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Abstract

When looking for new and faster parallel sorting
algorithms for use in massively parallel systems
it is tempting to investigate promising alterna-
tives from the large body of research done on
parallel sorting in the field of theoretical com-
puter science. Such “theoretical” algorithms
are mainly described for the PRAM (Parallel
Random Access Machine) model of computation
[13, 26]. This paper shows how this kind of in-
vestigation can be done on a simple but versa-
tile environment for programming and measur-
ing of PRAM algorithms [18, 19]. The practical
value of Cole’s Parallel Merge Sort algorithm
[10,11] have been investigated by comparing it
with Batcher’s bitonic sorting [5]. The O(logn)
time consumption of Cole’s algorithm implies
that it must be faster than bitonic sorting which
is O(log?n) time—if n is large enough. How-
ever, we have found that bitonic sorting is faster
as long as n is less than 1.2 x 102!, i.e. more
than 1 Giga Tera items!. Consequently, Cole’s
logarithmic time algorithm 1s not fast in prac-
tice.

1 Introduction and Motivation

The work reported in this paper is an at-
tempt to lessen the gap between theory and
practice within the field of parallel computing.
Within theoretical computer science, parallel al-
gorithms are mainly compared by using asymp-
totical analysis (O-notation). This paper gives
an example on how the analysis of implemented
algorithms on finite problems provides new and
more practically oriented results than those tra-
ditionally obtained by asymptotical analysis.

Parallel Complexity Theory—A Rich
Source for

Parallel Algorithms

In the past years there has been an increased in-
terest in parallel algorithms. In the field of par-
allel complexity theory the so called Nick’s Class
(NC) has been given a lot of attention. Prob-
lems belonging to this complexity class may be
solved by algorithms with polylogarithmic (i.e.
of O(log" (n)) where k is a constant and n is the
problem size) running time and a polynomial
requirement for processors. A lot of parallel al-
gorithms have recently been presented to prove
membership in this class for various problems.
This kind of algorithms are frequently denoted
NC-algorithms. Although the main motivation
for these new algorithms often 1s to show that
a given problem is in NC, the algorithms may
also be taken as proposals for parallel algorithms
that are “fast in practice”.

The Gap Between Theory and Practice
Unfortunately, it may be very hard to assess the
practical value of NC-algorithms.

Asymptotical analysis Order—notation is a
very useful tool when the aim is to prove mem-
bership of complexity classes or if asymptotic
behavior for some other reason is “detailed
enough”. It makes it possible to describe and
analyze algorithms at a very high level. How-
ever, it also makes it possible to hide (willingly
or unwillingly) a lot of details which cannot be
omitted when algorithms are compared for “re-
alistic” problems of large but limited size.



Unrealistic machine model Few of these
theoretical algorithms are described as imple-
mentations on real machines. Their descriptions
are based on various computational models. A
computational model is the same as an abstract

machine. One such model is the CREW PRAM.

Details are swept under the rug Most NC-
algorithms originating from parallel complexity
theory are presented on a very high level and in
a compact manner. One reason is probably that
parallel complexity theory is a field that to a
large extent overlaps with mathematics—where
the elegance and advantages of compact descrip-
tions are highly appreciated. Another reason
may be found in the call for papers for the 30’th
FOCS Symposium; A strict limit of 6 pages was
enforced on the submitted papers. Considering
the complexity of most of these algorithms, a
compact description is therefore a necessity.

Traditional Use of the CREW PRAM
Model

The certainly most used [16] model for express-
ing parallel algorithms in theoretical computer
science 1s the P-RAM model proposed by For-
tune and Wyllie in 1978 [13]. Tts simplicity and
generality makes it possible to concentrate on
the algorithm without being distracted by the
obstacles caused by describing it for a more spe-
cific (and realistic) machine model. Tts syn-
chronous operation makes it easy to describe
and analyze programs for the model. This is
exactly what is needed in parallel complexity
theory, where the main focus is on the paral-
lelism inherent in a problem.

