the call for papers for the 
��th
FOCS Symposium� A strict limit of  pages was
enforced on the submitted papers� Considering
the complexity of most of these algorithms� a
compact description is therefore a necessity�

Traditional Use of the CREW PRAM

Model

The certainly most used �	� model for express�
ing parallel algorithms in theoretical computer
science is the P�RAM model proposed by For�
tune and Wyllie in 	��� �	
�� Its simplicity and
generality makes it possible to concentrate on
the algorithm without being distracted by the
obstacles caused by describing it for a more spe�
ci�c �and realistic� machine model� Its syn�
chronous operation makes it easy to describe
and analyze programs for the model� This is
exactly what is needed in parallel complexity
theory� where the main focus is on the paral�
lelism inherent in a problem�

Implementing On an Abstract Model is

Worthwhile

Implementing algorithms on the PRAM model
may be regarded as a paradox� One of the rea�
sons for using such abstract machines has tra�
ditionally been a wish to avoid implementation
details� However� it may be a viable step in an
attempt to lessen the gap between theory and
practice� The following is achieved by imple�
menting a �theoretical� parallel algorithm on a
CREW PRAM model�

� A deeper understanding� Making an imple�
mentation enforces a detailed study of all
aspects of an algorithm�

� Con�dence in your understanding� Veri�
�cation of large parallel programs is very

di�cult� In practice� the best way of get�
ting con�dent with one�s own understand�
ing of a complicated algorithm is to make
an implementation that works� Of course�
testing can not give a proof� but elaborate
and systematic testing may give a larger de�
gree of con�dence than program veri�cation
�which also may contain errors��

� A good help in mastering the complex�
ity involved in implementing a complicated
parallel algorithm on a real machine� A
CREW PRAM implementation may be a
good starting point for implementing the
same algorithm on a more realistic ma�
chine model� This is especially important
for complicated algorithms� Going directly
from an abstract mathematical description
to an implementation on a real machine will
often be a too large step� The existence of a
CREW PRAM implementationmay reduce
this to two smaller steps�

� Denying the practical value of an algorithm�
How can an unrealistic machine model be
used to answer questions about the prac�
tical value of algorithms� It is important
here to di�erentiate between negative and
positive answers� If a parallel algorithm A
shows up to be inferior as compared with
sequential and�or parallel algorithms for
�more� realistic models� the use of an un�
realistic parallel machine model for execut�
ing A will only strengthen the conclusion�
On the other side� a parallel algorithm can�
not be classi�ed as a better alternative for
practical use if it is based on a less realistic
model�

These advantages of implementing parallel al�
gorithms on the CREW PRAM model are in�
dependent of whether a parallel computer that
resembles the CREW PRAM model ever will be
built�

� The CREW PRAM Model �
Programming and Simulation

This section gives a brief introduction to the
CREW PRAM model� and how algorithms may
be programmed� executed and measured on a
CREW PRAM simulator�

The Original CREW PRAM



Unfortunately� there is a lot of di�erent opin�
ions on how the �CREW� PRAM should be pro�
grammed� My work is originally inspired by
James Wyllie�s well�written Ph�D� thesis The
Complexity of Parallel Computations ���� The
thesis gives a high�level and succinct description
of how a PRAM may be programmed�

Background The P�RAM �parallel random
access machine� was �rst presented by Steven
Fortune and James Wyllie �	
�� It was further
elaborated in Wyllie�s Ph�D� thesis ���� The
P�RAM is based on random access machines
�RAMs� operating in parallel and sharing a com�
mon memory� Thus it is in a sense the model in
the world of parallel computations that corre�
sponds to the RAM �Random Access Machine�
model� which certainly is the prevailing model
for sequential computations�
Today� the mostly used name on the origi�

nal P�RAM model is probably CREW PRAM�
CREW is an abbreviation for the very central
concurrent read exclusive write property� �Sev�
eral processors may at the same time step read
the same variable �location� in global memory�
but they may not write to the same global vari�
able simultaneously��

