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Abstract

The art of both software and hardware mod-
elling over the years has led to the development
of more and more complex or detailed models.
However the question is, is a complex model a
better model? In architectural terms, the level of
complexity of a model is said to increase as we
move from system-level to gate-level. A model
may represent a complete system or just part of
it, in such a way as to meet the goals of the model.

In this work, we present two modelling ap-
proaches using HDLs — the first using the sim-
ulation feature of HDL to provide system-level
modelling and the second focusing on logic syn-
thesis to provide gate-level modelling. Both ap-
proaches model the same architecture, an asyn-
chronous controlled multicomputer router.

1 Introduction

Hardware Description Languages (HDLs)
provide us with the freedom to model systems at
various levels of detail.

Simulators may be written in HDL to model
large complex designs at the system-level. Com-
puter simulation of simplified models and pro-
totypes of these complex systems is an estab-
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lished technique to unveil design errors at an
early stage, as well as improving the cooperation
with the end user during development. HDLs
such as VHDL and Verilog, provide simulation
as an integrated part of the language.

HDL tools often provide inbuilt simulators
which check the signal paths of an RTL design
written in HDL. This HDL-code may also be
written as synthesisable code and as such, may
be synthesised into a gate-level design by a logic
synthesis tool.

In this work we develop two models of a mul-
ticomputer router using the features described
above for HDLs. The architecture chosen for our
study is the Torus Routing Chip (TRC), a mul-
ticomputer router, designed by Dally and Seitz
[DS86]. A multicomputer router offers a suf-
ficiently complex architecture suitable for both
modelling techniques. The asynchronous nature
of this architecture adds an interesting element to
this work.

The first model can be said to be an algorith-
mic or behavioural approach at the system level,
modelling the functionalityof the router chip and
the performance of the interconnection network.
The second is a structural approach focusing on
how the TRC can be implemented as a collection
of modular building blocks. It models the same
functionality but is closer to the actual hardware.

A brief description of the TRC is given in sec-
tion 2 and in section 3 the two modelling ap-



proaches are presented in more detail. Testing
is discussed in section 4. In section 5 we com-
pare the advantages and disadvantages of the two
modelling approaches. This comparison is ex-
panded in section 6 with respect to performance
metrics achievable and modelling goals. In sec-
tion 7 we summarise our findings in this work.

2 The Torus Routing Chip (TRC)

In a message-passing multicomputer each
node contains an autonomous processor and lo-
cal memory. Interprocessor communication oc-
curs by routing messages explicitly through an
interconnection network (network). An interface
— a router, is required to control the flow of in-
formation between each processor and the net-
work.

Each processor divides messages into units
called packets before sending. Transmission of
each packet follows a technique termed worm-
hole routing where the sections of a packet, flits,
flow through the network in a pipelined fashion.

The TRC is connected in a two-dimensional
unidirectional torus network where each node
has 4 neighbouring nodes. A deterministic rout-
ing algorithm termed x-y addressing is imple-
mented. As such, a packet is routed first in x and
then in the y direction. Many packets may co-
exist in the network leading to the possibility of
contention for outgoing channels. The TRC uses
a blocking method to stop further transmission of
a packet when contention arises.

To avoid deadlock — a circular waiting con-
dition, the TRC uses the concept of virtual chan-
nels (VCs) [DS86, Dal92]. Two virtual chan-
nels are demand multiplexed onto each physical
channel.

These features are used to develop both mod-
els. However, the level of detail required to
express these features differs in the respective
model.

3 Modelling Approach

There is much disagreement in the HDL com-
munity as to the choice between VHDL and Ver-
ilog. However, what is important for this work is
that HDL languages contain the features required
to meet the models’ requirements. Therefore we
chose to implement each model in the language
currently available in the organisationsof the two
developers - Verilog for the behavioural model
(section 3.1) and VHDL for the synthesisable
structural model (section 3.2).

3.1 Architecture Simulation of the TRC
(VERsim)

In this approach, a Verilog simulation model
of the TRC has been implemented. The goal be-
ing to create a behavioural simulation enabling
system level performance results to be obtained
for different traffic patterns.