Implementing On an Abstract Model is
Worthwhile

Implementing algorithms on the PRAM model
may be regarded as a paradox. One of the rea-
sons for using such abstract machines has tra-
ditionally been a wish to avoid implementation
details. However, it may be a viable step in an
attempt to lessen the gap between theory and
practice. The following is achieved by imple-
menting a “theoretical” parallel algorithm on a

CREW PRAM model:

o A deeper understanding. Making an imple-
mentation enforces a detailed study of all
aspects of an algorithm.

e Confidence in your understanding. Veri-
fication of large parallel programs is very

difficult. In practice, the best way of get-
ting confident with one’s own understand-
ing of a complicated algorithm is to make
an implementation that works. Of course,
testing can not give a proof, but elaborate
and systematic testing may give a larger de-
gree of confidence than program verification
(which also may contain errors).

e A good help in mastering the comple-
ity involved in implementing a complicated
parallel algorithm on a real machine. A
CREW PRAM implementation may be a
good starting point for implementing the
same algorithm on a more realistic ma-
chine model. This is especially important
for complicated algorithms. Going directly
from an abstract mathematical description
to an implementation on a real machine will
often be a too large step. The existence of a
CREW PRAM implementation may reduce
this to two smaller steps.

e Denying the practical value of an algorithm.
How can an unrealistic machine model be
used to answer questions about the prac-
tical value of algorithms? It is important
here to differentiate between negative and
positive answers. If a parallel algorithm A
shows up to be inferior as compared with
sequential and/or parallel algorithms for
(more) realistic models, the use of an un-
realistic parallel machine model for execut-
ing A will only strengthen the conclusion.
On the other side, a parallel algorithm can-
not be classified as a better alternative for
practical use if it 1s based on a less realistic
model.

These advantages of implementing parallel al-
gorithms on the CREW PRAM model are in-
dependent of whether a parallel computer that
resembles the CREW PRAM model ever will be
built.

2 The CREW PRAM Model —
Programming and Simulation

This section gives a brief introduction to the
CREW PRAM model, and how algorithms may
be programmed, executed and measured on a

CREW PRAM simulator.

The Original CREW PRAM



Unfortunately, there is a lot of different opin-
ions on how the (CREW) PRAM should be pro-
grammed. My work is originally inspired by
James Wyllie’s well-written Ph.D. thesis The
Complexity of Parallel Computations [26]. The
thesis gives a high-level and succinct description
of how a PRAM may be programmed.

Background The P-RAM (parallel random
access machine) was first presented by Steven
Fortune and James Wyllie [13]. Tt was further
elaborated in Wyllie’s Ph.D. thesis [26]. The
P-RAM is based on random access machines
(RAMs) operating in parallel and sharing a com-
mon memory. Thus it is in a sense the model in
the world of parallel computations that corre-
sponds to the RAM (Random Access Machine)
model, which certainly is the prevailing model
for sequential computations.

Today, the mostly used name on the origi-
nal P-RAM model is probably CREW PRAM.
CREW 1s an abbreviation for the very central
concurrent read exclusive write property. (Sev-
eral processors may at the same time step read
the same variable (location) in global memory,
but they may not write to the same global vari-
able simultaneously.)

Main Properties A CREW PRAM is a very
simple and general model of a parallel com-
puter. It has an unbounded number of equal
processors. Each has an unbounded local mem-
ory, an accumulator, program counter, and a
flag indicating whether it is running or not. A
CREW PRAM has an unbounded global mem-
ory shared by all processors. An unbounded
number of processors may write into global
memory as long as they write to different lo-
cations. An unbounded number of processors
may read any location at any time. All proces-
sors execute the same program. At each global
time step in the computation, each running pro-
cessor executes the instruction given by its own
local program counter in one unit of time—and
the model 1s therefore best classified as a syn-
chronous MIMD machine. More details may be
found in one of [13, 19, 26].

Parallel Programming May be Easy!