Main Properties A CREW PRAM is a very
simple and general model of a parallel com�
puter� It has an unbounded number of equal
processors� Each has an unbounded local mem�
ory� an accumulator� program counter� and a
�ag indicating whether it is running or not� A
CREW PRAM has an unbounded global mem�
ory shared by all processors� An unbounded
number of processors may write into global
memory as long as they write to di�erent lo�
cations� An unbounded number of processors
may read any location at any time� All proces�
sors execute the same program� At each global
time step in the computation� each running pro�
cessor executes the instruction given by its own
local program counter in one unit of time�and
the model is therefore best classi�ed as a syn�
chronous MIMD machine� More details may be
found in one of �	
� 	�� ���

Parallel Programming May be Easy�

The algorithms are implemented as PIL pro�
grams and executed on a CREW PRAM sim�
ulator prototype� PIL is a very simple exten�
sion of the high�level� object oriented program�

ming language SIMULA ��� ���� PIL includes
features for processor allocation� activation and
synchronization� for interaction with the simu�
lator etc� The powerful and �exible standard
SIMULA source code level debugger may be
used on the PIL programs �	��� The simplicity
and generality of the PRAM model� combined
with the high�level language and the debugger�
have made the development of synchronous par�
allel MIMD programs to a surprisingly easy task�
The system has also been used in connection
with teaching of parallel algorithms�

About the Simulator and Time Modelling

The CREW PRAM simulator has been devel�
oped in SIMULA with good help of the DE�
MOS discrete event simulation package ���� It
runs on SUN workstations under the UNIX op�
erating system�

Time is measured in number of CREW
PRAM unit time instructions�denoted CREW
PRAM time units or simply time units� Each
processor is assumed to have a rather simple and
small instruction set� �Nearly all instructions
use one time unit� some few �such as divide�
use more� The instruction set time requirement
is de�ned as parameters in the simulator�and
therefore easy to change�� The time consump�
tion is speci�ed as part of the PIL program�

Monitoring facilities The simulator pro�
vides the following features for producing data
necessary for doing algorithm evaluation�

� Global clock� The synchronous operation
of a CREW PRAM implies that one global
time concept is valid for all the processors�
The global clock may be read and reset�
The default output from the simulator gives
information about the exact time for all
events which produce any form of output�

� Specifying time consumption� In the cur�
rent version of the simulator� the time used
on local computations inside each processor
must be explicitly given in the PIL program
by the user� This makes it possible for the
user to choose an appropriate level of �gran�
ularity� for the time modelling� Further�
the explicit time modelling implies the ad�
vantage that the programmer is free to as�
sume any particular instruction set or other
way of representing time consumption�



� Processor and global memory requirement�
The number of processors used in the al�
gorithm is explicitly given in the PIL pro�
gram� and may therefore easily be reported
together with other performance data� The
amount of global memory used may be ob�
tained by reading the user stack pointer�

� Global memory access statistics� The sim�
ulator counts and reports the number of
reads and the number of writes to the global
memory�

� DEMOS data collection facilities� The gen�
eral and �exible data collection facilities
provided in DEMOS are available� COUNT
may be used to record incidences� TALLY

may be used to record time independent
variables� with various statistics �mean� es�
timated standard deviation etc�� main�
tained over the samples� and HISTOGRAM

provides a convenient way of displaying
measurement data�

Note that the monitoring facilities does not in�
terfere with the algorithm being evaluated� Al�
gorithm or experiment speci�c monitoring are
easily de�ned by the user�
Further details about PIL and the simulator

may be found in �	���

� Investigating the Practical
Value of Cole�s Parallel Merge

Sort Algorithm

This section starts by explaining why Richard
Cole�s parallel merge sort algorithm is an im�
portant contribution to the �eld of parallel sort�
ing� We describe the main principles of the al�
gorithm� and outlines the implementation� A
straightforward CREW PRAM implementation
of Batcher�s bitonic sorting is presented and
compared with Cole�s algorithm� The com�
parison shows how the relative simplicity of
bitonic sorting makes it to a better algorithm
in practice�in spite of being inferior to Cole�s
algorithm �in the theory��

��� Parallel Sorting�The Continuing

Search for

Faster Algorithms

The literature on parallel sorting is very exten�
sive� A good survey is A Taxonomy of Parallel
Sorting by Bitton� DeWitt� Hsiao and Menon

���� Detailed descriptions of many parallel sort�
ing algorithms is found in Akl�s book devoted
to the subject �
�� In 	��� there was published
a bibliography containing nearly four hundred
references ����� Nevertheless� it is still appear�
ing new interesting parallel sorting algorithms�
There are mainly two �theoretical� compu�

tational models that have been considered for
parallel sorting algorithms � the circuit model
and the PRAM model� An early and important
result for the circuit model was the odd�even
merge and bitonic merge sorting networks pre�
sented by Batcher in 	�� ���� A bitonic merge
sort network sorts n numbers in O�log� n� time�
The cost of a parallel algorithm is commonly

de�ned as the product of its execution time and
processor requirement� A parallel sorting algo�
rithm is often said to be optimal �with respect
to cost�� if its cost is O�n logn��

The AKS O�n logn� sorting network The
�rst parallel sorting algorithm using only
O�logn� time was presented by Ajtai� Koml�os
and Szemer�edi in 	��
 ���� This algorithm is
often called the three Hungarians�s algorithm�
or the AKS�network� The original variant of
the AKS�network used O�n logn� processors
and was therefore not cost�optimal� However�
Leighton showed in 	��� that the AKS�network
can be combined with a variation of the odd�
even network to give an optimal sorting network
with O�logn� time and O�n� processors �	���
Leighton points out that the constant of propor�
tionality of this algorithm is immense and that
other parallel sorting algorithms will be faster
as long as n � 	�����
In spite of being commonly thought of as

a purely theoretical achievement� the AKS�
network was a major breakthrough� it proved
the possibility of sorting in O�logn� time� and
implied the �rst cost optimal parallel sorting al�
gorithm described by Leighton in 	��� �	��� The
optimal asymptotical behavior initiated a search
for improvements for closing the gap between
its theoretical importance and its practical use�
One such improvement is the simpli�cation of
the AKS�network done by Paterson ��	�� How�
ever� the algorithm is still very complicated and
the complexity constants remain impractically
large �	���

Cole�s CREW PRAM sorting algorithm

The PRAM model is more powerful than the



circuit model� �Even an EREW PRAM may
implement a sorting circuit without loss of e��
ciency�� Also for the PRAM model� there has
been a search for a parallel sorting algorithm
with optimal cost� �Some of the important re�
sults are reported by Cole �		���

In 	��� Richard Cole presented a new paral�
lel sorting algorithm called parallel merge sort
�	��� This was an important contribution� since
Cole�s algorithm is the second O�logn� time
O�n� processor sorting algorithm�the �rst was
the one implied by the AKS�network� Further�
it is claimed to have complexity constants which
are much smaller than that of the AKS�network�
��� Cole�s Parallel Merge Sort

A revised version of the original paper is �		��
which has been used as the main reference for
my implementation of the CREW PRAM vari�
ant of the algorithm�

Cole�s algorithm�main principles

Cole�s parallel merge sort assumes n distinct
items� These are distributed one per leaf in a
complete binary tree�it is assumed that n is
a power of 	� The computation proceeds up
the tree� level by level from the leaves to the
root� Each internal node u merges the sorted
sets computed at its children� The algorithm is
based on the following logn merging procedure�
��		� page ��	��

�The problem is to merge two sorted
arrays of n items� We proceed in logn
stages� In the ith stage� for each array�
we take a sorted sample of �i�� items�
comprising every n��i��th item in the
array� We compute the merge of these
two samples��

Cole made two key observations�

	� Merging in constant time
 Given the result
of the merge from the �i � 	��th stage� the
merge in the ith stage can be done in O�	�
time�

�� The merges at the di�erent levels of the
tree can be pipelined
 This is possible since
merged samples made at level l of the tree
may be used to provide samples of the ap�
propriate size for merging at the next level
above l without losing the O�	� time merg�
ing property�
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Figure 	� Cole�s parallel merge sort algorithm�
Part �a�� Arbitrary node u in the binary
computation tree� Part �b�� Computation of
NewUp�u� in two phases�



During the progress of the algorithm� each node
u stores an array Up�u� of items� The goal of
each node u is to make Up�u� into a sorted list
containing the items initially stored in the leaves
of the subtree rooted at u� Each stage of Cole�s
merging procedure consists of two phases� see
Figure 	� In phase 	� the Up�u� arrays are sam�
pled in a systematic manner to produce the ar�
rays SampleUp�u�� In phase �� the two sam�
ples SampleUp�v� and SampleUp�w� �from u�s
two child nodes� are merged into a new sequence
NewUp�u� with help of the array Up�u��

Cole describes that one should have one pro�
cessor standing by each item in the Up� NewUp�
and SampleUp arrays� Since the size of these
arrays� for each node u� change from stage to
stage�the processors must be dynamically al�
located to the nodes �i�e� the array elements
in Up�u�� NewUp�u� and SampleUp�u�� as the
computation proceeds from the leaves to the
root of the tree� The processor requirement is
slightly less than �n� At the end of every third
stage the lowest active level moves one level up
towards the top�and the algorithm has exactly

 logn stages� Also� the highest active level will
move one level upwards every second stage� Be�
cause of this di�erence in �speed� the total num�
ber of active levels will increase during the com�
putation� until the top level has been reached�
The reader is referred to Cole�s paper �		� for
further details about the algorithm�

The simplicity of the CREW PRAM model
and the nice properties of synchronous programs
made it relatively easy to develop an exact an�
alytical model of the time requirement for the
implementation of Cole�s algorithm�

About the implementation

Cole�s succinct description of the algorithm
given in �		� is at a relatively high level giving
the programmer freedom to choose between the
SIMD or MIMD �	�� implementation paradigms�
The algorithm have been programmed in a syn�
chronous MIMD programming style� as proposed
for the PRAM model by Wyllie ���� This paper
gives only a brief description of the implemen�
tation� providing a crude base for discussing its
time requirement� Figure � outlines the main
program in a notation called �parallel pseudo
pascal� �PPP� �	��� This notation is inspired
by parallel pidgin algol as de�ned by Wyllie in
����with modernizations from the pseudo lan�
guage notation used by Aho� Hopcroft and Ull�

CREW PRAM procedure ColeMergeSort
begin

�	� Compute the processor requirement� NoOfProcs�
��� Allocate working areas�
�
� Push addresses of working areas and other facts

on the stack�
��� assign NoOfProcs processors� name them P�
��� for each processor in P do begin

�� Read facts from the stack�
��� InitiateProcessors�
��� for Stage � 	 to 
 logn do begin
��� ComputeWhoIsWho�
�	�� CopyNewUpToUp�
�		� MakeSamples�
�	�� MergeWithHelp�

end�
end�

end�

Figure �� Main program of Cole�s parallel merge
sort expressed in parallel pseudo pascal�

mann in �	��
When the algorithm starts� one single CREW

PRAM processor is running� and the problem
instance and its size� n� are stored in the global
memory� Statement �	�
� are executed by this
single processor�
The maximum processor requirement is given

by the maximum size of the Up�u�� NewUp�u�
and SampleUp�u� arrays for all nodes u during
the computation� We have �		��

NoOfProcs  
X

u

jUp�u�j! �	�

X

u

jNewUp�u�j!
X

u

jSampleUp�u�j

where
P

u jUp�u�j � n ! n�� ! n�	 !
n�	�� ! � � �  		n�� and

P
u
jNewUp�u�j  P

u
jSampleUp�u�j � n! n��!n��! n��	�!