The system module defines the TRCs, proces-
sors and channels (or wires) of the system. The
processors contain tasks for sending and receiv-
ing of packets. A detailed model of the proces-
sor connected to each of the TRCs is not included
as the focus of the model is on the TRCs them-
selves. As such, the processors and the intercon-
nection network provide an environment to test
the functionality and performance of the TRCs.
To provide testing in a realistic environment, a 16
TRC network is simulated.

The central part of the TRC module is three
concurrent processes each listening on one of
three input channels x in, y in and proc in. This
is modelled using three infinite loops (initial for-
ever). These tasks describe the functionality
within the TRC which handles both the receipt of
data, routing decisions and forwarding of data ei-
ther to the local processor or towards the destina-
tion i.e. transmission to the relevant neighbour-
ing node.

In addition the model handles the self-timed
control signals, blocking and implementation of
the virtual channels. Control of the external



channels connecting the TRCs is modelled fol-
lowing the two cycle signallingconventionbased
on a pair of Req and Ack lines. When an incom-
ing packet cannot be sent to the required output
channel due to another packet using it, the packet
is blocked i.e. the task suspends and resumes
when access to the output channel is granted. To
handle virtual channels, each of the input and
output tasks are divided into two parallel tasks.

A more detailed description of this model can
be found in [Nat97].

3.1.1 Performance Analysis within VERsim

Throughput is a measure of the traffic handling
capabilities of the network. This may be ex-
pressed either as the rate at which packets in-
jected into the system reach their destinations or
the number of packets reaching their destinations
within a fixed time period. In the former case re-
sults are normalised to the number of packets per
simulation cycle whereas in the latter case results
are expressed in terms of the number of pack-
ets per time period (number of simulations cy-
cles).VERsim assumes the latter case. Both these
expressions assume that a start up period is given
to allow the network to stabilise.

Latency, in VERsim, is modelled as the num-
ber of simulation cycles taken for a packet to tra-
verse the network. This is dependent on the num-
ber of TRC’s and channels crossed on route to the
destination. Constant delay values chosen for the
TRCs and channels reflect the fact that in current
technology the delay incurred traversing a router
is much greater than that incurred through a con-
necting channel [Aga91].

Test programs that stimulate the network of
TRCs and gather statistics for system perfor-
mance are included in the processor module as a
verilog task. As such, the same test program is
driven at each processor in the network. These
test programs are the source for traffic originat-
ing at a node.

Currently performance results in VERsim are
expressed in simulation cycles. As such the re-
sults are independent of the timing of the simu-

lator itself. However, when system parameters
are available, from VHDLsyn, results will then
be expressed in nanoseconds.

3.2 Modelling a TRC using Synthesised
HDL Building Blocks (VHDLsyn)

In VHDLsyn the goal was to provide a flexi-
ble platform for modelling a router to a level of
detail that both the router itself and variations in
the design could be modelled and analysed.
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Figure 1: Torus Routing Chip - Data and Signal
Path

It was chosen to represent a router as an inter-
connection of a set of modules. As such it can be
said to be a structural approach. A module is not
necessarily a single router component but may be
made up of a number of components. Each mod-
ule is characterised with key parameters that ef-
fect the design of the module.

A register-transfer level behavioural descrip-
tion of each module has been written in VHDL
and synthesised into a gate level design using the
Xilinx Foundation Series (Foundation). Simula-
tion of the resulting net-lists has also been un-
dertaken to check for correct behaviour. Layout
and timing details were then obtained through the
XACT Design Manager within Foundation.

Although the TRC was built using CMOS
technology, FPGA technology has been selected
as the implementation technology for the model.
FPGA technology was chosen to provide a flex-
ible implementation media in keeping with the
goals of the model.



A system-level router structural description
is written using the Performance Description
Language (PDL) developed at the University of
Cincinnati [VMM96]. This program describes
the interconnection of the modules and includes
descriptions of the modules themselves. Each
PDL module description provides a frame into
which a gate-level design is included. A Perl pro-
gram converts the XNF net-list format provided
by Foundation into the PDL net-list format.

The choice of PDL instead of VHDL at the
higher level was again to provide increased flex-
ibility in the model. PDL is designed specifically
for generic performance modelling enabling de-
sign instances to be compiled and analysed.