The algorithms are implemented as PIL pro-
grams and executed on a CREW PRAM sim-
ulator prototype. PIL is a very simple exten-
sion of the high-level, object oriented program-

ming language SIMULA [8, 22]. PIL includes
features for processor allocation, activation and
synchronization, for interaction with the simu-
lator etc. The powerful and flexible standard
SIMULA source code level debugger may be
used on the PIL programs [15]. The simplicity
and generality of the PRAM model, combined
with the high-level language and the debugger—
have made the development of synchronous par-
allel MIMD programs to a surprisingly easy task.
The system has also been used in connection
with teaching of parallel algorithms.

About the Simulator and Time Modelling
The CREW PRAM simulator has been devel-
oped in SIMULA with good help of the DE-
MOS discrete event simulation package [7]. Tt
runs on SUN workstations under the UNIX op-
erating system.

Time is measured in number of CREW
PRAM unit time instructions—denoted CREW
PRAM time units or simply time units. Each
processor is assumed to have a rather simple and
small instruction set. (Nearly all instructions
use one time unit, some few (such as divide)
use more. The instruction set time requirement
is defined as parameters in the simulator—and
therefore easy to change.) The time consump-
tion is specified as part of the PIL program.

Monitoring facilities The simulator pro-
vides the following features for producing data
necessary for doing algorithm evaluation:

e Global clock. The synchronous operation
of a CREW PRAM implies that one global
time concept is valid for all the processors.
The global clock may be read and reset.
The default output from the simulator gives
information about the exact time for all
events which produce any form of output.

e Specifying time consumption. In the cur-
rent version of the simulator, the time used
on local computations inside each processor
must be explicitly given in the PIL program
by the user. This makes it possible for the
user to choose an appropriate level of “gran-
ularity” for the time modelling. Further,
the explicit time modelling implies the ad-
vantage that the programmer is free to as-
sume any particular instruction set or other
way of representing time consumption.



e Processor and global memory requirement.
The number of processors used in the al-
gorithm is explicitly given in the PIL pro-
gram, and may therefore easily be reported
together with other performance data. The
amount of global memory used may be ob-
tained by reading the user stack pointer.

e Global memory access statistics. The sim-
ulator counts and reports the number of
reads and the number of writes to the global
memory.

o DEMOS data collection facilities. The gen-
eral and flexible data collection facilities
provided in DEMOS are available; COUNT
may be used to record incidences, TALLY
may be used to record time independent
variables, with various statistics (mean, es-
timated standard deviation etc.) main-
tained over the samples, and HISTOGRAM
provides a convenient way of displaying
measurement data.

Note that the monitoring facilities does not in-
terfere with the algorithm being evaluated. Al-
gorithm or experiment specific monitoring are
easily defined by the user.

Further details about PIL and the simulator
may be found in [18].

3 Investigating the Practical
Value of Cole’s Parallel Merge
Sort Algorithm

This section starts by explaining why Richard
Cole’s parallel merge sort algorithm is an im-
portant contribution to the field of parallel sort-
ing. We describe the main principles of the al-
gorithm, and outlines the implementation. A
straightforward CREW PRAM implementation
of Batcher’s bitonic sorting is presented and
compared with Cole’s algorithm. The com-
parison shows how the relative simplicity of
bitonic sorting makes it to a better algorithm
wn practice—in spite of being inferior to Cole’s
algorithm “in the theory”.

3.1 Parallel Sorting—The
Search for

Faster Algorithms

The literature on parallel sorting is very exten-
sive. A good survey is A Tazonomy of Parallel
Sorting by Bitton, DeWitt, Hsiao and Menon

Continuing

[9]. Detailed descriptions of many parallel sort-
ing algorithms is found in Akl’s book devoted
to the subject [3]. In 1986, there was published
a bibliography containing nearly four hundred
references [24]. Nevertheless, it is still appear-
ing new interesting parallel sorting algorithms.

There are mainly two (theoretical) compu-
tational models that have been considered for
parallel sorting algorithms — the circuit model
and the PRAM model. An early and important
result for the circuit model was the odd-even
merge and bitonic merge sorting networks pre-
sented by Batcher in 1968 [5]. A bitonic merge
sort network sorts n numbers in O(log? n) time.