� � �  �n�� which is slightly less than �n� The �
means that the total number of array elements
is bounded above by the given sum�
Consider the sum given for the Up arrays�

There are n processors �array elements� at the
lowest active level� a maximum of n�� proces�
sors at the next level above� and so on� This
may be viewed as a pyramid of processors� Each
time the lowest active level moves one level up�
the pyramid of processors follows so that we



Table 	� Time consumption for the statements
in the implementation of ColeMergeSort�

t�	� n�  
� ! �blog
�
�n���c ! �blog

�
nc

t����
� n�  �

t��� n�  �� ! �
blogNoOfProcsc
t����� n�  	

t��� n�  ���! 
blog

�
�n���c! ��blog

�
nc

t����	�� n�  	��
t�		� n�  ��
t�	�� n�  ��	

still have n processors at the lowest active level�
Similarly� the NewUp and SampleUp processors
may be viewed as a �sliding pyramid of proces�
sors��

For a given n� the exact calculation of NoOf�
Procs is done by a loop with log� n iterations�
�Throughout this paper� logn means log� n��
The time used by this sequential startup code
is shown in Table 	� t�i� n� denotes the time
used on one single execution of statement i of
the discussed program when the problem size
is n� t�j��k� n� is a short hand notation forPi�k

i�j t�i� n��

A general procedure for processor allocation is
implemented in the CREW PRAM simulator by
a real CREW PRAM algorithm which is able to
allocate k processors in log k time utilizing the
�standard PRAM �	
� ��� fork instruction in a
binary tree structured �chain reaction�� Thus�
the time used for processor allocation �state�
ment ���� is as given in Table 	 and Equation
	�

Statement �
� and �� illustrate that a dedi�
cated area �a stack� in the global memory is used
to pass variables �such as the problem size� to
the processors allocated in statement ���� and
activated in statement ���� Due to the concur�
rent read property of the CREW PRAM� state�
ment �� is easily executed in O�	� time�

InitiateProcessors computes the static part of
the processor allocation information� Examples
are what level �in the �pyramid� as discussed
above� the processor is assigned to� and the lo�
cal processor no within that level� It have been
implemented by two �divide by � loops� result�
ing in the time consumption shown in the table�

The 
 logn stages each consists of four main
computation steps� ComputeWhoIsWho per�

forms the dynamic part of the processor allo�
cation� Since both the active levels of the tree�
and the size of the various arrays change from
stage to stage� information such as the node no�
and item no in the array for that node� must
be recomputed for each processor at the start
of each stage� The necessary computations are
easily performed in O�	� time�
CopyNewUpToUp is only a simple procedure

that makes the NewUp arrays made in the pre�
vious stage to the Up arrays of the current stage�
MakeSamples produce the array SampleUp�u�

from the array Up�u� for all active nodes in the
tree� as was depicted in Figure 	� It is a rela�
tively straightforward task�
In contrast� the O�	� time merging performed

by MergeWithHelp is a relatively complicated
a�air� It constitutes the major part of the algo�
rithm description in �		�� and about ��" of the
code in the implementation� Of the time used
by MergeWithHelp ���	 time units�� about ��"
is needed to compute the so called cross ranks
�Substep 	 and �� p� ��
� �		��� and �
" is used
to maintain ranks�Step �� p� �����
The time used to perform a Stage ���	�� is

somewhat shorter for the six �rst stages than
the numbers listed in Table 	� This is because
some parts of the algorithm do not need to be
performed when the sequences are very short�
However� for all stages after the six�th� the time
used is as given by the constants in the table�
Stages 	� takes a total of ���� time units� The
total time used by ColeMergeSort on n distinct
items� n  �m may be expressed as

T �ColeMergeSort� n�  ���

t�	���� n�! ���� ! t����	�� n�� 
��logn�� ��

The reader is referred to ���� for further details
about the implementation�

��� Bitonic Sorting on a CREW PRAM

Batcher�s bitonic sorting network ��� for sorting
of n  �m items consists of �

�
m�m! 	� columns

each containing n�� comparators �comparison
elements�� A natural emulation on a CREW
PRAM is to use n�� processors which are dy�
namically allocated to the one active column of
comparators as it moves from the input side to
the output side through the network� �The pos�
sibility of sorting several sequences simultane�
ously in the network by use of pipelining is sac�
ri�ced by this method� This is not relevant in
this comparison� since Cole�s algorithm do not