The combination of PDL’s ability to provide
generality in design and VHDL’s ability to re-
alise gate-level, technology specific designs al-
lows the model to easily realise design varia-
tions. Further information regarding this mod-
elling technique may be found in [Had97].

The router modules required to describe the
TRC are as follows: AC, an address compara-
tor; AD, an address decrementer; AR, an arbiter;
B, a buffer; CB, a crossbar; RD, a routing deci-
sion module; SC, a signal converter; SM, a sig-
nal manager and VC, a virtual channel controller.
Figure 1 illustrates the structural description of a
single path given in the PDL code. A similar de-
scription is required for each of the paths through
the router i.e. one for each input channel.

The asynchronous nature of the TRC both
externally — on the communication channels
to neighbouring nodes and the local processor
and internally — between and within individual
modules added a significant amount of complex-
ity to the model.

3.2.1 Performance Analysis within VHDL-
syn

The key performance goals for this model are
Cost and Latency.

Since FPGA technologyhas been chosen, cost
is represented by the number of CLBs (combina-
tion logic blocks) in the overall design. This fig-

ure is just a summation of the number of CLBs
estimated for each synthesised module as gener-
ated by Foundation. These figures represent syn-
thesised designs optimised for speed and area.

As described in section 2, packet transmis-
sion is of a pipelined nature. The first part of
the packet — the header, encounters decisions in
the router, whereas the rest of the packet — the
body, just follows the header through each router
on route to the destination. As such, the flits in
the body of the packet encounter a smaller de-
lay traversing the router than that of the header.
As such, two figures for latency through a router
are derived. The longest path delay, which in-
cludes the delays through the decision modules
represents the delay for each of the header flits.
The shortest path delay, ignoring decision mod-
ules, represents the delay encountered by the flits
of the body.

A simplifying assumption made for the router
layout is as follows: if the total number of CLBs
required in the TRC design is less than the num-
ber of CLBs available on the chosen FPGA chip
then each module may be laid out as in the layout
provided in Foundation for the individual mod-
ules.

This assumption is based on the fact that in
newer FPGAs the abundance of routing paths al-
lows designs which use up to perhaps 90% or
more of the available CLBs to be routed with-
out the need for extra long wires. This is un-
like earlier versions where this analysis may have
required restrictions to perhaps only 60% of the
CLBs. As such latency at the module level is
provided by the longest path delays generated
by Foundation. These delays are then fed into
the respective module frames provided by the
PDL code. The PDL program then calculates the
longest and shortest path delays through the TRC
design. Network latency is also derived within
the PDL program. This represents the delay for
a packet crossing a network and depends on the
the delay througheach TRC, the delay of the con-
necting channels and the packet itself.

At present throughput is not included in the
analysis due to the lack of loaded network fea-



tures in the module.

4 Testing

4.1 VERsim

The first approach, simulates the behaviour of
each individual TRC within the structure of the
network. With almost 200 parallel activities in
the system we began with simple tests to aid de-
bugging of the model.

During the progress of the project we have
moved towards more elaborate tests. An im-
portant test is where each processor sends mes-
sages to randomly chosen destinations at ran-
domly chosen times. The source and destination
address are stored in the message so that the re-
ceiver can check that each transmission was cor-
rect. Such random tests showed to be crucial as
they gave rise to situations which tested the dead-
lock avoidance logic.

4.2 VHDLsyn

VHDLsyn is a two level hierarchical model
and as such testing began with testing at the low-
est level of the design — the modules.

For each module, correct synthesis of the RTL
description to the gate level is assumed as this is
taken care of by Foundation. Efficiency of RTL-
code may effect synthesised results. Therefore,
although optimisation within synthesis was se-
lected, it is not assumed that the code is opti-
mal. However in this work, the aim is to compare
the two approaches and not the efficiency of the
code. Behavioural correctness within the syn-
thesised modules is not assumed and each mod-
ule has been simulated after synthesis to test for
correct signal behaviour. This identified many
errors within the asynchronous behaviour of the
modules.

Behavioural testing of the modules after con-
version to PDL-net-list format has also been
undertaken. Finally behavioural testing of the
router itself was tested as described in sec-
tion 4.3.