The cost of a parallel algorithm is commonly
defined as the product of its execution time and
processor requirement. A parallel sorting algo-
rithm is often said to be optimal (with respect
to cost), if its cost is O(nlogn).

The AKS O(nlogn) sorting network The
first parallel sorting algorithm wusing only
O(logn) time was presented by Ajtai, Komlds
and Szemerédi in 1983 [2]. This algorithm is
often called the three Hungarians’s algorithm,
or the AKS-network. The original variant of
the AKS-network used O(nlogn) processors
and was therefore not cost-optimal. However,
Leighton showed in 1984 that the AKS-network
can be combined with a variation of the odd-
even network to give an optimal sorting network
with O(logn) time and O(n) processors [17].
Leighton points out that the constant of propor-
tionality of this algorithm is immense and that
other parallel sorting algorithms will be faster
as long as n < 10199,

In spite of being commonly thought of as
a purely theoretical achievement, the AKS-
network was a major breakthrough; it proved
the possibility of sorting in O(logn) time, and
tmplied the first cost optimal parallel sorting al-
gorithm described by Leighton in 1984 [17]. The
optimal asymptotical behavior initiated a search
for improvements for closing the gap between
its theoretical importance and its practical use.
One such improvement is the simplification of
the AKS-network done by Paterson [21]. How-
ever, the algorithm is still very complicated and
the complexity constants remain impractically
large [14].

Cole’s CREW PRAM sorting algorithm
The PRAM model is more powerful than the



circuit model. (Even an EREW PRAM may
implement a sorting circuit without loss of effi-
ciency.) Also for the PRAM model, there has
been a search for a parallel sorting algorithm
with optimal cost. (Some of the important re-
sults are reported by Cole [11].)

In 1986, Richard Cole presented a new paral-
lel sorting algorithm called parallel merge sort
[10]. This was an important contribution, since
Cole’s algorithm is the second O(logn) time
O(n) processor sorting algorithm—the first was
the one implied by the AKS-network. Further,
it is claimed to have complexity constants which
are much smaller than that of the AKS-network.
3.2 Cole’s Parallel Merge Sort
A revised version of the original paper is [11]—
which has been used as the main reference for (a)
my implementation of the CREW PRAM vari-
ant of the algorithm. e

level 1 —1

Cole’s algorithm—main principles

Cole’s parallel merge sort assumes n distinct
items. These are distributed one per leaf in a
complete binary tree—it is assumed that n is
a power of 2. The computation proceeds up
the tree, level by level from the leaves to the
root. Each internal node u merges the sorted
sets computed at its children. The algorithm is
based on the following log n merging procedure:

([11] page 771.)

Merge WithHelp (phase 2)
MakeSamples (phase 1)

“The problem is to merge two sorted SampleUp(v) | |SampleUp(w) |
arrays of n items. We proceed in logn

stages. In the ith stage, for each array, | MakeSamples
we take a sorted sample of 271 items, e T -
comprising every n/2'~!th item in the 4\ {

array. We compute the merge of these IUP(U) | IUP(W) |
two samples”.

Cole made two key observations: (b)

1. Merging in constant time: Given the result
of the merge from the (i — 1)’th stage, the
merge in the ith stage can be done in O(1)
time.

Figure 1: Cole’s parallel merge sort algorithm.
Part (a): Arbitrary node u in the binary
computation tree. Part (b): Computation of
NewUp(u) in two phases.

2. The merges at the different levels of the
tree can be pipelined: This is possible since
merged samples made at level [ of the tree
may be used to provide samples of the ap-
propriate size for merging at the next level
above | without losing the O(1) time merg-

ing property.