CREW PRAM procedure BitonicSort
begin

�	� assign n�� processors� name them P�
��� for each processor in P do begin

�
� Initiate processors�
��� for Stage � 	 to logn do
��� for Step � 	 to Stage do begin
�� EmulateNetwork�
��� ActAsComparator�

end�
end�

end�

t�	� n�  �� ! �
blog�n���c
t����
� n�  
�
t��� n�  	�
t������ n�  ��

Figure 
� Main program and time consumption
of bitonic sorting emulated on a CREW PRAM�

have a similar possibility�� The global memory
is used to store the sequence when the compu�
tation proceeds from one step �i�e� comparator
column� to the next� The main program and its
time requirement are shown in Figure 
�
EmulationNetwork is a procedure which com�

putes the addresses in the global memory cor�
responding to the two input lines for that com�
parator in the current Stage and Step�
ActAsComparator calculates which �of the

two possible� comparator functions that should
be done by the processor �comparator� in the
current Stage and Step� performs the function�
and writes the two outputs to the global mem�
ory� Both procedures are easily done in O�	�
time� The total time requirement becomes �

T �BitonicSort � n�  t�	��
� n�! �
�

t��� n�� logn! t������ n��
	

�
logn�logn! 	�

��� Comparison

Figure � shows the time used to sort n integers
by Cole�s algorithm compared with 	�processor
insertion sort� a n�� processor version of odd�
even transposition sort� and our bitonic sorting
algorithm� For all algorithms� time is measured
in number of CREW PRAM instructions� It
includes the time used on processor allocation�

The algorithms start with the input in global
memory and delivers the output at the same
place� Note that we have logarithmic scale on
both axes�
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Figure �� Time consumption �in number of �par�
allel� CREW PRAM instructions� measured
by running parallel sorting algorithms on the
CREW PRAM simulator for various problem
sizes n �horizontal axis�� Note the scale on
both axes� Legend� �  Cole�s algorithm
�O�logn��� � bitonic sorting �O�log� n��� �  
odd�even transposition sort �O�n��� �  inser�
tion sort �worst case� O�n���� and �  insertion
sort �best case� O�n���

Cole�s algorithm is the CREW PRAM algo�
rithm described in Section 
��� The implemen�
tation counts about ���� PIL lines and was de�
veloped and tested in about �� days of work�

Bitonic sorting is the algorithm outlined in
Section 
�
� The implementation counts about
��� PIL lines and was developed and tested in
about � days�
Odd�even transposition sort is perhaps the

simplest parallel sorting algorithm� Our CREW



Table �� Performance data for the CREW
PRAM implementations of the studied sorting
algorithms� Problem size n is 	��� P is short
for number of processors used� #R is short for
total number of read operations from the global
memory� and #W is the total number of writes�
Time and cost is given in kilo CREW PRAM
�unit�time� instructions� reads and writes in kilo
locations�

Algorithm time P cost #R #W
Cole 	��� ��
 �����
 ���� ����
Bitonic �� � 	��� 
�� 
��
Odd�Even ��� � 	��� 	� ���
Insert�worst 	���� 	 	���� ��
 ��

Insert�Average ��� 	 ��� ��
 ���
Insert�best ��� 	 ��� ��
 ��	

PRAM implementation uses n�� processors
which acts as �odd� and �even� processors in
an alternating style� Readers unfamiliar with
the algorithm are referred to one of ��� �� �
��

Insertion sort is the algorithm called Insertion
Sort � in Programming Pearls by John Bent�
ley �� and presented at page 	�� of that book�
It was implemented as a 	�processor CREW
PRAM algorithm�

The time used by the three parallel algorithms
are independent of the actual problem instance
�when the problem size is �xed�� However� in�
sertion sort use O�n�� time in the worst case�
and O�n� time in the best case �both shown in
the �gure�� We see that bitonic sorting is fastest
in this comparison in a large range of n starting
at about ���

Table � and 
 shows some central performance
data for small test runs� n  	�� and n  ���
The two rightmost columns show the quantity
of the memory use�

Bitonic sorting is faster in practice We
have developed exact analytical models for the
implementations of Cole�s algorithm and bitonic
sorting� The models have been checked against
the test runs� and have been used to �nd the
point where Cole�s O�logn� algorithm becomes
faster than the O�log� n� bitonic algorithm� The
results are summarized in Table �� The table
shows time and processor requirement for the
two algorithms for n  �k� n  ��k� �k  

Table 
� Same table as above but with problem
size n  ���

Algorithm time P cost #R #W
Cole �	�� �� ���
�� 	��� ���
Bitonic 
�� 	�� ����� ��� ���
Odd�Even ��
 	�� �
�� ��� 
���
Insert�worst ����� 	 ����� 
��� 
���
Insert�Average 
�
�
 	 
�
�
 	��� 	��
Insert�best �� 	 �� ��	 ��


Table �� Calculated performance data for the
two CREW PRAM implementations� P is short
for number of processors�

Algorithm n time P

ColeMergeSort ��
 ��k� ���� 	�� ���� 	��

BitonicSort ��
 ��k� 	��� 	�� 
�
� 	��

ColeMergeSort ��	�� ���k� ���� 	�� 	��� 	�	

BitonicSort ��	�� ���k� 	��� 	�� 	�
� 	��

ColeMergeSort �	
 ������ ��
� 	���

BitonicSort �	
 ���	�� 
��� 	���

ColeMergeSort ��� ������ ��� 	���

BitonicSort ��� �			�� ���� 	���

����� for the last value of n making bitonic sort�
ing faster than Cole�s algorithm� and for the �rst
value of nmakingCole�s algorithm to a faster al�
gorithm� We see that our straightforward imple�
mentation of Batcher�s bitonic sorting is faster
than the implementation of Cole�s parallel merge
sort as long as the number of items to be sorted�
n� is less than ��� � 	��� 	���� i�e� more than
 Giga Tera items�

A lot may be learned from medium	sized

test runs Highly concurrent algorithms with
polylogarithmic running time are often rela�
tively complex� One might think that evalua�
tion of such algorithms would require process�
ing of very large problem instances� So far�
this have not been the case� In studying the
relatively complex Cole�s algorithm� some hun�
dreds of processors and small sized memories
have been su�cient to enlighten the main as�
pects of the algorithm� In many cases� the need



for brute force �i�e�� huge test runs� may to a
large extent be reduced by the following �work�
ing rules��

	� The size of the problem instance is used as
parameter to the algorithm which is made
to solve the problem for all possible prob�
lem sizes�

�� Elaborate testing is performed on all prob�
lem sizes that are within the limitations of
the simulator�


� A detailed analysis of the algorithm is per�
formed� The possibility of making such an
analysis with a reasonable e�ort depends
strongly on the fact that the algorithm is
deterministic and synchronous�

�� The analysis is con�rmed with measure�
ments from the test cases�

Together� this have made it possible to use the
analytical performance model by extrapolation
for problem sizes beyond the limitiations of the
simulator�

� Concluding Remarks

We can conclude that Batcher�s well known
and simple O�logn�� time bitonic sorting is
faster than Cole�s O�logn� time algorithm for
all practical values of n� The huge value of n
reported in the previous section gives also room
for a lot of improvements to Cole�s algorithmbe�
fore it beats bitonic sorting for practical prob�
lem sizes� There are also good possibilities to
improve the implementation of bitonic sorting�
In fact� Cole�s algorithm is even less practical

than depicted by the described comparison of
execution time� This is because it requires about
� times as many processors than bitonic sorting�
and it has a far more extensive use of the global
memory�
The method for investigating PRAM algo�

rithms exempli�ed by this paper might con�
tribute to lessen the gap between theory and
practice in parallel computing� Reducing this
gap was recently emphasized as a very impor�
tant research area at the NSF � ARC Work�
shop on Opportunities and Constraints of Par�
allel Computing �����
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