Incoming
Channel

Available Outgoing Chan-
nels

P OUT P IN, Xo VC1, Yo VC1
Xi VC1 P IN, Xo VC1, Xo VC0,

Yo VC1
Xi VC0 P IN, Xo VC0, Yo VC1
Yi VC1 P IN, Yo VC1, Yo VC0
Yi VC0 P IN, Yo VC0

Table 1: Test Set 1: Output Choices under Deter-
ministic Routing

Incoming Channels Outgoing
Channel

P OUT, Xi VC1, Xi VC0,
Yi VC1, Yi VC0

P IN

P OUT, Xi VC1, Yi VC1 P IN
Xi VC1, Xi VC0 Xo VC0
P OUT, Xi VC1, Xi VC0,
Yi VC1

Yo VC1

P OUT, Yi VC1, Yi VC0 Yo VC0

Table 2: Test Set 2 : Arbitration Priority for
Competing Input Channels

4.3 Testing for Behavioural Equality

Tests are required to check for correct be-
haviour, that is that in each model the router re-
sponds to incoming messages in the manner de-
scribed in the specification. By response we refer
to the order that incoming messages are handled
and the choice of outgoing channel.

As stated earlier, the routing algorithm imple-
mented in the TRC is a form of restricted routing.
This means that not all outgoing channels are
available for a given incoming packet. We there-
fore first identified the possible outgoing chan-
nels for a given incoming packet, as shown in ta-
ble 1, and tested to see if based on a given des-
tination address, it was forwarded to the correct
output channel. For the purpose of these tests an
unloaded network is assumed. A loaded network
does not change the correctness of the routingde-
cision for a deterministic routing algorithm.



VERsim VHDLsyn
Language & Verilog VHDL/PDL
size (no of
lines)

(2000) (3000)

Development 3 man 5 man
Time months months
Complexity medium medium /

high
HW medium / very good
Realisability poor
Scalability good poor
Flexibility poor good
Execution fast fast
Time

Table 3: Comparison of Model Characteristics

The second set of tests involved a loaded net-
work with more than one packet competing for
the same output channel. Again we identified
those incoming channels which may compete for
a given output channel and sent requests from
each of the required input channels to the given
output channel. The arrival sequence in the re-
sults highlighted the correctness of the arbitra-
tion implementation.

A second arbitration level exists within the
router for arbitrating the multiplexor controlling
the two virtual channels which share each phys-
ical channel. If both VCs have packets waiting,
then multiplexing between the packets occurs on
a flit basis. That is that each may send one flit be-
fore control is passed to the other waiting VC. As
this level of detail is not implemented in VER-
sim, comparison tests have not been undertaken.
However, testing in VHDLsyn showed correct
behaviour.

5 Discussion

In table 3 which compares the weaknesses
and strengths of the two modelling approaches,
a strong trade-off between scalability and flexi-
bility is suggested.

With scalability we mean the possibilityof ex-
panding the model for analysing larger systems
i.e. with an increased number of nodes. Al-
though increasing the number of dimensions has
often been regarded as a scalability factor, re-
cent research has moved away from high diam-
eter networks which can be difficult and costly
to build [OKS97]. As such, this factor is not in-
cluded in our analysis.

An important feature of VHDLsyn is it’s flexi-
bility. The use of parameterised modules implies
the possibility of looping through various design
alternatives for exploring (parts of) the space of
possible designs in search for an optimum de-
sign. In addition, the building block nature of
the model allows swapping of blocks (modules)
to allow for design variations and the addition of
new features.

This increased flexibility, along with the in-
creased complexity of VHDLsyn and limitations
in the PDL tools currently available, does not al-
low for modelling larger systems within a rea-
sonable development time.

Asynchronous control particularly within the
router has given rise to increased development
and testing time in VHDLsyn. It is believed that
a synchronous example would have reduced the
development time. In VERsim the choice of syn-
chronous or asynchronous control does not ad-
versely effect the development time.

Neither of the two models showed excessive
execution times in the tests undertaken illustrat-
ing the suitability of the two HDL languages for
both these modelling approaches.