During the progress of the algorithm, each node
u stores an array Up(u) of items. The goal of
each node w is to make Up(u) into a sorted list
containing the items initially stored in the leaves
of the subtree rooted at u. Each stage of Cole’s
merging procedure consists of two phases,; see
Figure 1. In phase 1, the Up(u) arrays are sam-
pled in a systematic manner to produce the ar-
rays SampleUp(u). In phase 2, the two sam-
ples SampleUp(v) and SampleUp(w) (from u’s
two child nodes) are merged into a new sequence
NewUp(u) with help of the array Up(u).

Cole describes that one should have one pro-
cessor standing by each item in the Up, NewUp,
and SampleUp arrays. Since the size of these
arrays, for each node u, change from stage to
stage—the processors must be dynamically al-
located to the nodes (i.e. the array elements
in Up(u), NewUp(u) and SampleUp(u)) as the
computation proceeds from the leaves to the
root of the tree. The processor requirement is
slightly less than 4n. At the end of every third
stage the lowest active level moves one level up
towards the top—and the algorithm has exactly
3logn stages. Also, the highest active level will
move one level upwards every second stage. Be-
cause of this difference in “speed” the total num-
ber of active levels will increase during the com-
putation, until the top level has been reached.
The reader is referred to Cole’s paper [11] for
further details about the algorithm.

The simplicity of the CREW PRAM model
and the nice properties of synchronous programs
made it relatively easy to develop an exact an-
alytical model of the time requirement for the
implementation of Cole’s algorithm.

About the implementation

Cole’s succinct description of the algorithm
given in [11] is at a relatively high level giving
the programmer freedom to choose between the
SIMD or MIMD [12] implementation paradigms.
The algorithm have been programmed in a syn-
chronous MIMD programming style, as proposed
for the PRAM model by Wyllie [26]. This paper
gives only a brief description of the implemen-
tation, providing a crude base for discussing its
time requirement. Figure 2 outlines the main
program in a notation called “parallel pseudo
pascal” (PPP) [19]. This notation is inspired
by parallel pidgin algol as defined by Wyllie in
[26]—with modernizations from the pseudo lan-
guage notation used by Aho, Hopcroft and Ull-

CREW PRAM procedure ColeMergeSort
begin

(1) Compute the processor requirement, NoOfProcs;

(2) Allocate working areas;

(3) Push addresses of working areas and other facts

on the stack;

assign NoOfProcs processors, name them P;

(1)

(5) for each processor in P do begin

(6) Read facts from the stack;

(7) Initiate Processors;

(8) for Stage := 1 to 3logn do begin

(9) Compute Whols Who;

(10) CopyNewUpTo Up,

(11) MakeSamples;

(12) MergeWithHelp;
end;

end;
end;

Figure 2: Main program of Cole’s parallel merge
sort expressed in parallel pseudo pascal.

mann in [1].

When the algorithm starts, one single CREW
PRAM processor is running, and the problem
instance and its size, n, are stored in the global
memory. Statement (1-3) are executed by this
single processor.

The maximum processor requirement is given
by the maximum size of the Up(u), NewUp(u)
and SampleUp(u) arrays for all nodes « during
the computation. We have [11]:

NoOfProcs = Z|Up(u)|—|—

u

where 3 [Up(u)] < n + n/2 + n/16 +
n/128 + ... = 11n/7 and >, |[NewUp(u)| =
>, [SampleUp(u)| < n+n/8+n/64+n/512+
... = 8n/7 which is slightly less than 4n. The <
means that the total number of array elements
1s bounded above by the given sum.

Consider the sum given for the Up arrays.
There are n processors (array elements) at the
lowest active level, a maximum of n/2 proces-
sors at the next level above, and so on. This
may be viewed as a pyramid of processors. Each
time the lowest active level moves one level up—
the pyramid of processors follows so that we

(1)

Z |[NewUp(u)| + Z |[SampleUp(u)|



Table 1: Time consumption for the statements
in the implementation of ColeMergeSort.

forms the dynamic part of the processor allo-
cation. Since both the active levels of the tree,
and the size of the various arrays change from
stage to stage, information such as the node no,

t(1,n) = 34+ 8|logg(n/2)| + 8|logg n|
t(2.3,n) = 83

t(4,n) = 42+ 23|log NoOfProcs |
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t(11,n) = 48
t12,n) = 781

224 + 36|logg(n/2)| + 72|logg n
t

angl item no in the array for that node, must
e|recomputed for each processor at the start
of pach stage. The necessary computations are
eadily performed in O(1) time.
CopyNewUpToUp is only a simple procedure
tht makes the NewUp arrays made in the pre-
viqus stage to the Up arrays of the current stage.
MakeSamples produce the array SampleUp(u)

still have n processors at the lowest active level.
Similarly, the NewUp and SampleUp processors
may be viewed as a “sliding pyramid of proces-
sors” .

For a given n, the ezact calculation of NoOf-
Procs is done by a loop with logg n iterations.
(Throughout this paper, logn means log, n.)
The time used by this sequential startup code
is shown in Table 1. ¢(i,n) denotes the time
used on one single execution of statement i of
the discussed program when the problem size
is n. t(j..k,n) is a short hand notation for
>icy tin).

A general procedure for processor allocation is
implemented in the CREW PRAM simulator by
a real CREW PRAM algorithm which is able to
allocate k& processors in log k time utilizing the
(standard PRAM [13, 26]) fork instruction in a
binary tree structured “chain reaction”. Thus,
the time used for processor allocation (state-
ment (4)) is as given in Table 1 and Equation
1.

Statement (3) and (6) illustrate that a dedi-
cated area (a stack) in the global memory is used
to pass variables (such as the problem size) to
the processors allocated in statement (4), and
activated in statement (5). Due to the concur-
rent read property of the CREW PRAM, state-
ment (6) is easily executed in O(1) time.

InitiateProcessors computes the static part of
the processor allocation information. Examples
are what level (in the “pyramid” as discussed
above) the processor is assigned to, and the lo-
cal processor no within that level. It have been
implemented by two “divide by 8 loops” result-
ing in the time consumption shown in the table.

The 3logn stages each consists of four main
computation steps. Compute WholsWho per-

from the array Up(u) for all active nodes in the
tree, as was depicted in Figure 1. It is a rela-
tively straightforward task.

In contrast, the O(1) time merging performed
by MergeWithHelp is a relatively complicated
affair. It constitutes the major part of the algo-
rithm description in [11], and about 90% of the
code in the implementation. Of the time used
by Merge WithHelp (781 time units), about 40%
1s needed to compute the so called cross ranks
(Substep 1 and 2, p. 773, [11]), and 43% is used
to maintain ranks(Step 2, p. 774).

The time used to perform a Stage (9-12) is
somewhat shorter for the six first stages than
the numbers listed in Table 1. This i1s because
some parts of the algorithm do not need to be
performed when the sequences are very short.
However, for all stages after the six’th, the time
used 1s as given by the constants in the table.
Stages 1-6 takes a total of 2525 time units. The
total time used by ColeMergeSort on n distinct
items, n = 27" may be expressed as

T(ColeMergeSort,n) = (2)
t(1..7,n) + 2525 + ¢(8..12,n) x 3((logn) — 2)

The reader is referred to [20] for further details
about the implementation.

3.3 Bitonic Sorting on a CREW PRAM

Batcher’s bitonic sorting network [5] for sorting
of n = 2™ items consists of £m(m + 1) columns
each containing n/2 comparators (comparison
elements). A natural emulation on a CREW
PRAM is to use n/2 processors which are dy-
namically allocated to the one active column of
comparators as it moves from the input side to
the output side through the network. (The pos-
sibility of sorting several sequences simultane-
ously in the network by use of pipelining is sac-
rificed by this method. This is not relevant in
this comparison, since Cole’s algorithm do not



CREW PRAM procedure BitonicSort
begin

(1) assign n/2 processors, name them P;
(2) for each processor in P do begin
(3) Initiate processors;
(4) for Stage :=1 to logn do
(5) for Step := 1 to Stage do begin
(6) EmulateNetwork;
(7) ActAsComparator,
end;
end;
end;

bl

t(1,n) = 42+ 23|log(n/2)]
t(2.3,n) = 38
t(4,n) = 10
t(5.7,n) = 84

Figure 3: Main program and time consumption
of bitonic sorting emulated on a CREW PRAM.