In a high-level simulation too much thought
on HW-realisation may make it difficult to mas-
ter the complexity at the current phase of the de-
sign process. On the other hand too little thought
may result in a model not realisable in hardware
or with only modest performance. The initial
aim for VERsim was to test out Verilog as a tool
for system-level modelling. That is, to provide a
test-bed to try out different network sizes and dif-
ferent traffic patterns. As such, HW realisation
was not the primary focus. However, if the fo-
cus is on HW realisation it is possible to write a



VERsim VHDLsyn
Cost medium /

poor
very good

Throughput good currently
restricted

Latency medium very good
(unloaded)
Latency medium currently
(loaded) restricted

Table 4: Achievable Performance Metrics within
the Models

high-level simulator more attuned to this goal.

6 Evaluation

Modelling using HDLs may be classed into
two types. The first type is a performance model.
With this we mean that the model is written
to study the performance of the underlying ar-
chitecture under various conditions without nec-
essarily a requirement to implement the varia-
tions in hardware. The second type is to cre-
ate a model as a step towards a hardware im-
plementation. Here we assume that the specifi-
cations are already made and that the modelling
tool aids work towards an implementation that
meets these specifications. A relatively new type
of modelling which may be considered as a sub-
type of the second type is the creation of exe-
cutable specifications. That is that from the earli-
est stage in a design process, ideas are expressed
in HDL, again with a view to eventual realisation
of the design.

Our focus in this work has been on perfor-
mance modelling with the additional aim that
VHDLsyn be as close to a hardware realisation
such that realistic estimates of cost may be ob-
tained. This characteristic also enables the model
to be used as a design platform for testing out de-
sign variations for actual implementations.

Goals within performance modelling may be
categorised by the type of performance results

being sought. In table 4 we compare the two
models for their abilities to handle different per-
formance metrics.

If cost is an issue then a more complex model
is required so that more realistic estimates of cost
may be obtained. This need not necessarily be
in the form of VHDLsyn but may also be in the
form of a parameterised cost model as in [Chi93].

To measure throughput it is important that the
model offers the ability to accept a variety of
data inputs so that both the effect of different
loads on the network and different traffic patterns
may be tested. VERsim offers these possibilities.
VHDLsyn, on the other hand, is limited due to
the data interface and statistical gathering limita-
tions currently in PDL. However this problem is
currently under investigation.

Important features in latency analysis include
the size of the network, the packet length and the
traffic to be tested. Much research has been con-
ducted in this area and VERsim may be said to
represent a typical simulator model for this pur-
pose with the exception that an HDL language is
used in place of a high-level language.

The purpose of creating a more detailed
model with respect to latency is to improve the
accuracy of results sought. As stated in [Chi93]
the complexity of a router is an important factor
not generally taken into consideration for latency
calculations. Also it is important to distinguish
between the delay encountered by header flits
and that encountered by body flits [BP93]. A
more detailed analysis can meet these goals.

7 Conclusion

Two performance models describing the
Torus Routing Chip (TRC) have been devel-
oped. The advantages and disadvantages of
these two models are discussed and a number of
modelling goals for which each of these models
are suited are identified.

It is worth mentioning a couple of interest-
ing features highlighted in this work. The main
difference between a modern programming lan-



guage and Verilog is the task concept in Verilog
which should not be confused with procedures
in programming languages. This created some
problems during the writing of VERsim but these
problems were eventually solved.

It has been interesting to test out the synthesis
and simulation tools of Foundation with an asyn-
chronous design. Synthesis tools support only a
subset of the language and their design is based
on RTL which is inherently a synchronous de-
sign methodology [Rus95]. As such, it does not
preclude the logic synthesis of asynchronous de-
signs but makes the task somewhat more compli-
cated.

The increased complexity of working with
asynchronous design and the lack of an VHDL-
code level simulator within Foundationhas made
debugging a labour intensive job. However,
since this approach first breaks the design into
modules for synthesis, both creation and testing
of the design is more manageable. Although syn-
thesised versions of the modules are now avail-
able, more thorough simulation work is required
to ensure correct signal flow both within and be-
tween the modules.

The work on the models will continue, and we
expect that experience with the integrated use of
the two models will result in adjustments (cali-
brating) at the two levels.

The latency for a message through one TRC
is a typical example of a parameter that would
benefit VERsim from calibration from VHDL-
syn. The effect of blocking within the TRC itself
can also be used to calibrate throughput in VER-
sim. On the other hand realistic traffic modelling
in VERsim can aid development of more detailed
blocking features in VHDLsyn.
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