have a similar possibility.) The global memory
1s used to store the sequence when the compu-
tation proceeds from one step (i.e. comparator
column) to the next. The main program and its
time requirement are shown in Figure 3.
EmulationNetwork is a procedure which com-
putes the addresses in the global memory cor-
responding to the two input lines for that com-
parator in the current Stage and Step.
ActAsComparator calculates which (of the
two possible) comparator functions that should
be done by the processor (comparator) in the
current Stage and Step, performs the function,
and writes the two outputs to the global mem-
ory. Both procedures are easily done in O(1)
time. The total time requirement becomes :

T(BitonicSort,n) = t(1..3,n)+

1
t(4,n) x logn +¢(5..7,n) x 3 logn(logn + 1)

3.4 Comparison

Figure 4 shows the time used to sort n integers
by Cole’s algorithm compared with 1-processor
insertion sort, a n/2 processor version of odd-
even transposition sort, and our bitonic sorting
algorithm. For all algorithms, time is measured
in number of CREW PRAM instructions. It
includes the time used on processor allocation.

The algorithms start with the input in global
memory and delivers the output at the same
place. Note that we have logarithmic scale on
both axes.
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Figure 4: Time consumption (in number of (par-
allel) CREW PRAM instructions) measured
by running parallel sorting algorithms on the
CREW PRAM simulator for various problem
sizes n (horizontal axis). Note the scale on
both axes. Legend: & = Cole’s algorithm
(O(logn)), e bitonic sorting (O(log”n)), o =
odd-even transposition sort (O(n)), * = inser-
tion sort (worst case, O(n?)), and x = insertion

(3)sort (best case, O(n)).

Cole’s algorithm is the CREW PRAM algo-
rithm described in Section 3.2. The implemen-
tation counts about 2000 PIL lines and was de-
veloped and tested in about 40 days of work.

Bitonic sorting is the algorithm outlined in
Section 3.3. The implementation counts about
200 PIL lines and was developed and tested in
about 2 days.

Odd-even transposition sort is perhaps the
simplest parallel sorting algorithm. Our CREW

Problem size n



Table 2: Performance data for the CREW
PRAM implementations of the studied sorting
algorithms. Problem size n is 128. P is short
for number of processors used. #R is short for

Table 3: Same table as above but with problem
size n = 256.

total number of read operations from the global Algorithm time P cost #R | #W
memory, and #W 1is the total number of writes. Cole 21.2 | 986 | 20863.8 | 104.6 | 65.2
Time and cost is given in kilo CREW PRAM Bitonie 3.4 | 128 428.2 9.9 9.4
(unit-time) instructions, reads and writes in kilo Odd-Even 5.3 | 128 683.7 | 659 | 348
locations. Insert-worst 592.4 1 5924 | 32.9 | 32.9
Insert-Average | 303.3 1 303.3 17.0 | 16.8
Insert-best 5.6 1 5.6 5.1 0.3
Algorithm time P cost | #R | H#W
Cole 18.2 | 493 | 8959.3 | 44.7 | 28.2
Bitonic 26| 64| 169.0| 3.9 3.7
Odd-Even 28 64 176.5 | 16.6 | 1&bpld 4: Calculated performance data for the
Insert-worst 1487 1 1487 | 83 | t8sgUREW PRAM implementations. P is short
Insert-Average 76.2 1 76.2 | 4.3 | fopgnpmber of processors.
Insert-best 2.8 1 2.8 0.3 0.1
| Algorithm | n | time | P |
ColeMergeSort 65536 (64k) | 4.5 x 10* | 2.5 x 10°
PRAM implementation uses n/2 processors | BitonicSort 65536 (64k) [ 1.2 x 10* | 3.3 x 10
which acts as “odd” and “even” processors in  ["CpjcifergeSort | 262144 (256k) | 5.2 x 107 | 1.0 x 10°
an altern.atmg style. Readers unfamiliar with |["g7 a0 262144 (256k) | 1.5 x 107 | 1.3 x 10°
the algorithm are referred to one of [4, 9, 23]. — =
Insertion sortis the algorithm called Insertion CQleMergeSort 269 205972 | 2.3 x 1020
Sort 2 in Programming Pearls by John Bent- BitonicSort 2 205194 | 3.0 x 10
ley [6] and presented at page 108 of that book. [ ColeMergeSort 270 208958 | 4.6 x 1021
It was implemented as a l-processor CREW [ BitonicSort 970 211107 | 5.9 x 10%°

PRAM algorithm.

The time used by the three parallel algorithms
are independent of the actual problem instance
(when the problem size is fixed). However, in-
sertion sort use O(n?) time in the worst case,
and O(n) time in the best case (both shown in
the figure). We see that bitonic sorting is fastest
in this comparison in a large range of n starting
at about 256.

Table 2 and 3 shows some central performance
data for small test runs, n = 128 and n = 256.
The two rightmost columns show the quantity
of the memory use.

Bitonic sorting is faster in practice We
have developed exact analytical models for the
implementations of Cole’s algorithm and bitonic
sorting. The models have been checked against
the test runs, and have been used to find the
point where Cole’s O(logn) algorithm becomes
faster than the O(log” n) bitonic algorithm. The
results are summarized in Table 4. The table
shows time and processor requirement for the
two algorithms for n = 64k, n = 256k, (k =

210) for the last value of n making bitonic sort-
ing faster than Cole’s algorithm, and for the first
value of n making Cole’s algorithm to a faster al-
gorithm. We see that our straightforward imple-
mentation of Batcher’s bitonic sorting is faster
than the implementation of Cole’s parallel merge
sort as long as the number of items to be sorted,
n, is less than 27° ~ 1.2 x 102
1 Giga Tera items!

, 1.e. more than

A lot may be learned from medium-sized
test runs Highly concurrent algorithms with
polylogarithmic running time are often rela-
tively complex. One might think that evalua-
tion of such algorithms would require process-
ing of very large problem instances. So far,
this have not been the case. In studying the
relatively complex Cole’s algorithm, some hun-
dreds of processors and small sized memories
have been sufficient to enlighten the main as-
pects of the algorithm. In many cases, the need



for brute force (i.e., huge test runs) may to a
large extent be reduced by the following “work-
ing rules”:

1. The size of the problem instance is used as
parameter to the algorithm which is made
to solve the problem for all possible prob-
lem sizes.

2. FElaborate testing 1s performed on all prob-
lem sizes that are within the limitations of
the simulator.

3. A detailed analysis of the algorithm is per-
formed. The possibility of making such an
analysis with a reasonable effort depends
strongly on the fact that the algorithm is
deterministic and synchronous.

4. The analysis is confirmed with measure-
ments from the test cases.

Together, this have made it possible to use the
analytical performance model by extrapolation
for problem sizes beyond the limitiations of the
simulator.

4 Concluding Remarks

We can conclude that Batcher’s well known
and simple O(logn?) time bitonic sorting is
faster than Cole’s O(logn) time algorithm for
all practical values of n. The huge value of n
reported in the previous section gives also room
for alot of improvements to Cole’s algorithm be-
fore it beats bitonic sorting for practical prob-
lem sizes. There are also good possibilities to
improve the implementation of bitonic sorting.

In fact, Cole’s algorithm is even less practical
than depicted by the described comparison of
execution time. This i1s because it requires about
8 times as many processors than bitonic sorting,
and 1t has a far more extensive use of the global
memory.

The method for investigating PRAM algo-
rithms exemplified by this paper might con-
tribute to lessen the gap between theory and
practice in parallel computing. Reducing this
gap was recently emphasized as a very impor-
tant research area at the NSF - ARC Work-
shop on Opportunities and Constraints of Par-
allel Computing [25].
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