
Evaluating Parallel Algorithms�
Theoretical and Practical

Aspects

Lasse Natvig

Division of Computer Systems and Telematics

The Norwegian Institute of Technology

The University of Trondheim

NORWAY

November ��� ����

Abstract

The motivation for the work reported in this thesis has been to lessen the
gap between theory and practice within the �eld of parallel computing�

When looking for new and faster parallel algorithms for use in massively
parallel systems� it is tempting to investigate promising alternatives from
the large body of research done on parallel algorithms within the �eld of
theoretical computer science� These algorithms are mainly described for the
PRAM �Parallel Random Access Machine� model of computation�

This thesis proposes a method for evaluating the practical value of PRAM
algorithms� The approach is based on implementing PRAM algorithms for
execution on a CREW �Concurrent Read Exclusive Write� PRAM simula�
tor� Measuring and analysis of implemented algorithms on �nite problems
provide new and more practically oriented results than those traditionally
obtained by asymptotical analysis �O�notation��

The evaluation method is demonstrated by investigating the practical
value of a new and important parallel sorting algorithm from theoretical
computer science�known as Cole�s Parallel Merge Sort algorithm� Cole�s
algorithm is compared with the well known Batcher�s bitonic sorting algo�
rithm� Cole�s algorithm is asymptotically probably the fastest among all
known sorting algorithms� and also cost optimal� Its O�logn� time con�
sumption implies that it is faster than bitonic sorting which is O�log� n�
time�provided that the number of items to be sorted� n� is large enough�
However� it is found that bitonic sorting is faster as long as n is less than
	
�� �i�e� about 	 Giga Tera items�� Consequently� Cole�s logarithmic time
algorithm is not fast in practice�

The thesis also gives an overview of complexity theory for sequential
and parallel computations� and describes a promising alternative for parallel
programming called synchronous MIMD programming�

Preface

This is a thesis submitted to the Norwegian Institute of Technology �NTH�
for the doctoral degree �doktor ingeni
r� �dr�ing��� The reported work has
been carried out at the Division of Computer Systems and Telematics� The
Norwegian Institute of Technology� The University of Trondheim� Norway�
The work has been supervised by Professor Arne Halaas�

Thesis Overview and Scope

About the contents
Chapter � starts by explaining how the likely proliferation of computers with
a large number of processors makes it increasingly important to know the
research done on parallel algorithms within theoretical computer science� It
outlines how the work described in the thesis was motivated by a large gap
between theory and practice within parallel computing� and it presents some
aspects of this gap� The chapter also summarises the main contributions of
my work�

Chapter � describes various concepts which are central when studying�
teaching or evaluating parallel algorithms� It provides an introduction to
parallel complexity theory�including themes such as a class of problems
that may be solved �very fast� in parallel� and another class consisting of
inherently serial problems� The chapter ends with a discussion of Amdahl�s
law and how the size of a problem is essential for the speedup that may be
achieved by using parallel processing�

Chapter � is devoted to the so�called CREW PRAM �Concurrent Read
Exclusive Write Parallel Random Access Machine� model� This is a model
for parallel computations which is well known within theoretical computer
science� It is the main underlying concept for this work� After a general
description of the model� it is explained how the model may be programmed

i

in a high level notation� The programming style which has been used�
called synchronous MIMD programming� contains some properties which
make programming a �surprisingly easy� task� These nice features are out�
lined� At the end of the chapter it is given a more technical description
of how algorithms may be implemented on the CREW PRAM simulator
prototype�which has been developed as part of the work�

Chapter � describes the technically most di�cult part of the work�a
detailed investigation of a well�known sorting algorithm from theoretical
computer science �Cole�s parallel merge sort�� A top�down� detailed under�
standing of the algorithm is presented together with a description of how it
has been implemented� The implementation is probably the �rst complete
implementation of this algorithm� A comparison of the implementation with
several simpler sorting algorithms based on measurements and analytical
models being presented�

Chapter � summarises what has been learned from doing this work� and
gives a brief sketch of interesting directions for future research�

Appendix A gives a brief description of the CREW PRAM simulator
prototype which makes it possible to implement� test and measure CREW
PRAM algorithms� The main part of the chapter is a user�s guide for how to
develop and test parallel programs on the simulator system as it is currently
used at the Norwegian Institute of Technology�

Appendix B gives a complete listing of the implementation of Cole�s par�
allel merge sort algorithm� In addition to being the fundamental �documen�
tation� of the implementation� it is provided to give the reader the possibility
of studying the details of medium�scale synchronous MIMD programming
on the simulator system�

Issues given less attention

The thesis covers complexity theory� detailed studies of a complex algorithm�
and implementation of a simulator system� This variety has made it impor�
tant to restrict the work� I have tried to separate the goals and the tools
used to achieve these goals� It has been crucial to restrict the e�orts put
into the design of the CREW PRAM simulator system� Prototyping and
simple ad hoc solutions have been used when possible without reducing the
quality of the simulation results�

The pseudo code notation used to express parallel algorithms is not
meant to be a new and better notation for this purpose� It is intended
only to be a common sense modernisation of the notation used in �Wyl���

ii

for high level programming of the original CREW PRAM model�

Similarly� the �language� used to implement the algorithms as running
programs on the simulator is not a proposal of a new� complete and better
language for parallel programming� just a minor extension of the language
used to implement the simulator�

Simplicity has been given higher priority than e�cient execution of par�
allel programs in the development of the CREW PRAM simulator�

Even though nearly all the algorithms discussed are sorting algorithms�
the work is not primarily about parallel sorting� It is not an attempt to
�nd new and better parallel sorting algorithms� nor is it an attempt to
survey the large number of parallel sorting algorithms� Sorting has been
selected because it is an important problem with many well known parallel
algorithms�

Acknowledgements

I wish to thank my supervisor Professor Arne Halaas for introducing me
to the �eld of complexity theory� for constructive criticisms� for continuing
encouragement� and for letting me work on own ideas�

The Division of Computer Systems and Telematics consists of a lot of
nice and helpful people� H�avard Eidnes� Anund Lie� Jan Gr
nsberg and Tore
E� Aarseth have answered technical question� provided excellent computer
facilities� and allowed me to consume an awful lot of CPU seconds� Gunnar
Borthne� Marianne Hagaseth� Torstein Heggeb
� Roger Midtstraum� Pet�
ter Moe� Eirik Knutsen� �ystein Nytr
� Tore S�ter� �ystein Torbj
rnsen�
and H�avard Tveite have all read various drafts of the thesis� and provided
valuable comments� Thanks�

The work has been �nancially supported by a scholarship from The Royal
Norwegian Council for Scienti�c and Industrial Research �NTNF��

Last� but not least� I am grateful to my family� My parents for teaching
me to believe in my own work� my wife Marit for doing most of the research
in a much more important project� taking care of our children Ola and
Simen� and to Ola and Simen which have been a continuing inspiration for
�nishing this thesis�

Trondheim� December 	��
�

iii

Lasse Natvig

iv

Contents

� Introduction �

	�	 Massively Parallel Computation � � � � � � � � � � � � � � � � � 	

	�� Summary of Contributions �

	�� Motivation �

	�� Background �

	���	 Parallel Complexity Theory�A Rich Source of Paral�
lel Algorithms �

	���� The Gap Between Theory and Practice � � � � � � � � �

	���� Traditional Use of the CREW PRAM Model � � � � � �

	���� Implementing On an Abstract Model May be
Worthwhile �

� Parallel Algorithms� Central Concepts ��

��	 Parallel Complexity Theory � � � � � � � � � � � � � � � � � � � 	�

��	�	 Introduction � 	�

��	�� Basic Concepts� De�nitions and Terminology � � � � � 	�

��	�� Models of Parallel Computation � � � � � � � � � � � � �

��	�� Important Complexity Classes � � � � � � � � � � � � � ��

��� Evaluating Parallel Algorithms � � � � � � � � � � � � � � � � � ��

����	 Basic Perfomance Metrics � � � � � � � � � � � � � � � � ��

����� Analysis of Speedup ��

����� Amdahl�s Law and Problem Scaling � � � � � � � � � � ��

� The CREW PRAM Model ��

��	 The Computational Model �	

��	�	 The Main Properties of The Original P�RAM � � � � � ��

��	�� From Model to Machine�Additional Properties � � � ��

��� CREW PRAM Programming � � � � � � � � � � � � � � � � � � ��

v

����	 Common Misconceptions about PRAM Programming ��
����� Notation� Parallel Pseudo Pascal�PPP � � � � � � � � ��

����� The Importance of Synchronous Operation � � � � � � ��
����� Compile Time Padding � � � � � � � � � � � � � � � � � ��
����� General Explicit Resynchronisation � � � � � � � � � � � ��

��� Parallelism Should Make Programming Easier� � � � � � � � � �

����	 Introduction �

����� Synchronous MIMD Programming Is Easy � � � � � � � ��

��� CREW PRAM Programming on the Simulator � � � � � � � � �

����	 Step 	� Sketching the Algorithm in Pseudo�Code � � � �

����� Step �� Processor Allocation and Main Structure � � � �	
����� Step �� Complete Implementation With Simpli�ed

Time Modelling ��
����� Step �� Complete Implementation With Exact Time

Modelling ��

� Investigation of the Practical Value of Cole�s Parallel Merge
Sort Algorithm ���

��	 Parallel Sorting � 	
�
��	�	 Parallel Sorting�The Continuing Search for Faster

Algorithms � 	
�
��	�� Some Simple Sorting Algorithms � � � � � � � � � � � � 	
�
��	�� Bitonic Sorting on a CREW PRAM � � � � � � � � � � 	
�

��� Cole�s Parallel Merge Sort Algorithm�Description � � � � � � 			

����	 Main Principles � 		�
����� More Details � 		�

��� Cole�s Parallel Merge Sort Algorithm� Implementation � � � � 	��
����	 Dynamic Processor Allocation � � � � � � � � � � � � � 	��
����� Pseudo Code and Time Consumption � � � � � � � � � 	��

��� Cole�s Parallel Merge Sort Algorithm Compared with Simpler
Sorting Algorithms � 	�

����	 The First Comparison � � � � � � � � � � � � � � � � � � 	�

����� Revised Comparison Including Bitonic Sorting � � � � 	�	

	 Concluding Remarks and Further Work ���

��	 Experience and Contributions � � � � � � � � � � � � � � � � � � 	�	
��	�	 The Gap Between Theory and Practice � � � � � � � � 	�	
��	�� Evaluating Parallel Algorithms � � � � � � � � � � � � � 	��

��	�� The CREW PRAM Simulator � � � � � � � � � � � � � 	��

vi

��� Further Work � 	��

A The CREW PRAM Simulator Prototype ��

A�	 Main Features and System Overview � � � � � � � � � � � � � � 	��
A�	�	 Program Development � � � � � � � � � � � � � � � � � � 	��
A�	�� Measuring � 	�

A�	�� A Brief System Overview � � � � � � � � � � � � � � � � 	�	

A�� User�s Guide � 	��
A���	 Introduction � 	��
A���� Getting Started � 	��
A���� Carrying On � 	��
A���� The Development Cycle � � � � � � � � � � � � � � � � � 	��
A���� Debugging PIL Programs Using simdeb � � � � � � � 	��

A�� Modelling Systolic Arrays and other Synchronous Computing
Structures � 	��
A���	 Systolic Arrays� Channels� Phases and Stages � � � � � 	�

A���� Example 	� Unit Time Delay � � � � � � � � � � � � � � 	�	
A���� Example �� Delayed Output and Real Numbers � � � � 	��

B Cole�s Parallel Merge Sort in PIL �
�
B�	 The Main Program � 	��
B�� Variables and Memory Usage � � � � � � � � � � � � � � � � � � �

B���	 Cole��var �

B���� Cole��mem �
	

B�� Basic Procedures �
�
B���	 Cole��proc �
�
B���� Cole��proc �	

B�� Merging in Constant Time �	�
B���	 Order�Merge�proc �	�
B���� DoMerge�proc �	�
B���� MaintainRanks�proc � � � � � � � � � � � � � � � � � � ���

C Batcher�s Bitonic Sorting in PIL ���
C�	 The Main Program ��

References ��	

Index ���

vii

Chapter �

Introduction

�There are two main communities of parallel algorithm design�
ers� the theoreticians and the practitioners� Theoreticians have
been developing algorithms with narrow theory and little prac�
tical importance� in contrast� practitioners have been developing
algorithms with little theory and narrow practical importance��

Clyde P� Kruskal in E	cient Parallel Algorithms
 Theory and
Practice �Kru����

��� Massively Parallel Computation

There is no longer any doubt that parallel processing will be used exten�
sively in the future to build the at any time� most powerful general pur�
pose computers� Parallelism has been used for many years in many dif�
ferent ways to increase the speed of computations� Bit�parallel arithmetic
�the 	��
�ies�� multiple functional units �	��
�ies�� pipelined functional units
�	��
�ies� and multiprocessing �	��
�ies� are all important techniques in this
context �Qui����

Today� these and many other ways of parallelism are being exploited by
a vast number of di�erent computer architectures�in commercial products
and research prototypes� One can not predict in detail which computer
architectures will be the dominating for use in the most powerful �parallel�
general purpose computers in the future� In the 	��
�ies the supercomputer
market has been dominated by the pipelined computers �also called vector
computers� such as those manufactured by Cray Research Inc�� USA� and

	

����������
����������
����������
����������
����������
����������
����� ��������������������������

������������

������
�������
�������������������������

�
�
�
�
�
�
�
�
�
�
� �

� �
� �

� �
� �

� � �
� � �

� � � �

�������
���������
���������
����������
���������
���������
���������
���������
���������
���������
�����������
���������
�����������
����������
�����������
�����������
����������
�����������
�����������
������������
������������
�����������
������������
�������������
�������������
��������������
���������������
����������������
�����������������
�����

Time

speed

Computer

�����

�����

Vector computers

Massively parallel computers

Figure ���� Massively parallel computers are expected to be faster than vector
computers in the near future�

similar computers from the Japanese companies Fujitsu� Hitachi and Nec
�HJ���� However� the next ten years may change the picture�

At the SUPERCOMPUTING��
 conference in NewYork� November 	��
�
it seemed to be a widespread opinion among supercomputer users� computer
scientists and computational scientists that massively parallel computers�

will outperform the pipelined computers and become the dominating archi�
tectural main principle in year �

 or earlier� The main argument for this
belief is that the computing power �speed� of massively parallel computers
has grown faster� and is expected to continue to grow faster than the speed
of pipelined computers� The situation is illustrated in Figure 	�	�

The inertia caused by the existing supercomputer installations and soft�
ware applications based on pipelined computers will result in a transitional
phase from the time when massively parallel computers are generally re�
garded to be more powerful to the time when they are dominating the su�
percomputer market� Today� massively parallel computers are dominating
in various special purpose applications requiring high performance such as
wave mechanics �GMB��� and oil reservoir simulation �SIA�
��

�Systems with over ���� processors were considered �massively parallel� for the purpose
of Frontiers���� The �rd Symposium on the Frontiers of Massively Parallel Computation�
October� ����	 This is consistent with earlier use of the term massive parallelism� see for
instance
GMB���	

�

The point of intersection in Figure 	�	 is not possible to de�ne in a precise
and agreed upon manner� Danny Hillis� co�founder of Thinking Machines
Corporation�the leading company in massively parallel computing� believes
that the transition �in computing power� happened in 	��� �Hil�
�� Other
researchers would argue that the vector machines will be faster for general
purpose processing also in 	���� However� the important thing is that it
seems to be almost a consensus that the transition will take place in the
near future�

The speed of the fastest supercomputers today is between 	 and �

GFLOPS�� This is expected to increase by a factor of about 	

 by the
year �

� giving Tera �i�e� 	
��� FLOPS computers �Lun�
��

Consequences for research in parallel algorithms
The continuing increase in computing power and the adoption of massively
parallel computing have at least two important implications for research and
education in the �eld of parallel algorithms�

� We will be able to solve larger problems� Larger problem instances
increase the relevance of asymptotical analysis and complexity theory�

� We will be able to use algorithms requiring a substantially larger num�
ber of processors� One of the characteristics of parallel algorithms
developed in theoretical computer science is that they typically re�
quire a large number of processors� These algorithms will become
more relevant in the future�

To conclude� the possible proliferation of massively parallel systems will
make the research done on parallel algorithms within theoretical computer
science more important to the practitioners in the future� The work reported
in this thesis is an attempt to learn about this research�from a practical
��engineer�like�� point of view�

��� Summary of Contributions

The research reported in this thesis has contributed to the �eld of parallel
processing and parallel algorithms in several ways� The main contributions

�� GFLOPS
 ��� �oating point operations per second	 The precise speed depends
strongly on the speci�c application or benchmark used in measuring the speed	

�

are summarised here to give a brief overview of the work and to motivate
the reader for a detailed study�

� A new �or little known� direction of research in parallel algorithms is
identi�ed by raising the question� �To what extent are parallel algo�
rithms from theoretical computer science useful in practice���

� A possibly new method of investigating this kind of parallel algorithms
is motivated and described� The method is based on evaluating the
performance of implemented algorithms used on �nite problems�

� The use of the method on a large example �Cole�s parallel merge sort
algorithm �Col��� Col���� is demonstrated� This algorithm is theo�
retically very fast and famous within the theory community� The
method and the �rst results achieved were presented �in a preliminary
state� at NIK�
� �Norwegian Informatics Conference� in November
	��� �Nat���� One year after� it was presented at the SUPERCOM�
PUTING��� conference �Nat�
b��

� A thorough and detailed top down description of Cole�s parallel merge
sort algorithm is given� It should be helpful for those who want a
complete understanding of the algorithm� The description goes down
to the implementation level� i�e� it includes more details than other
currently available descriptions�

� Parts of Cole�s algorithm which had to be made clear to be able to
implement it� are described� These detailed results were presented
at The Fifth International Symposium on Computer and Information
Sciences in November 	��
 �Nat�
a��

� Probably the �rst� and possibly also the only complete parallel imple�
mentation of Cole�s parallel merge sort algorithm have been developed�
It shows that the algorithm may be implemented within the claimed
complexity bounds� and gives the exact complexity constants for one
possible implementation�

� A straightforward implementation of Batcher�s O�log� n� time bitonic
sorting �Bat��� on the CREW PRAM simulator is found to be faster
than Cole�s O�logn� time sorting algorithm as long as the number of
items to be sorted n is less than 	
��� This shows that Cole�s algorithm
is without practical value�

�

� Prototype versions of the necessary tools for doing this kind of algo�
rithm evaluation have been developed and documented� The tools have
been used extensively for the work reported in this thesis� and they
are currently being used for continued research in the same direction
�Hag�	��

� The algorithms which are studied are implemented as high�level syn�
chronous MIMD programs� This programming style is consistent with
early and central �theoretical� work on parallel algorithms� however
it is seldom found in the current literature� Synchronous MIMD pro�
gramming seems to give remarkably easy parallel programming� These
aspects of the work were presented at the Workshop on the Under�
standing of Parallel Computation in Edinburgh� July 	��
 �Nat�
c��

� The prototype tools for high�level synchronous MIMD programming
have been used in connection with teaching of parallel algorithms�
They have been used for several student projects in the courses �Highly
Concurrent Systems� and �Parallel Algorithms� given by the Division
of Computer Systems and Telematics at the Norwegian Institute of
Technology�

� As background material� the thesis provides an introduction to parallel
complexity theory� a �eld which has been one of the main inspirational
sources of this work� It does also contain a discussion of fundamental
topics such as Amdahl�s law� speedup and problem scaling which have
been widely discussed during the last few years�

��� Motivation

This section describes how the main goal for the reported work arose from
a study of �sequential� complexity theory and contemporary literature on
parallel algorithms�

Two worlds of parallel algorithms

There are at least two main directions of research in parallel algorithms� In
theoretical computer science parallel algorithms are typically described in
a high�level mathematical notation for abstract machines� and their perfor�
mance are typically analysed by assuming in�nitely large problems� On the
other side we have more practically oriented research� where implemented

�

algorithms are tested and measured on existing computers and �nite prob�
lems�

The main di�erences between these two approaches are also re ected in
the literature� One of the �rst general textbooks in parallel algorithms is
Designing E	cient Algorithms for Parallel Computers by Michael Quinn
�Qui���� It gives a good overview of the �eld� and covers both practical and
theoretical results� A more recent textbook� E	cient Parallel Algorithms
by Gibbons and Rytter �GR���� reports a very large research activity on
parallel algorithms within theoretical computer science� Comparing these
two books� it seems clear that parts of the theoretical work are not clearly
understood and sometimes neglected by the practitioners�

Can the theory be used in practice

During the spring of 	��� I taught a course on parallel algorithms based on
Quinn�s book and other practically oriented literature� Later that year I did
a detailed study of the fundamental book on complexity theory by Garey
and Johnson �GJ���� I found it di�cult but also very fascinating� It led
me to some papers about parallel complexity theory� and suddenly a large
�new� area of parallel algorithms opened up� This area contained topics
such as Nick�s Class of very fast algorithms and a theory about inherently
serial problems� However� I was a bit surprised by the fact that these very
fundamental topics were seldomly mentioned by the practitioners�

My curiosity was further stimulated when I got a copy of the book by
Gibbons and Rytter� This book showed the existence of a large and well�
established research activity on theoretically very fast parallel algorithms�
However� little was said about the practical value of the algorithms�

It then seemed natural to ask the following questions� Are the theoreti�
cally fast parallel algorithms simply not known by the practitioners� is the
case that they are not understood� or are they in general judged as without
practical value!

These questions led to a curiosity about the possible practical use of
parallel algorithms and other results from theoretical computer science� I
wanted to learn about the border between theoretical aspects with and with�
out practical use� as illustrated in Figure 	��� Contributions in this direction
might lessen the gap between theory and practice within parallel process�
ing� In January 	��
� the importance of this goal was con�rmed in the
proceedings of the NSF � ARC Workshop on Opportunities and Constraints
of Parallel Computing �San��a�� There� several of the more prominent re�

�

����

����

���
��������������������
����������������
�������������
�����������
�����������
����������
���������
���������
��������
��������
��������
��������
�������
��������
�������
�������
�������
�������
�������
�������
�������
�������
������
�������
������
�������
������
�������
�������
�������
�������
�������
�������
�������
��������
��������
��������
���������
���������
���������
���������
����������
����������
������������
������������

���������������
������������������

�������������������������������
��

����

��������������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
��

�������
������
�������
�������
�������
�������
�������
�������
�������
�������
��������
��������
�������
��������
���������
���������
���������
���������
����������
�����������
�����������
��������������

���������������
��������������������

���
���������������������
���������������
�������������
������������
����������
����������
����������
���������
���������
��������
��������
�������
�������
��������
�������
�������
�������
�������
�������
������
�������
�������
�������
�������
�

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
������
�������
������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
����

� implementation

practice

� measuring

Algorithm

etc�

Parallel computersComplexity classes

This work

theory

models etc�
Computational
Asymptotical analysis

Figure ��	� The main goal� To learn about the possible practical value of parallel
algorithms from theoretical computer science�

searchers in parallel algorithms argue that bridging the gap between theory
and practice in parallel processing should be one of the main goals for future
research�

��� Background

This section describes some of the problems encountered when trying to
evaluate the practical value of parallel algorithms from theoretical com�
puter science� The discussion leads to the proposed method for doing such
evaluations�

����� Parallel Complexity Theory�A Rich Source of Paral�

lel Algorithms

In the past years there has been an increasing interest in parallel algorithms�
In the �eld of parallel complexity theory the so called Nick�s Class �NC� has
been given much attention� A problem belonging to this complexity class
may be solved by an algorithm with polylogarithmic� running time and a

�I	e	 of O�logk�n�� where k is a constant and n is the problem size	 See also Section
�	�	

�

polynomial number of processors� Many parallel algorithms have recently
been presented to prove membership in this class for various problems� This
kind of algorithms are frequently denoted NC�algorithms� Although the
main motivation for these new algorithms often is to show that a given
problem is in NC� the algorithms may also be taken as proposals for parallel
algorithms that are �fast in practice��

In the search for fast parallel algorithms on existing or future parallel
computers�the abovementioned research provides a rich source for ideas
and hints��

����� The Gap Between Theory and Practice

Unfortunately� it may be very hard to assess the practical value of NC�
algorithms� Some of the problems are�

Asymptotical analysis
Order"notation �see Section ��	��� is a very useful tool when the aim is
to prove membership of complexity classes or if asymptotic behaviour for
some other reason is �detailed enough�� It makes it possible to describe and
analyse algorithms at a very high level� However� it also makes it possible
to hide �willingly or unwillingly� a lot of details which cannot be omitted
when algorithms are compared for �realistic� problems of �nite size�

Unrealistic machine model

Few theoretical algorithms are described as implementations on real ma�
chines� Their descriptions are based on various computational models� A
computational model is synonymous to an abstract machine� One such
model is the CREW PRAM �Concurrent Read Exclusive Write Parallel
Random Access Machine� model� see Chapter ��

Details are ignored

Most NC�algorithms originating from parallel complexity theory are pre�
sented at a very high level and in a compact manner� One reason for this
is probably that parallel complexity theory is a �eld that to a large extent
overlaps with mathematics�where the elegance and advantages of compact

�Many of these algorithms may be found in proceedings from conferences such as
FOCS and STOC� and in journals such as SIAM Journal on Computing and Journal of

the ACM	 �FOCS
 IEEE Symposium on Foundations of Computer Science	 STOC

ACM Symposium on Theory of Computing�	

�

descriptions are highly appreciated�� A revised and more complete descrip�
tion of many of these algorithms may often be found� a year or two after
the conference where it was presented� in journals such as Journal of the
ACM or SIAM Journal on Computing� These descriptions are generally a
bit more detailed� but they are still far from the �granularity� level that is
required for implementation�� There are certainly several advantages im�
plied by using such high level descriptions� It is probably the best way to
present an algorithm to a reader who is starting on a study of a speci�c al�
gorithm� However� there is evidently a large gap between such initial studies
and implementation of an algorithm�

����� Traditional Use of the CREW PRAM Model

The certainly most used �Agg��� Col��� Kar��� RS��� theoretical model
for expressing parallel algorithms is the P�RAM �Parallel RAM� also called
CREW PRAM� proposed by Fortune and Wyllie in 	��� �FW���� and dis�
cussed in Section ��	�	� Its simplicity and generality makes it possible to con�
centrate on the algorithm without being distracted by the obstacles caused
by describing it for a more speci�c �and realistic� machine model� Its syn�
chronous operation makes it easy to describe and analyse programs for the
model�

This is exactly what is needed in parallel complexity theory� where the
main focus is on the parallelism inherent in a problem�

����� Implementing On an Abstract Model May be
Worthwhile

Implementing algorithms on an abstract machine may be regarded as a
paradox� One of the reasons for using abstract machines has traditionally
been a wish to avoid implementation details�

However� implementing parallel algorithms on a CREW PRAM model
will provide a deeper understanding to lessen the gap between theory and
practice� The following may be achieved by implementing a �theoretical�
parallel algorithm on a CREW PRAM model�

�Another reason may be found in the call for papers for the ���th FOCS Symposium� A
strict limit of � pages was enforced on the submitted papers	 Considering the complexity
of most of these algorithms� a compact description is therefore a necessity	

�As an example� compare the description of Cole�s parallel merge sort algorithm
Col���
and
Col��� with Section �	�	

�

� A deeper understanding� Implementation enforces a detailed study of
all aspects of an algorithm�

� Con�dence in your understanding� Correctness veri�cation of large
parallel programs is generally very di�cult� In practice� the best way
of getting con�dent of one�s own understanding of a complicated algo�
rithm is to make an implementation that works correctly� Of course�
testing is no correctness proof� but elaborate and systematic testing
may give a larger degree of con�dence than program veri�cation �which
also may contain errors��

� A good help in mastering the complexity involved in implementing a
complicated parallel algorithm on a real machine� A CREW PRAM
implementation may be a good starting point for implementing the
same algorithm on a more realistic machine model� This is partic�
ularly important for complicated algorithms� Going directly from an
abstract mathematical description to an implementation on a real ma�
chine will often be too large a step� The existence of a CREW PRAM
implementation may reduce this to two smaller steps�

� Insight into the practical value of an algorithm� How can an unrealistic
machine model be used to answer questions about the practical value
of algorithms! It is important here to di�erentiate between negative
and positive results� If a parallel algorithm A shows up to be inferior as
compared with sequential and#or parallel algorithms for more realistic
models� the use of an unrealistic parallel machine model for executing
A will only strengthen the conclusion that A is inferior� On the other
hand� a parallel algorithm can not be classi�ed as a better alternative
for practical use if it is based on a less realistic model�

These advantages are independent of whether a parallel computer that re�
sembles the CREW PRAM model ever will be built�

A New Direction for Research on Parallel Algorithms

To summarise� the practitioners measure and evaluate implemented algo�
rithms for solving �nite problems on existing computers� while the theo�
rists are analysing the performance of high�level algorithm descriptions �ex�
ecuted� on abstract machines for �solving� in�nitely large problems�

The approach presented in this thesis is to evaluate implemented algo�
rithms executed on an abstract machine for solving �nite problems� In Figure

	

���
���������
����������
���������
����������
����������
���������
����������
����������
���������
���������
����������
���������
����������
����������
���������
���������
���������
���������
����������
���������
���������
����������
���������
����������
���������
���������
����������
����������
���������
����������
����������
���������
���������
����������
���������
����������
����������
���������
����������
�����

problems

Finite

problems

large

In
nitely

Existing machinesAbstract machines

Not possible

This work

Theory

Practice

Figure ���� How the approach of algorithm evaluation presented in this thesis can
be viewed as a compromise between the two main approaches used by the theory
and practice communities�

		

	�� this is identi�ed as a third approach for evaluating parallel algorithms�
It is unlikely that the work reported here is the �rst of this kind� so I will
not claim that the approach for evaluating the practical value of theoretical
parallel algorithms is new� However� I have not yet found similar work� To
be better prepared for evaluating computer algorithms of the future� this
direction of research should in my view be given more attention�

	�

Chapter �

Parallel Algorithms� Central

Concepts

The �rst half of this chapter presents some of the more important concepts
on the theory side� mainly from parallel complexity theory� The second half
is devoted to issues that are central when evaluating parallel algorithms in
practice�

Most of the material in this chapter is introductory in nature and pro�
vides the necessary background for reading the subsequent chapters� Parts
of the text� such as Section ����� on Amdahl�s law and Section ������� on
superlinear speedup do also attempt to clearify topics about which there
have been some confusion in recent years�

��� Parallel Complexity Theory

� The idea met with much resistance� People argued that faster
computers would remove the need for asymptotic e�ciency� Just
the opposite is true� however� since as computers become faster�
the size of the attempted problems becomes larger� thereby mak�
ing asymptotic e�ciency even more important��

John E� Hopcroft in his Turing Award Lecture Computer Sci�
ence
 The Emergence of a Discipline �Hop����

This section presents those aspects of parallel complexity theory that are
most relevant for researchers interested in parallel algorithms� It does not
claim to be a complete coverage of this large� di�cult and rapidly expanding

	�

�eld of theoretical computer science� Most of the concepts are presented in
a relatively informal manner to make them easier to understand� The reader
should consult the references for more formal de�nitions�

Not all of the material is used in the following chapters� it is mainly
provided to give the necessary background� but also to introduce the reader
to very central results and theory that to a large extent are unknown among
the practitioners� Parallel complexity theory is a relatively new and very
fascinating �eld�it has certainly been the main inspiration for my work�

����� Introduction

The study of the amount of computational resources that are needed to
solve various problems is the study of computational complexity� Another
kind of complexity� which has been given less attention within computer
science� is descriptive� or descriptional complexity� An algorithm which is
very complex to describe has a high descriptional complexity� but may still
have a low computational complexity �Fre��a� WW���� In this thesis� when
I use the term complexity I mean computational complexity�

The resources most often considered in computational complexity are
running time or storage space� but many other units may be relevant in
various contexts� �

The history of computational complexity goes back to the work of Alan
Turing in the 	��
�s� He found that there exists so called undecidable prob�
lems that are so di�cult that they can not be solved by any algorithm� The
�rst example was the Halting Problem �GJ���� However� as described by two
of the leading researchers in the �eld� Stephen A� Cook and Richard Karp
�Coo��� Kar���� the �eld of computational complexity did not really start
before in the 	��
�s� and the terms complexity and complexity class were
�rst de�ned by Juris Hartmanis and Richard Stearns in the paper On the
computational complexity of algorithms �HS����

Complexity theory deals with computational complexity� The most cen�
tral concept here is the notion of complexity classes� These are used to
classify problems according to how di�cult or hard they are to solve� The
most di�cult problems are the undecidable problems �rst found by Turing�
The most well�known complexity class is the class of NP�complete problems�
Other central concepts are upper and lower bounds on the amount of com�
puting resources needed to solve a problem�

�As an example� the total number of messages �or bits� exchanged between the pro�
cessors is often measured for evaluating algorithms in distributed systems
Tiw���	

	�

Parallel complexity theory deals with the same issues as �traditional�
complexity theory for sequential computations� and there is a high degree of
similarity between the two �And���� The main di�erence is that complexity
theory for parallel computations allows algorithms to use several processors
in parallel to solve a problem� Consequently� other computing resources
such as the degree of parallelism and the degree of communication among
the processors are also considered� The �eld emerged in the late 	��
�s� and
it has not yet reached the same level of maturity as complexity theory for
sequential computations�

A highly referenced book about complexity theory is computers and
intractability� A Guide to the Theory of NP�Completeness by Garey
and Johnson �GJ���� It gives a very readable introduction to the topic� a
detailed coverage of the most important issues with many fascinating exam�
ples� and provides a list of more than �

 NP�complete problems� A more
compact �survey� is the Turing Award Lecture An Overview of Computa�
tional Complexity given by Stephen A� Cook �Coo���� The Turing Award
Lectures given by Hopcroft and Karp �Hop��� Kar��� are also very inspiring�

Ian Parberry�s book Parallel Complexity Theory �Par��� gives a detailed
description of most parts of the �eld� but Chapter 	 of Richard Anderson�s
Ph�D� Thesis The Complexity of Parallel Algorithms �And��� is perhaps more
suitable as introductory reading for computer scientists�

����� Basic Concepts� De	nitions and Terminology

To be able to discuss complexity theory at a minimum level of precision we
must de�ne and explain some of the most central concepts� This section
may be skipped by readers familiar to algorithm analysis and complexity�

Problems� algorithms and complexity
Garey and Johnson �GJ��� de�ne a problem to consist of a parameter de�
scription and a speci�cation of the properties required of the solution� The
description of the parameters is general� It explains their �nature� �struc�
ture�� not their values� If we supply one set of values for all the parameters
we have a problem instance� As an example� consider sorting� A formal
description of the sorting problem might be

SORTING
parameter description� A sequence of items S� $ ha�� a�� � � � � ani
and a total ordering � which states whether �aj � ak� is true

	�

for any pair of items �aj � ak� from the set S��
solution specification� A sequence of items S� $ hak� � ak� � � � � � akni
which contains the same items as S� and satis�es the given total
ordering� i�e� ak� � ak� � � � �� akn �

If we restrict ourself to the set of integers� which are totally ordered by our
standard interpretation of �� any �nite speci�c set of �nite integers makes
one instance of the sorting problem�

For most problems there exist some instances that are easy to solve� and
others that are more di�cult to solve� The following de�nition is therefore
appropriate�

De�nition ��� �Algorithm� ��GJ��� p� ��
An algorithm is said to solve a problem % if that algorithm can be applied
to any instance I of % and is guaranteed always to produce a solution for
that instance I � �

We will see that some algorithms solve all problem instances equally well�
while other algorithms have a performance that is highly dependent on the
characteristics of the actual instance��

In general we are interested in �nding the best or �most e�cient� al�
gorithm for solving a speci�c problem� By most e	cient one means the
minimum consumption of computing resources� Execution time is clearly
the resource that has been given most attention� This is reasonable for se�
quential computations�especially today when most computers have large
memories� For parallel computations other resources will often be crucial�
Most important in general are the number of processors used and the amount
of communication�

The time used to run an algorithm for solving a problem usually depends
on the size of the problem instance� A tool for comparing the e�ciency of
various algorithms for the same problem should ideally be a yardstick which
is independent of the problem size�� However� the relative performance of
two algorithms will most often be signi�cantly di�erent for various sizes of
the problem instance� This fact makes it natural to use a �judging tool�
which has the size of the problem instance as a parameter� A time complexity
function is such a tool and perhaps the most central concept in complexity
theory�

�As an example� consider the concept of presortedness in sorting algorithms
Man���	
�As we shall see in Section �	�	�� complexity classes provide this kind of �problem size

independent comparison�	

	�

De�nition ��� �Time complexity function�

A time complexity function for an algorithm is a function of the size of the
problem instances that� for each possible size� expresses the largest number
of basic computational steps needed by the algorithm to solve any possible
problem instance of that size� �

It is common to represent the size of a problem instance as a measure
of the �input length� needed to encode the instance of the problem� In this
thesis� I will use the more informal term problem size� �See the discussion
of input length and encoding scheme at pages �"� and �"		 of �GJ����� For
most sorting algorithms� it is satisfactory to represent the size of the problem
instance as the number of items to be sorted� denoted n� For simplicity� we
will use n to represent the problem size of any problem for the rest of this
section�

Worst case� average case and best case

De�nition ��� leads to another central issue�the di�erence between worst
case� average case and best case performance� Even if we restrict to problem
instances of a given �xed size� there may exist easy and di�cult instances�
Again� consider sorting� Many algorithms are much better at sorting a
sequence of n numbers which to a large degree are in sorted order than a
sequence in total unorder �McG���� The de�nition describes that a time
complexity function represents an upper bound for all possible cases� and a
more explicit term would therefore be worst case time complexity function�
The worst case function provides a guarantee and is certainly the most
frequently used e�ciency measure�� If not otherwise stated� this is what we
mean by a time complexity function in this thesis�

Best case time complexity functions might be de�ned in a similar way�
Average case complexity functions are of obvious practical importance� Un�
fortunately� they are often very di�cult to derive�

De�nition ��� states that time is measured in �basic computational
steps�� It is therefore necessary to do assumptions about the underlying
computational model that executes the algorithm� This important topic is
treated in Section ��	��� For the following text� it is appropriate to think of
a basic computational step as one machine instruction�

Order notation and asymptotic complexity
There is an in�nite number of di�erent complexity functions� The concept

�At least in the theory community	

	�

Table 	��� Examples on the use of big�O �order notation

Algorithm complexity function order expression

A 	
n& �n� O�n��

B �
n& 	
n� O�n��

C �n & 	�
n logn O�n logn�

D �

 O�	�

is therefore not an ideal tool to make broad distinctions between algorithms�
We need an abstraction of the �exact� complexity functions which makes
them more convenient to describe and discuss at a higher level and easier to
compare� without loosing their most important information� Order notation
has shown to be a successful abstraction of this kind� When we say that
f�x� $ O�g�x�� we mean� informally� that f grows at the same rate or more
slowly than g when x is very large��

De�nition ��� �Big�O� ��Wil
�� p� ��
f�x� $ O�g�x�� if there exist positive constants c and x� such that
jf�x�j � cg�x� for all x � x�� �

The order notation provides a compact way of representing the growth
rate of complexity functions� This is illustrated in Table ��	 where we have
shown the exact complexity functions and their corresponding order expres�
sions for four arti�cial algorithms�� Note that it is common practice to
include only the fastest growing term� �Algorithm D is a so called constant
time algorithm whose execution time does not grow with the problem size��

It is important to realise that order expressions are most precise when
they represent asymptotic complexity� i�e� the problem size n becomes in�
�nitely large� �The �error� introduced by omitting the low order terms�

approaches zero as n � ��� Note also that we omit the multiplicative
constants�algorithms A and B are regarded as equally e�cient� This is

�f�x�
 O�g�x�� is read as �f�x� is of order �at most� g�x��� or �f�x� is big�oh of
g�x��	

�Consider algorithm C	 It would be correct to say that its complexity function is O�n��
since n� grows faster than n log n	 However� that would be a weaker statement and there
is in general no reason for �saying less than we know� in this context	

�As done when describing A as O�n�� instead of O�n� n��	

	�

essential for making order notation robust to changes of technology and
implementation details�

Upper and lower bounds

A substantial part of computer science research consists of designing and
analysing new algorithms that in some sense	 are more e�cient than those
previously known� Such a result is said to establish an upper bound� Most
upper bounds focus on the execution time� they describe asymptotic be�
haviour� and they are commonly expressed by using the Big�O notation�

De�nition ��� �Upper bound� ��Akl
�� p� ��
An upper bound �on time� U�n� is established by the algorithm that� among
all known algorithms for the problem� can solve it using the least number of
steps in the worst case� �

Several sequential algorithms exist that sort n items in O�n logn� time�
One example is the Heapsort algorithm invented by J� Williams �Wil����
Consequently� we know that sorting can be done at least that fast on se�
quential computers� Each single of these algorithms implies the existence of
an upper bound of O�n logn�� but note that the order notation is too rough
to assess which single algorithm corresponds to the upper bound�

Lower bounds are much more di�cult to derive� as expressed by Cook in
�Coo���� �The real challenge in complexity theory� and the problem that sets
the theory apart from the analysis of algorithms� is proving lower bounds on
the complexity of speci�c problems���

De�nition ��	 �Lower bound� ��Akl
�� p� ��
A lower bound �on time� L�n� tells us that no algorithm can solve the
problem in fewer than L�n� steps in the worst case� �

While an upper bound is a result from analysing a single algorithm�a lower
bound gives information about all algorithms that have been or may be
designed to solve a speci�c problem� If a lower bound L�n� has been proved
for a problem %� we say that the inherent complexity of % is L�n��

A lower bound is of great practical importance when designing algo�
rithms since it clearly states that there is no reason for trying to design
algorithms that would be more e�cient�

	The possible variations in factors such as computational model� assumptions about
the input �size and characteristics�� and charging of the di�erent computational resources�
imply the existence of several algorithms that all in some way are most e�cient for solving
a �general� problem	

	�

The in uence of assumptions is illustrated by the following lower bound
given by Akl in �Akl���� This bound is trivial but highly relevant in many
practical situations� See also A �Zero�Time� VLSI Sorter by Miranker et
al� �MLK����

If input and#or output are done sequentially� then every parallel
sorting algorithm requires '�n� time units�

It is common to use big�omega� '� to express such lower bounds� '�n�
in this context is read as �omega of n� or �of order at least n�� It can
informally
 be perceived as the opposite of �O�� As done by several authors
�Harel �Har���� Garey and Johnson �GJ���� we will stick to big�O notation
for expressing orders of magnitude���

An algorithm with running time that matches the lower bound is said to
be �time� optimal�

����� Models of Parallel Computation

�Thus� even in the realm of uniprocessors� one lives happily with
high�level models that often lie� This should cool down our am�
bition for �true to life�� realistic multiprocessor models��

Marc Snir in Parallel Computation Models�Some Useful Ques�
tions �Sni����

While the RAM �random access machine� computational model introduced
by Aho� Hopcroft and Ullmann in �AHU��� have been dominating for se�
quential computations we are still missing such a unifying model for parallel
processing �Val�
� San��b�� A very large number of models of parallel com�
putation have been proposed� The state is further cluttered up by the fact
that various authors in the �eld often use di�erent names on the same model�
They also often have di�erent opinions on how a speci�c model should op�
erate �San��b��

This section does not aim at giving a complete survey of all models� It
starts by shortly mentioning some classi�cation schemes and surveys� and
then introduces the P�RAM model and its numerous variants�

�In fact the ��� is the �negation� of �o� which is a more precise variant of �O�	 �����
often read as �of order exactly� is still more precise	� Exact de�nitions of the �ve symbols
�O�� ���� ���� �o� and ��� that are used to compare growth rates may be found in
Wil���	

�
This is to avoid introducing excessive notation	 ��f�n�� may be expressed as of order
at least O�f�n��	

�

The P�RAM model is the most central concept in this thesis� and is
therefore thoroughly described in Chapter �� The section ends with a dis�
cussion of important general properties of models� and some comments on
a very interesting model recently proposed by Leslie Valiant �Val�
��

������� Computing Models�Taxonomies and Surveys

There has been proposed a very large number of models for parallel comput�
ing ranging from realistic� message passing� asynchronous multiprocessors�
to idealised� synchronous� shared memory models� These models and all the
various kinds of parallel computers that have been built form a diverse� and
complicated dynamic picture� This �mess� has motivated the development
of numerous taxonomies and classi�cation schemes for models of parallel
computing and real parallel computers�

Flynn�s taxonomy
Without doubt� the most frequently used classi�cation of �parallel� comput�
ers is Flynn�s taxonomy presented by Michael Flynn in 	��� �Fly���� The
taxonomy classi�es computers into four broad categories�

SISD Single Instruction stream � Single Data stream
The von Neumann model� the RAM model� and most serial �i�e� uni�
processor� computers fall into this category� A single processor exe�
cutes a single instruction stream on a single stream of data� However�
SISD computers may use parallelism in the form of pipelining to speed
up the execution in the single processor� The CRAY�	� one of the most
successful supercomputers is classi�ed as a SISD machine by Hwang
and Brigg �HB����

SIMD Single Instruction stream � Multiple Data stream
Models and computers following this principle have several process�
ing units each operating on its own stream of data� However� all
the processing units are executing the same instruction from one in�
struction stream� and they may therefore be realised with a single
control unit� Array processors are in this category� Classical exam�
ples are ILLIAC IV� ICL DAP and MPP �HB���� The Connection
Machine �Hil��� HS��� is also SIMD� Most SIMD computers operates
synchronously using a single global clock�

Many authors classify the PRAM model as SIMD� but this is not
consistent with the original papers de�ning that model �see Section

�	

����	��

MISD Multiple Instruction stream � Single Data stream
This class is commonly described to be without examples� It can be
perceived as several computers operating on a single data stream as
a �macro�pipeline� �HB���� Pipelined vector processors� which com�
monly are classi�ed as SISD� might also be put into the MISD class
�AG����

MIMD Multiple Instruction stream � Multiple Data stream
These machines have several processors each being controlled by its
own stream of instructions and each operating on its own stream
of data� Most multiprocessors fall into this category� The proces�
sors in MIMD machines may communicate through a shared global
memory �tightly coupled�� or by message passing �loosely coupled��
Examples are Alliant� C�mmp� CRAY��� CRAY X�MP� iPSC� Ncube
�AG��� HJ����

Some authors use the term MIMD almost as synonymous with asyn�
chronous operation �Akl��� Ste�
� Dun�
�� It is true that most MIMD
computers which have been built operate asynchronously� but there is
nothing wrong with a synchronous MIMD computer �See also Section
����	��

In practice Flynn�s taxonomy gives only two categories of parallel com�
puters� SIMD and MIMD� Consequently� it has long been described as too
coarse �Sny��� AG����

Duncan�s taxonomy and other classi�cation schemes

Ralph Duncan �Dun�
� has very recently given a new taxonomy of parallel
computer architectures� It is illustrated in Figure ��	� Duncan�s taxonomy
is a more detailed classi�cation scheme than Flynn�s taxonomy� It is a high�
level practically �or machine� oriented scheme�well suited for classifying
most contemporary parallel computers into a small set of classes� The reader
is referred to Duncan�s paper for more details�

Many other taxonomies have been proposed� Basu �Bas��� has described
a taxonomy which is tree structured in the same way as Duncan�s taxon�
omy� but more detailed and systematic� Other classi�cation schemes have
been given by H(andler �see for instance �HB���� page ���� Feng �see �HB����
page ���� Kuck �see �AG���� page 		��� Snyder �Sny���� and Treleaven �see
�AG���� page 		���

��

paradigm

MIMD

MIMD

Distributed memory

Shared memory

MIMD#SIMD

Data ow

Reduction

Wavefront

Associative memory

Processor array

Systolic

SIMD

Vector
Synchronous

Figure 	��� Duncan�s taxonomy of parallel computer architectures �Dun����

Surveys

A good place to start reading about existing computers and models for
parallel processing is Chapter � of Designing E	cient Algorithms for Paral�
lel Computers written by Quinn �Qui������ Surveys are also given by Kuck
�Kuc���� Miklo)sko and Kotov �MK���� Akl �Akl���� DeCegama �DeC���� and
Almasi and Gottlieb �AG���� H� T� Kung� who is well known for his work on
systolic arrays� has written a paper Computational models for parallel com�
puters �Kun��� which advocates the importance of computational models�
The scope of the paper is restricted to 	D �i�e� linear� processor arrays� but
Kung describes � di�erent computational models for this rather restricted
kind of parallel processing� This illustrates the richness of parallel process�
ing�

Theoretical models
The taxonomies and surveys mentioned so far are mainly representing par�
allel computers that have been built� Some of the more realistic models
for parallel computation may be classi�ed with these taxonomies� However�
many of the more theoretic models do not �t into the schemes� Again� we

��For more detailed descriptions of the most important parallel computers that have
been made see Hwang and Briggs
HB���� Hockney and Jesshope
HJ���	

��

notice the gap between theory and practice�
The paper Towards a complexity theory of synchronous parallel compu�

tation written by Stephen Cook �Coo�	� describes many of the most central
models for parallel computation that are used in the theory community�
In Cook�s terminology these are uniform circuit families� alternating Turing
machines� conglomerates� vector machines� parallel random access machines�
aggregates and hardware modi�cation schemes� The paper is highly math�
ematical� and the reader is referred to the paper for more details��� A
Taxonomy of Problems with Fast Parallel Algorithms� also written by Cook
�Coo���� is mainly focusing at algorithms but does also give an updated
view of the most important models� The paper gives an extensive list of
references to related work�

The �rst part of Routing� Merging and Sorting on Parallel Models of
Computation by Borodin and Hopcroft �BH���� and Parallel Machines and
their Communication Theoretical Limits by Reischuk �Rei��� give overviews
with a bias which are closer to practical computers� More speci�cally� they
are giving more emphasis on the shared memory models which are easier to
program but less mathematical convenient�

Perhaps the most �friendly� introduction to theoretical models for paral�
lel computation for computer scientists is Chapter � of James Wyllie�s PhD
Thesis The Complexity of Parallel Computations �Wyl���� Wyllie motivates
and describes the P�RAM model which probably is the most used theoretical
model for expressing parallel algorithms� It is described below�

������� The P�RAM Model and its Variants

�Most parallel algorithms in the literature are designed to run
on a PRAM��

Alt� Hagerup� Mehlhorn and Preparata in Deterministic Simu�
lation of Idealised Parallel Computers on More Realistic Ones�
�AHMP����

�The standard model of synchronous parallel computation is the
P�RAM��

Richard Anderson in The Complexity of Parallel Algorithms�
�And����

��I have not studied all the details of this and some of the other mathematical pa�
pers which are referenced	 The purpose of the short description and the references is to
introduce the material and give exact pointers for further reading	

��

�The parallel random�access machine �PRAM� is by far the most
popular model of parallel computation��

Bruce Maggs in Beyond Parallel Random�Access Machines� �Mag����

The most popular model for expressing parallel algorithms within theo�
retical computers science is the P�RAM model �Agg��� Col��� Kar��� RS����

The Original P�RAM of Fortune and Wyllie

The parallel random access machine �P�RAM� was �rst presented by Steven
Fortune and James Wyllie in �FW���� It was further elaborated in Wyllie�s
well�written Ph�D� thesis The Complexity of Parallel Computations �Wyl����
The P�RAM is based on random access machines �RAMs� operating in par�
allel and sharing a common memory� Thus it is in a sense the model in
the world of parallel computations that corresponds to the RAM �Random
Access Machine� model that certainly is the prevailing model for sequential
computations� The processors operate synchronously� The connection to
the RAM model should not be a surprise since John Hopcroft was the thesis
advisor of James Wyllie�

Today� a large number of variants of the P�RAM model are being used�
The original P�RAM model of Fortune and Wyllie� which is the main un�
derlying concept of this work� is described in Chapter �� Below we describe
its main variants� and mention some of the other names that have been used
on these�

The EREW� CREW and CRCW Models
Today� the mostly used name on the original P�RAM model is probably
CREW PRAM �SV���� CREW is an abbreviation for the very central con�
current read exclusive write property��� The main reason for this name is the
possibility to explicitly distinguish the model from the two other variants�
EREW PRAM and CRCW PRAM�

The EREW PRAM does not allow concurrent read from the global mem�
ory� It may be regarded as more realistic than the CREW PRAM� and some
authors present algorithms in two variants�one for the CREW PRAM and
another for the EREW PRAM model� The EREW PRAM algorithms are
in general more complex� see for instance �Col����

��This means that several processors may at the same time step read the same vari�
able �location� in global memory� but they may not write to the same global variable
simultaneously	

��

The CRCW PRAM allows concurrent writing in the global memory and
is less realistic than the CREW PRAM� It exists in several variants� mainly
di�ering in how they treat simultaneous �writes� to the same memory lo�
cation �see below�� Reischuk �Rei��� discusses the power of concurrent read
and concurrent write� The ERCW variant� which is the fourth possibil�
ity� is in general not considered because it seems more di�cult to realise
simultaneous writes than simultaneous reads �Rei����

The CREW PRAM model has probably become the most popular of
these variants because it is the most powerful model which also is �well�
de�ned��the CRCW variant exists in many subvariants�

The various CRCW models

One of the problems with the CRCW PRAM model is the use of several
de�nitions for the semantics of concurrent writing to the global memory�
The main subvariants for the handling of two or more simultaneous write
operations�� to the same global memory cell are�

	� Common value only� An arbitrary number of processors may write to
the same global memory location provided that they all write the same
value� Writing di�erent values is illegal� �Fei��� Akl��� BH��� Rei���

�� Arbitrary winner� One arbitrary of the processors which are trying to
write to the same location succeeds� The value attempted written by
the other processors are lost� �This gives nondeterministic operation��
�Fei��� Rei��� BH���

�� Ordered� The processors are ordered by giving them di�erent priorities�
and the processor with highest priority wins� �Fei��� Rei��� Akl���
BH���

�� Sum� The sum of the quantities written is stored� �Akl���

�� Maximum� The maximum of the values written is stored� �Rei���

�� Garbage� The resulting value is unde�ned� �Fei���

PRAC� PRAM� WRAM etc��Terminology

The various variants of the PRAM model have been used under several

��This is often called a write con�ict	

��

di�erent names� The following list is an attempt to reduce possible confusion
and to mention some other variants�

PRAC� corresponds to EREW PRAM �BH����
PRAM� is the original P�RAM model of Fortune and Wyllie� and has

often been given rather di�erent names� In �QD��� the term MIMD�TC�R
is used� and in �Qui��� SIMD�SM�R is used�

WRAM� corresponds to CRCW PRAM �BH��� GR����
CRAM� ARAM� ORAM� andMRAM� have been used by Reischuk �Rei���

to denote the� respectively� Common value only� Arbitrary winner� Ordered�
and Maximum variants of the CRCW PRAM model �see above��

DRAM� is short for distributed random access machine and has been pro�
posed by Leiserson and Maggs as a more realistic alternative to the PRAM
model �Mag����

������� General Properties of Parallel Computational Models

Motivation
A computing model �� is an idealised� often mathematical description of an
existing or hypothetical computer� There are many advantages of using
computing models�

� Abstractions simplify� When developing software for any piece of ma�
chinery a computing model should make it possible to concentrate
on the most important aspects of the hardware� and hiding low�level
details�

� Common platform� A computing model should be an agreed upon
standard among programmers in a project team� This makes it eas�
ier to describe and discuss measured or experienced performance of
various parts of a software system� A good model will increase soft�
ware portability� and also provide a common language for research
and teaching �Sni���� �See also the paragraph below about Valiant�s
bridging BSP model��

� Analysis and performance models� In theoretical computer science
computational models have played a crucial role by providing a com�
mon base for algorithm analysis and comparison� The RAM model has

��Note that the literature use a wide variety of terms for this concept	 Examples are
computing model� computer model� computation model� computational model� and model
of computation	

��

been used as a common base for �asymptotic� analysis and compari�
son of sequential algorithms� For parallel computations the P�RAM
model of Fortune and Wyllie �FW��� Wyl��� has made it possible�
for a typical analysis of parallel algorithms� to concentrate on a small
set of well de�ned quantities� number of parallel steps �time�� number
of processors �parallelism� and sometimes also global memory con�
sumption �space�� More realistic models typically use a larger number
of parameters to describe the machine� and on the other side of the
specter we have special purpose performance models which are highly
machine dependent and often also speci�c to a particular algorithm�
�See for instance �AC��� MB�
���

What is the �right� model

The selection of the appropriate model for parallel computation is certainly
one of the most widely discussed issues among researchers in parallel process�
ing� This is clearly re ected in the proceedings of the NSF � ARC Workshop
on Opportunities and Constraints of Parallel Computing �San��a�� There are
many di�cult tradeo�s in this context� Some examples are easy �high�level�
programming vs� e�cient execution �e�g� shared memory vs� message pass�
ing� �Bil���� general purpose model vs� special purpose model �e�g� P�RAM
vs� machine or algorithm speci�c models�� easy to use vs� mathematical
convenience �e�g� P�RAM vs� �boolean circuit families��Coo����� and easy
to analyse vs� easy to build �e�g� synchronous vs� asynchronous ��

Instead of arguing for some speci�c �type of� model to be the best� we
will describe important properties of a good model� Some of these properties
are overlapping� and unfortunately� several of the desired properties are
con icting�

	� Easy to understand� Models that are di�cult to understand� or com�
plex in some sense �for instance by containing a lot of parameters or
allowing several variants� will be less suitable as a common platform�
Di�erent ways of understanding the model will lead to di�erent use and
reduced possibilities of sharing knowledge and experience� The impor�
tance of this issue is exampli�ed by the PRAM model� In spite of
being one of the simplest models for parallel computations it has been
understood as a SIMD model by many researchers and as a MIMD
model by others �see Section ����	��

�� Easy to use� Designing parallel algorithms is in general a di�cult

��

task� A good model should help the programmer to forget unneces�
sary low�level details and peculiarities of the underlying machine� The
model should help the programmer to concentrate on the problem
and the possible solution strategies�it should not add to the di��
culties of the program design process� Simple� high level models are
in general most easy to use� They are well suited for teaching and
documentation of parallel algorithms� However� when designing soft�
ware for contemporary parallel computers one is often forced to use
more complicated and detailed models to avoid �loosing contact with
the realities�� Synchronous models are in general easier to program
than asynchronous models� This is re ected by the fact that some
authors use the term chaotic models to denote asynchronous models
�Gib���� Shared memory models seem to be generally more convenient
for constructing algorithms �BH��� Par����

�� Well de�ned� A good model should be described in a complete and
unambigious way� This is essential for acting as a common platform�
The so�called CRCW PRAM model exists in many variants �see page
��� and is therefore less popular than the CREW PRAM model�

�� General� A model is general if it re ects many existing machines and
more detailed models� The use of general models yields more portable
results� The RAM model has been a very successful general model for
uni�processor machines�

�� Performance representative� Marc Snir has written an interesting pa�
per �Sni��� discussing at a general level to what extent high level mod�
els lead to the creation of programs that are e�cient on the real ma�
chine� Informally� good models should give a performance rating of
�theoretical� algorithms �i�e� run on the model� that is closely related
to the rating obtained by running the algorithms on a real computer
�Sni��� �See also �Sny����� In other words� the practically good algo�
rithms should be obtained by re�ning the theoretically good ones�

�� Realistic� Many researchers stress the importance of a computing
model to be feasible �Agg��� Col��� Sny���� Models that can be
realised with current technology without violating too many of the
model assumptions have many advantages� Above all� they give a
model performance which is representative of real performance as dis�
cussed above� With respect to feasibility� there is a great di�erence

��

between models that are based on a �xed connection network of pro�
cessors and models based on the existence of a global or shared mem�
ory� The �xed connection models are much easier to realise� and in
fact the best way of implementing shared memory models with current
technology�BH��� RBJ���� Unfortunately� the �xed connection models
are in general regarded as more di�cult to program� Similarly� asyn�
chronous operation of the processors is realistic but generally accepted
as leading to more di�cult programming �Ste�
�� On the other hand
there are researchers arguing for more idealised and powerful mod�
els than the PRAM �which is the standard shared memory model�
�RBJ���� Note also that there are reasonable arguments for a model
to be �far from� current technology �Vis��� Val�
�� This is explained
in the following property and in the next paragraph�

�� Durable� Uzi Vishkin �Vis��� argues that computing models should
be robust in time in contrast to technological feasibility which rapidly
keeps advancing� Again� the RAM model is an example� Changing
models too often will greatly reduce the possibilities of sharing infor�
mation and building on other work� However� machines will and should
change�new technological opportunities continue to appear� In prac�
tice� this is an argument against realistic models such as asynchronous
�xed connection models �sometimes also called message passing mod�
els�� A similar view has been expressed by Leslie Valiant �Val�
��

�� Mathematical convenience� Stephen Cook describes shared memory
models as unappealing for an enduring mathematical theory due to the
arbitrariness in its detailed de�nition� He advocates uniform Boolean
circuit families as more attractive for such a theory �Coo���� In my
view� models based on circuit families are not suited for expressing
large� practical parallel systems� Most algorithm designers use the
PRAM shared memory model� and it should be noted that it contains
two drastic assumptions which are introduced for mathematical conve�
nience �Wyl���� Assuming synchronous operation of all the processors
makes the notion of �running time� well de�ned and is crucial for
analysing time complexity of algorithms� Assuming unbounded paral�
lelism �i�e� an unbounded number of processors is available� makes it
possible to handle asymptotical complexity�

�

������� Valiant�s Bridging BSP Model

Leslie Valiant has recently written a very interesting paper �Val�
� were
he advocates the need for a bridging model for parallel computation� and
proposes the bulk�synchronous parallel �BSP� model as a candidate for this
role�

He attributes the success of the von Neumann model of sequential com�
putation to the fact that it has been a bridge between software and hard�
ware� On the one side the software designers have been producing a diverse
world of increasingly useful and resource demanding software assuming this
model� On the other side the hardware designers have been able to exploit
new technology in realising more and more powerful computers providing
this model�

Valiant claims that a similar standardised bridging model for parallel
computation is required before general purpose parallel computation can
succeed� It must imply convenient programming so that the software people
can accept the model over a long time� Simultaneously� it must be su�ciently
powerful for the hardware people to continuously provide better implemen�
tations of the model� A realistic model will not act as a bridging model
because technological improvements are likely to make it old�fashioned too
early� For the same reason a bridging model should also be simple and not
de�ned at a too detailed level� There should be open design choices allowing
better implementations without violating the model assumptions �Val�
����

Valiants BSP model of parallel computation is de�ned as the combi�
nation of three attributes� a number of processing components� a message
router and a synchronisation facility� The processing components perform
processing and#or memory functions� The message router delivers messages
between processing components� The synchronisation facility is able to syn�
chronise all or a subset of the processing components at regular intervals�
The length of this interval is called the periodicity� and it may be controlled
by the program� In the interval between two synchronisations �called a su�
perstep� processing components perform computations asynchronously� In
this sense� the BSP model may be seen as a compromise between asyn�
chronous and synchronous operation� Phillip B� Gibbons has expressed sim�

��An example from another �eld of computer science is the success of the relational
model in the database world	 This may be explained by the fact that the relational
model has acted as a bridge between users of database systems and implementors	 When
proposed� the model was simple and general� high level and �advanced�	 Database system
designers have worked hard for a long time to be able to provide e�cient implementations
of the relational model	 �This example was pointed out to me by P	 Thanisch
Tha���	�

�	

ilar thoughts and use the term semi�synchronous for this kind of operation
�Gib����

A computer based on the BSP model may be programmed in many styles�
but Valiant claims that a PRAM language would be ideal��� The programs
should have so�called parallel slackness� which means that they are written
for v virtual processors run on p physical processors� v � p� This is necessary
for the compiler to be able to �massage� and assemble bulks of instructions
executed as supersteps giving an overall e�cient execution��	 Valiant�s BSP
model is a totally new computing concept requiring drastically new designs
of compilers and runtime systems�

The BSP model can be realised in many ways and Valiant outlines im�
plementations using packet switching networks or optical crossbars as two
alternatives �Val�
��

����� Important Complexity Classes

There are three levels of problems� The simplest problem is what we meet in
everyday life�solving a speci�c instance of a problem� The next level up is
met by algorithm designers�making a general receipt for solving a �subset
of� all possible instances of a problem� Above that we have a metatheoretic
level where the whole structure of a class of problems are studied �Fre��a��
At this highly mathematical level one is interested in various kinds of re�
lationships between a large number of complexity classes �see for instance
Chapter � in Garey and Johnson �GJ�����

A complexity class can be seen as a practical interface between these
two topmost levels� The complexity theorist classi�es various problems and
also extends the general knowledge of the di�erent complexity classes� while
the algorithm designer may use this knowledge once parts of his practical
problem have been classi�ed�

������� P� NP and NP�completeness

The most important complexity classes for sequential computations are
P� NP and the class of NP�complete problems �often abbreviated NPC
�GJ�����Har����� It is common to de�ne complexity classes in terms of Turing

��Reading this at the end of the work reported in this thesis was highly encouraging�
most of the practical work has been the design and use of a prototype high level PRAM
language� see Chapter �	

�	It seems to me that Cole�s parallel merge sort algorithm� described in Chapter �� may
be a good example on a program with parallel slackness	

��

Machines and language recognition ��GJ��� RS����� but more informal de��
nitions will su�ce� In the discussion of �reasonable� parallelism at page ��
we will see that these complexity classes also are highly relevant for parallel
computations�

De�nition ��� �The class P�
The class P is the class of problems that can be solved on a sequential
computer by a deterministic polynomial time algorithm� �

De�nition ��� �Polynomial time algorithm� ��GJ��� p� ��
A polynomial time algorithm is an algorithm whose time complexity function
is O�f�n�� for some polynomial function f� where n is the problem size� �

De�nition ��� �Exponential time algorithm� �GJ��� p� ��
An exponential time algorithm is an algorithm whose time complexity func�
tion can not be bounded by a polynomial function� �

The word �deterministic� might have been omitted from De�nition ���
since it corresponds to our standard interpretation of what an algorithm
is� The motivation for including it becomes clear when we have de�ned
the larger class NP which also includes problems that can not be solved by
polynomial time algorithms�

De�nition ��
 �The class NP�

�Standard formulation�� The class NP is the class of problems that can be
solved by a nondeterministic polynomial time algorithm�
�Practical formulation�� The class NP is the class of problems which has
solutions that can be veri�ed �to be a solution or not� by a deterministic
polynomial time algorithm� �

Note that we avoided the term reasonable computer in the standard
formulation above� This is because the concept nondeterministic algorithm
intentionally contains a so called guessing stage �GJ��� which �informally� is
assumed to guess the correct solution� This feature is magical �Har��� and
makes the properties of the underlying machine model irrelevant�

The most celebrated complexity class is the class of NP�complete prob�
lems� Informally the class can be said to contain the hardest problems in NP�
Though it is not proved� it is generally believed that none of these problems
can be solved by polynomial time algorithms� Today� close to 	

 prob�
lems are known to be NP�complete �Har���� If you �nd an algorithm that

��

�������
�������
�������
������
�������
�������
��������
��������
��������
��������
���������
���������
����������
����������
�����������
������������

�������������
���������������

����������������
������������������

�����������������������
�����������������������������

��
��

�������������������������������
�����������������������

�������������������
����������������
���������������
�������������
������������
������������
���������
����������
���������
���������
���������
��������
��������
�������
��������
�������
�������
�������
�������
������
�������
������
�������
������
�������
�������
��������
��������
��������
���������
����������
����������
�����������
�������������

�����������������
�����������������������������

���
�������������������
��������������
�����������
�����������
���������
���������
��������
��������
�������
��������
�������
�������
�������
�������
������

�������
�������
�������
�������
�������
�������
��������
��������
��������
���������
����������
����������
������������

��������������
�������������������

���
������������������
��������������
������������
����������
���������
���������
��������
��������
��������
�������
�������
�������
������
�������
�������

P

NP

NPC

Figure 	�	� The complexity classes NP� P� and NPC�

solves one of these problems in polynomial time�you have really done a
giant breakthrough in computer science� This should come clear from the
de�nition of the class NPC�

De�nition ���� �NP�complete problems� �NPC��

NPC is the class of NP�complete problems� A problem % is NP�complete
if i�� % � NP � and ii�� For any other problem %� in NP there exists a
polynomial transformation from %� to %� �

A polynomial transformation from A to B is a �deterministic� polynomial
time algorithm for transforming �or reducing� any instance IA of A to a
corresponding instance IB of B so that the solution of IB gives the required
answer for IA� As a consequence �see Lemma ��	 at page �� of �GJ���� it can
be proved that a polynomial time algorithm for solving problem B combined
with this polynomial transformation yields a polynomial time algorithm for
solving A� Thus De�nition ��	
 states that a polynomial time algorithm for
a single NP�complete problem implies that all problems in NP can be solved
in polynomial time� The relationship between the classes� NP� P and the
class NPC containing the NP�complete problems� is shown in Figure ����

Reading part ii� of De�nition ��	
 one might think that much work is
required to prove that a problem is NP�complete� Fortunately� it is not
necessary to derive polynomial transformations from all other problems in
NP� This and other aspects of NP�completeness will become clear in Sec�
tion ��	���� at page �� where we describe P�completeness and its strong
similarities with NP�completeness�

��

������� Fast Parallel Algorithms and Nick�s Class

With respect to parallelisation� the problems inside P can be divided into
two main groups�the class NC and the class of P�complete problems� The
class NC contains problems which can be solved by �fast� parallel algorithms
that use a �reasonable� number of processors�

De�nition ���� �Nick�s class� NC�

Nick�s Class NC is the class of problems that can be solved in polyloga�
rithmic time �i�e� time complexity O�logk n� where k is a constant� with a
polynomial number of processors �i�e� bounded by O�f�n�� for some poly�
nomial function f � where n is the problem size�� �

NC is an abbreviation for Nick�s Class� and is now the commonly used
�Coo��� name for this complexity class� which was �rst identi�ed and char�
acterised by Nicholas Pippenger in 	��� �Pip����

It is relatively easy to prove that a problem is in NC� Once one algorithm
with O�logk� n� time consumption using no more than O�nk�� processors
that solves the problem has been found� the membership in NC is proved�
Such an algorithm is often called a NC�algorithm� Thus Batcher�s O�log� n�
time sorting network using n�� processors �see Section ��	��� proves that
sorting is in NC� Many other important problems are known to be in NC�
Some examples are matrix multiplication� matrix inversion� �nding the min�
imum spanning forest of a graph �Coo���� and the shortest path problem
��CM��� p� 	
��� The book E	cient Parallel Algorithms written by Gib�
bons and Rytter �GR��� provides detailed descriptions of a large number of
NC�algorithms�

NC is robust
The robustness of Nick�s Class is probably the main reason for its popularity�
It is robust because it to a large extent is insensitive to di�erences between
many models of parallel computation� NC will contain the same problems
whether we assume the EREW� CREW or CRCW PRAM model� or some
other models such as uniform circuits �Coo��� And��� Har��� GR�����
 The
robustness of NC allows us to ignore the polylogarithmic factors that sepa�
rate the various models�

More re�ned complexity classes such as NC � and NC� may be de�ned
within NC� NC � is used to denote the class of problems in NC that can be

��This is shown by various theoretical results describing how theoretical models may be
simulated by more realistic models� see for instance
AHMP��� MV��� SV��� Upf���	

��

solved in O�logn� time� whereas NC � is the problems solvable in O�log� n�
time� These classes are not robust to changes in the underlying model and
should therefore only be used together with a statement of the assumed
model� Many other subclasses within NC are described in Stephen Cook�s
article �A Taxonomy of Problems with Fast Parallel Algorithms� �Coo����

�Reasonable� parallelism
Classifying a polynomial processor requirement as �reasonable� in general
may need some explanation� Practitioners would for most problems say that
a processor requirement that grows faster than the problem size might not
be used in practice� However� in the context of complexity theory it is com�
mon practice to say that problems in P can be solved in �reasonable� time as
opposed to problems in NPC that �currently� only can be solved in unreason�
able �i�e� exponential� time� Similarly� we distinguish between reasonable
�polynomially� and unreasonable �exponentially� processor requirements�

NP�complete problems can �at least in the theory��� be solved in poly�
nomial time if we allow an exponential number of processors �to remove the
magical nondeterminism� �see �Har��� p� ��	�� However� if we restrict to a
�reasonable� number of processors� the NP�complete problems remain out�
side P��� In this sense the traditional complexity class P is very robust� P
contains the same problems whether we assume one of the standard sequen�
tial computational models or parallel processing on a reasonable number of
processors� A polynomial number of processors may be simulated with a
polynomial slowdown on a single processor� This implies that all problems
in NC must be included in the class P�

NC may be misleading
In theoretical computer science there has in the past years been published
a large number of papers proving various �sub�problems to be in NC� These
results are of course valuable contributions to parallel complexity theory�
However� if you are searching for good and practical parallel algorithms� the
titles of these papers may often be misleading if you do not know the ter�
minology or do not understand the limitations of complexity theory� For

�
It is far from clear that it can be done in practice due to inherent limitations of
three�dimensional space
Coo��� Har��� Fis���	

��To see this� assume the opposite�a parallel algorithm using p��n� processors that
solves an NP�complete problem in p��n� time� where p��n� and p��n� are both polynomi�
als	 Simulating this algorithm on a single processor would then give a polynomial time
algorithm �O�p��n�� p��n���� the problem must be in P and we must have NPC
 P 	

��

instance �Fast Parallel Algorithm for Solving � � �� may denote an algorithm
with O�logk n� time consumption with very large complexity constants which
makes it slower in practice than well known and simpler algorithms for the
same problem� Similarly� �E�cient Parallel Algorithm for Solving � � �� may
entitle a polylogarithmic time algorithm with O�n�� processor requirement
resulting in a very high cost and a very low e	ciency�if we use the de�ni�
tion of e�ciency which is common in other parts of the parallel processing
community �see page ���� It is therefore possibly more appropriate to de�
scribe problems in NC as �highly parallelisable� �GR���� Further� the term
NC�algorithm is more precise and may often be less misleading than to say
that an algorithm is fast or e�cient�

It has been argued that too much focus has been put on developing NC�
algorithms �Kar���� The search for algorithms with polylogarithmic time
complexity has produced a lot of algorithms with a large �but polynomially
bounded� number of processors� These algorithms typically have a very
high cost compared with sequential algorithms for the same problems�and
consequently low e�ciency� Richard Karp has therefore proposed to de�ne
an algorithm to be e�cient if its cost is within a polylogarithmic factor of
the cost of the best sequential algorithm for the same problem �Kar���� See
also the recent work by Snir and Kruskal �Kru����

������� Inherently Serial Problems and P�Completeness

P�completeness
Consider the problems in P� The subset of these which are in NC may be
regarded as easy to parallelise� and those outside NC as di�cult or hard
to parallelise� Proving that a problem is outside NC �i�e� proving a lower
bound� is however very di�cult�

An easier approach is to show problems to be as least as di�cult to
parallelise as other problems� The notion of P�completeness helps us in
doing this� Just as the NP�complete problems are those inside NP which
are hardest to solve in polynomial time� the class of P�complete problems
are those inside P which are hardest to solve in polylogarithmic time using
only a polynomial number of processors���

De�nition ���� �P�complete problems� PC� ��GR

� p� ����
PC is the class of P�complete problems� A problem % is P�complete if i��

��Note that some early papers on NP�completeness used the term P�complete for those
problems that are common today to denote as NP�complete� see for instance
SG���	

��

�������
������
�������
�������
�������
�������
�������
�������
��������
��������
��������
���������
���������
����������
����������
����������
�����������
������������
�������������

��������������
����������������

�����������������
��������������������

�����������������������
�������������������������������

��
��

����������������������������������
�������������������������

��������������������
������������������
����������������
��������������
��������������
������������
�����������
�����������
����������
���������
���������
��������
���������
��������
��������
��������
��������
�������
�������
������
�������
�������
�������
�������
������
�������
������
�������
�������
�������
��������
��������
��������
��������
���������
����������
�����������
������������
�������������

������������������
���������������������������

���
�������������������
���������������
������������
�����������
����������
����������
���������
��������
��������
�������
�������
�������
�������
������
�������
�������
�������
��������

������
�������
�������
������
�������
��������
��������
��������
��������
��������
����������
����������
�����������
�������������

��������������
��������������������

��
�������������������
���������������
�������������
�����������
����������
����������
���������
��������
��������
�������
��������
�������
�������
�������
�������
������
������

�������
������
�������
�������
�������
�������
�������
��������
��������
���������
���������
�������������

���
����������
���������
���������
��������
�������
�������
�������
�������
�������
�������
�������
��� �������

�������
�������
�������
�������
�������
�������
��������
��������
���������
����������
�������������

��
�����������
���������
��������
��������
�������
�������
�������
�������
�������
�������
�������
�������
�������
������
�������
�������
�������
�������
�������
��������
��������
���������
�����������
����������������

��
�����������
���������
��������
��������
�������
�������
�������
�������
�������
�������
�������
����

P

NP

NPC

NC PC

Figure 	��� The complexity classes NP� P� NPC� NC and PC�

% � P � and ii�� For any other problem %� in P there exists a NC�reduction
from %� to %� �

De�nition ���� �NC�reduction� ��GR

� p� ����
A NC�reduction from A to B �written as A �NC B� is a �deterministic�
polylogarithmic time bounded algorithm with polynomially bounded pro�
cessor requirement for transforming �or reducing� any instance IA of A to a
corresponding instance IB of B so that the solution of IB gives the required
answer for IA� �

Consequently� if one single P�complete problem can be solved in polyloga�
rithmic time on a polynomial number of processors�then all problems in P
can be solved within the same complexity bounds using the NC�reduction
required by the de�nition�

Just as there is no known proof that P �$ NP� nobody has been able
to prove that NC �$ P� However� most researchers believe that the hard�
est parallelisable problems in P �the P�complete problems� are outside NC�
A P�completeness result has therefore the same practical e�ect as a lower
bound�discouraging e�orts for �nding NC�algorithms for solving the prob�
lem� The relationship between the classes� P� NC and the class PC contain�
ing the P�complete problems� is shown in Figure ���� The �gure also shows
the three main complexity classes for sequential computations�

NC�reductions
A NC�reduction is technically di�erent from the transformation used in clas�
sical de�nitions of P�completeness �GR���� As done by Gibbons and Rytter

��

�GR��� we will use the notion of NC�reductions to avoid introducing ad�
ditional details about space complexity� Classical de�nitions use so called
logarithmic space reductions� and P�complete problems are often termed as
�log�space complete for P ���� However� by using the so called parallel com�
putation thesis�� it can be shown that a log�space reduction corresponds to
a NC�reduction� and they will be used as synonyms in the rest of the text�

A NC�reduction may informally be perceived as a �fast� problem reduc�
tion executable on a �reasonable� parallel model� It is interesting to note
that Gibbons and Rytter �GR��� have observed that NC�reductions typi�
cally work very locally� For example an instance G of a graph problem may
often be transformed �reduced� to a corresponding instance G� of another
graph problem by transforming the local neighbourhood of every node in G�
This is intuitively not surprising� There exists many examples where the
ability to do computations based on local information �instead of global�
central resources� signi�cantly improves the possibilities of achieving highly
parallel implementations�

A very important property of the �NC�reducability� relation� denoted
�NC � is that it is transitive �Par��� And���� As described below� this prop�
erty is central in reducing the e�orts needed for proving a problem to be
P�complete�

P�completeness proofs

Part ii� of De�nition ��	� of P�complete problems may make us believe that
the work needed to prove a new problem to be P�complete is substantial
since we must provide a NC�reduction from every problem known to be in
P� Fortunately� this is not true due to the following observation�

Observation ��� �Corollary ����� in �Par
���
If A is P�complete� B � P � and A �NC B then B is P�complete�

Proof
 We want to show that B is P�complete� Since B � P � what remains
to show is that for every problem % � P there exists a NC�reduction from
% to B� i�e� % �NC B� Since A is known to be P�complete De�nition ��	�
implies % �NC A� The assumption A �NC B and the transitivity of �NC
then imply that % �NC B� �From the proof of Lemma ��� in Garey and

��A log�space reduction is a transformation in the same sense as the polynomial transfor�
mation described at page �� but with a space consumption which is bounded by O�log n�

GJ��� And���	

��This result informally states that sequential memory space is equivalent to parallel
time up to polynomial di�erences
Har��� And��� Par���	

��

Johnson �GJ��� but adapted here to P�completeness�� �

Observation ��	 tells us that we may use the following much more practical
approach to prove that a problem % is P�complete�

	� Show that % � P �

�� Show that there exists a NC�reduction from some known P�complete
problem to %�

However we still have the �chicken before egg problem��we simply can not
use this approach to prove some �rst problem to be P�complete�

The �rst problem shown to be P�complete was the PATH problem�� pre�
sented by Stephen Cook in 	��� �Coo���� Shortly after� Jones and Laaser
�JL��� showed six other problems to be P�complete� Cook proved the P�
completeness of the PATH problem by describing a generic log�space re�
duction of an arbitrary problem in P to the PATH problem� Similarly�
Jones and Laaser provided a generic reduction for the UNIT RESOLUTION
problem�JL����

Informally� such a generic reduction �to e�g� the PATH problem� is a
description of how an arbitrary deterministic polynomial time computation
on a Turing machine may be simulated by solving a corresponding instance
of the PATH problem� The generic reduction to the PATH problem invented
by Cook is an extremely important result in the history of �parallel� com�
plexity theory� This� and other similar generic reductions are complicated
mathematical descriptions�which we do not need to know in detail to use
the P�completeness theory in practice�

In addition to the original papers ��Coo��� JL���� interested readers are
referred to Chapter � in �GR��� which describes a generic reduction to the
GENERABILITY problem� See also the very good description of Stephen
Cooks seminal theorem �Cook�s Theorem� found in Section ��� of �GJ����
This theorem provided the �rst NP�complete problem �SATISFIABILITY�
by a generic reduction from an arbitrary problem in NP�

Part 	 of the proof procedure� to show that the problem is in P � is
often a straightforward task� All we need is to show the existence of some
deterministic polynomial time uni�processor algorithm solving the problem�

��Called PATH SYSTEM ACCESSIBILITY by Garey and Johnson
GJ��� p	 ���	 The
problem is also described in
JL���	

�

One exception is �linear programming� which was shown to be in P by
Khachian as late as in 	��� �Kha����

To �nd a NC�reduction from some known P �complete problem is in gen�
eral not so easy� A good way to start is to study documented P �completeness
proofs of related problems� Chapter � in the book by Garey and John�
son �GJ��� contains a lot of fascinating problem transformations� and it is
highly recommended�in spite of the fact that the problem transformations
reported there are polynomial reductions and not necessarily NC�reductions�
However� Anderson reports that most of the transformations used in NP�
completeness proofs can also be performed as NC�reductions �And����

What is di�cult is to select a well suited known P�complete problem
and to �nd a systematic way of mapping instances from that problem into
instances of the problem we want to prove P�complete� Once the reduction
has been found� it is often relatively easy to see that it can be performed by
a NC�algorithm� That part is therefore omitted from most P�completeness
proofs�

The Circuit Value Problem
Since the pioneering work by Cook in 	��� we have got an increasing number
of known P�complete problems� The most frequently used problem in P�
completeness proofs is the circuit value problem �CVP� and its variants
�And���� The circuit value problem was shown to be P�complete by Ladner
in 	��� �Lad����

Informally� an instance of the circuit value problem is a combinational
circuit �i�e� a circuit without feedback loops� built from Boolean two�input
gates and an assignment to its inputs� To solve the problem means to
compute its output �Par���� The kind of gates allowed in CVP plays an
important role� CVP is P�complete provided that the gates form a so�
called complete basis �Par��� And���� The most common set of gates is
fAND� OR� NOTg� Two important variants of CVP are the monotone circuit
value problem �MCVP� where we are restricted to use only AND or OR

gates and the planar circuit value problem �PCVP� where the circuit can
be constructed �on the plane� without wire crossings� MCVP and PCVP
were both proved P�complete by Goldschlager �Gol���� Other variants of
CVP are described in �GSS��� And��� Par���� Note that small changes in
a problem de�nition can make dramatic e�ects on the possibility of a fast
parallel solution� As an example� both MCVP and CVP are P�complete�
but the monotone and planar CVP can be solved by a NC�algorithm�

�	

P�complete problems�Examples

The set of problems proved and documented to be P�complete contains a
growing set of interesting problems� Below is a short list containing some
of the more important of these� The reader should consult the references
for more detailed descriptions of the problems and their proofs �see also
�GR�����

Maximum network �ow proved P�complete by Goldschlager et� al� in 	���
�GSS����

Linear programming proved as member ofP by Khachian �Kha��� and proved
as P�complete or harder�� by Dobkin et� al� in 	��� �DLR����

General deadlock detection proved P�complete by Spirakis in 	��� �Spi����

Depth �rst search proved P�complete by John Reif in 	��� �Rei������

Uni�cation proved P�complete by Dwork� Kanellakis and Mitchell 	���
�DKM���� Kanellakis describes in �Kan��� how this result depends
on the representation of the input�

Unit resolution for propositional formulas proved P�complete �among sev�
eral other problems� by Jones and Laaser in 	��� �JL����

Two player game proved P�complete by Jones and Laaser in 	��� �JL����

A P�complete problem is often termed as inherently serial�it often con�
tains a subproblem or a constraint which requires that any solution method
must follow some sort of serial strategy� For some problems such as �two
player game� �and perhaps also �general deadlock detection�� it is relatively
easy to intuitively see the inherent sequentiality� For others such as �maxi�
mum network ow� it is much harder�

In general it is di�cult to claim that a problem is inherently serial be�
cause it in our context means that all possible algorithms for solving it are
inherently serial� On the contrary� it is often easier to identify inherently
serial algorithms� This is captured in the notion of P�complete algorithms
discussed in the following paragraph�

��This is often termed P�hard	 Informally it means that the problem may be outside P�
but if it can be proved as member of P then P�hardness implies P�completeness	

��It is more correct to term depth �rst search as a P�complete algorithm� see page ��	

��

P�complete algorithms

A vast amount of research has been done on sequential algorithms� When
designing a parallel algorithm for a speci�c problem it is often fruitful to
look at the best known sequential algorithms� Many sequential algorithms
have fairly direct parallel counterparts�

Unfortunately� many of the most successful sequential algorithms are
very di�cult to translate �transform� into very fast parallel algorithms� Such
algorithms may be termed inherently serial� They are often using a strategy
which is basing decisions on accumulated information� A good example
is J� B� Kruskal�s minimum spanning tree algorithm �Kru��� which is a
typical greedy algorithm �see for instance �AHU��� pages ��	"����� Greedy
algorithms are in general sequential in nature�they typically build up a
solution set item by item� and the choice of which item to add depends on
the previous choices�

In his thesis The Complexity of Parallel Algorithms �And��� Richard
Anderson shows that greedy algorithms for several problems are inherently
serial�he proves them to be P�complete� Anderson gives the following def�
inition of a P�complete algorithm �And����

An algorithm A for a search problem is P�complete if the problem
of computing the solution found by A is P�complete�

Another example of an inherently serial algorithm is depth��rst search
�DFS� ��Tar���� which is used as a subalgorithm in many e�cient sequential
algorithms for graph problems� John Reif has shown that the DFS algorithm
is P�complete by proving that the DFS�ORDER problem�	 is P�complete
�Rei����

Fortunately� the fundamental di�erence between problems and algo�
rithms makes the detection of an algorithm to be P�complete to a less
discouraging result� A P�complete algorithm does not say that the cor�
responding problem is inherently serial�it merely states that a di�erent
approach than parallelising the sequential algorithm must be attempted to
possibly obtain a fast way to solve the problem with parallelism� For exam�
ple� the natural greedy algorithm for solving the maximal independent set
problem is P�complete� but a di�erent approach can be used to solve the
problem with a NC�algorithm �And��� GS����

�	Informally described� this problem is to �nd the depth��rst search visiting order of
the nodes in a directed graph	

��

Table 	�	� Summary of complexity theory for sequential and parallel computations�

sequential

computations

parallel

computations

The main class of prob�
lems studied�

NP P

The �easiest� problems
in the main class� i�e�
the class of problems
that may be solved
�e�ciently��

The class P The class NC

The fundamental
question�

Is P $ NP ! Is NC $ P !

De�nition of a problem
that may be solved
�e�ciently��

The existence of a
sequential algorithm
solving the problem
in polynomial time

The existence of a
parallel algorithm
solving the problem in
polylogarithmic time
using a polynomial
number of processors

The �hardest� problems
in the main class� i�e�
problems that probably
can not be solved
�e�ciently��

The NP�complete
problems

The P�complete
problems

A ��rst� problem in the
hardest class�

satisfiability �sat� path

Technique for
proving membership in
the �hardest� class�

P�reducibility NC�reducibility

��

NP�completeness vs� P�completeness

Table ��� shows the similarities of P�completeness and NP�completeness� It
does also give a quick summary of the theory�

��� Evaluating Parallel Algorithms

����� Basic Perfomance Metrics

In the rest of this thesis it is assumed that algorithms are executed on the
CREW PRAM model� This assumption makes it possible to de�ne the basic
performance metrics for evaluating parallel algorithms�

Time� Processors and Space

De�nition ���� �Time�
The time� running time� or execution time for an algorithm�
 executed on
a CREW PRAM is the number of CREW PRAM clock periods elapsed
from the �rst to the last CREW PRAM instruction used to solve the given
instance of a problem� The time is expressed in CREW PRAM time units
or simply time units� �

This de�nition corresponds to what many authors call parallel �running�
time �Akl���� A large number of processors may perform the same or dif�
ferent CREW PRAM instructions in one CREW PRAM clock period���
De�nition ��	� makes it possible to use the same concept of time for parallel
algorithms and serial algorithms executed as uni�processor CREW PRAM
programs� Note that the de�nition implies that time used by an algorithm
strongly depends on the size and possibly also the characteristics of the
actual problem instance�

On models which re ect parallel architectures based on message passing
it is common to di�erentiate between computational steps and routing steps
�see for instance �Akl��� Akl����� As described in Chapter �� access to the
global memory from the processors in a CREW PRAM is done by one single

��More precisely� a CREW PRAM implementation of an algorithm	
�
Each processor is assumed to have a rather simple and small instruction set	 �Nearly

all instructions use one time unit� some few �such as divide� use more	 The instruction set
time requirement is de�ned as parameters in the simulator�and therefore easy to change	
See Appendix A	�

��

instruction� and it is therefore less important to di�erentiate between local
computations and inter�processor communication�

De�nition ���	 �Processor requirement�

The processor requirement of an algorithm is the maximum number of
CREW PRAM processors that are active in the same clock period during
execution of the algorithm for a given problem instance� �

The processor requirement is central in the evaluation of parallel algorithms
since the number of processors used is a good representative of the �hardware
cost� which is needed to do the computations�

De�nition ���� �Space�

The space used by a CREW PRAM algorithm is the maximum number of
memory locations in the global memory allocated at the same time during
execution of the algorithm for solving a given problem instance� �

Note that we do not measure the space used in the local memories of the
CREW PRAM processors� This is because it is easy to attach cheap mem�
ories to the local processors� while it is di�cult and expensive to realise the
global memory which is accessible by all the processors� Little emphasis is
put on analysing the space requirements of the algorithms evaluated in this
thesis�

Cost� Optimal Algorithms� and E�ciency
It is often possible to obtain faster parallel algorithms by employing more
processors� Many of the fastest algorithms require a huge number of proces�
sors�often far beyond what can be realised with present technology� It is
therefore frequently the case that the fastest algorithm is not the �best�
algorithm�

One way to get the question of feasibility into the analysis is to measure
or estimate the cost of the parallel algorithm�

De�nition ���� �Cost� ��Akl
�� p� ��� �Qui
�� p� ���
The cost of a parallel algorithm is the product of the time �De�nition ��	��
and the processor requirement �De�nition ��	��� The cost is expressed in
number of CREW PRAM �unit�time� instructions� �

Note that this de�nition �assumes� that all the processors are active during
the whole computation� This is a simpli�cation which makes the cost an

��

upper bound of the total number of CREW PRAM instructions performed�
In contrast to Akl �Akl��� Akl��� which de�ne cost to represent worst case
behaviour� we de�ne cost to be dependent on the actual problem instance
�see De�nitions ��	� and ��	���

There are many ways to de�ne a parallel algorithm to be optimal for a
given problem� depending on what resources are considered most critical� It
is most common to say that a parallel algorithm is optimal �or cost optimal�
if its cost �for a given problem size� is the same as the cost of the best
known sequential algorithm �for the same problem size��which is known to
be O�n logn� �Akl��� Knu����

De�nition ���� �Optimal parallel sorting algorithm�

A parallel sorting algorithm is said to be optimal �with respect to cost� if
its cost is O�n logn�� �

The fastest parallel algorithms often use redundancy� and are therefore
not optimal with respect to cost� It is often desirable with a �gure which
tells how good the utilisation of the processors is� This is achieved by the
measure e	ciency�

De�nition ���
 �E�ciency�

The e�ciency of a parallel algorithm is the running time of the fastest known
sequential algorithm for solving a speci�c instance of a problem divided by
the cost of the parallel algorithm solving the same problem� �

E�ciency may also be de�ned as the speedup divided by the processor re�
quirement� see Section ������ For a discussion of the possibility of e�ciency
greater than one� see Section ��������

The term e	cient is used in connection with parallel algorithms in many
ways� Gibbons and Rytter �GR��� de�nes an e�cient parallel algorithm to
be an algorithm with polylogarithmic time consumption using a polynomial
number of processors� According to this� an algorithm with an extensive use
of processors may be termed as e�cient even though it may have a very low
e�ciency�

Richard Karp and others �Kar��� have advocated an alternative meaning
of e	cient parallel algorithm which does not allow parallel algorithms that
is �grossly wasteful� of processors to be termed as e�cient� They de�ne
informally a parallel algorithm to be e�cient if its cost is within a poly�
logarithmic factor of the cost �i�e� execution time� of the best sequential
algorithm for the problem�

��

����� Analysis of Speedup

������� What is Speedup

The most frequently used measure of the e�ect that can be obtained by
parallelisation is speedup� The speedup does express how much faster a
problem can be solved in parallel than on a single processor� Many di�erent
de�nitions of speedup can be found in the literature on parallel processing�
A precise de�nition of the most common use of speedup is given below�

De�nition ���� �Speedup�
Let T��%� be the execution time of the fastest known sequential algorithm
for a given problem % run on a single processor of a parallel machine M ���

Let TN �*� be the execution time of a parallel algorithm * for the problem
% run on the same parallel machine M using N processors� The speedup
achieved by the parallel algorithm * for the problem % run on N processors
is de�ned as

Speedup�%�*� N� $ T��%��TN�*� ���	�

�

Some variants of this de�nition should be mentioned� The de�nition given
by Akl in �Akl��� speci�es that both the sequential and parallel execution
times are worst case execution times�

Miklo)sko in �MK��� requires that the sequential algorithm must be the
fastest possible algorithm for a single processor� which often is unknown�
Comparing with the fastest known algorithm is more practical�

Quinn in �Qui��� emphasises the use of a single processor of the parallel
machine for execution of the sequential algorithm� The alternative is to
use the fastest known serial computer which may be regarded as giving a
more �correct� �gure of the speedup� However� few researchers �in parallel
processing� have access to the most powerful serial computers�

One popular alternative exists that often gives better speedup results
than De�nition ���
� In this alternative de�nition� the sequential running
time is measured or estimated as the time used by the parallel algorithm
run on a single processor� The main error introduced is that the redundancy
often existing in good parallel algorithms in this case also must be performed
in the uni�processor solution� giving a poorer sequential running time� The
main motivation for this strategy is that it does reduce the research to a

��It is implicitly assumed that all processors on this machine are of equal power	

��

study of only the parallel algorithm� One example of this alternative speedup
de�nition can be found in �Moh����

������� Superlinear Speedup�Is It Possible

The term linear speedup often appears in the literature� and there is a
discussion whether so�called superlinear speedup is possible or not� Quinn
�Qui��� de�nes linear speedup to be a speedup function� S�N�� which is +�N�
�of order exactly N�� where N is the number of processors� Thus �

�
N and

�N both express linear speedup according to this de�nition� Some other
authors only regard S�N� $ N as linear speedup�

Superlinear speedup is used to denote the case �if it exists� where a prob�
lem is solved more than N times faster using N processors�i�e� a speedup
greater than linear� Note that the chosen de�nition of linear speedup is
crucial for such a discussion� Parkinson in �Par��� gives a very simple exam�
ple with speedup S�N� $ �N � According to the chosen de�nition of linear
speedup� this example is� or is not� exhibiting superlinear speedup� �See also
�HM�����

����� Amdahl
s Law and Problem Scaling

This section starts with a description of the reasoning behind Amdahl�s
law� and it is shown that a recently announced alternative law is strongly
related to Amdahl�s law� This discussion leads to the concept of problem
scaling� The theory is then illustrated by a simple example� The last part
of the section shows why it is di�cult to use Amdahl�s law on practical
algorithms� We see that the law is only useful as a coarse model for giving
an upper bound on speedup� The discussion reveals various issues which
should be covered in a more detailed analysis method�

������� Background

In 	���� Gene Amdahl in �Amd��� gave a strong argument against the use
of parallel processing to increase computer performance� Today� this short
article seems rather pessimistic with respect to parallelism� and his claims
have become partly obsolete�

However� some of his predictions have shown to be right in nearly two
decades� and the reasoning is considered as the origin of a general speedup
formula called Amdahl�s law�

��

In his article� Amdahl �rst describes that practical computations have a
signi�cant sequential part��� The e�ect of increasing the number of proces�
sors to speed up the computation will soon be limited by this more and more
dominating sequential part� By using Grosch�s law�� he then argues that
more performance for the same cost is achieved by upgrading a sequential
processor than by using multiprocessing� Amdahl further describes that it
has always been di�cult to exploit additional hardware in improving a se�
quential computer� but that the problems have been overcome� He predicts
that this will continue to happen in the future�

In short� Amdahl considers a given computation having a �xed amount
of operations that must be performed sequentially and how the computation
may be sped up by using several processors� This is called Amdahl reasoning
in the following��� If the sequential fraction of the computation is called s�
by Amdahl�s law the maximum speedup that can be achieved by parallel
processing is bounded by 	�s� This observation has often been used as a
strong argument against the viability of massive parallelism���

The implicit assumption underlying Amdahl�s law has been criticised as
inappropriate in the past� An alternative �inverse Amdahl�s law� has been
suggested by a research team from Sandia National Laboratories� �Gus���
GMB��� San���� They have achieved very good speedup results for three
practical scienti�c applications� They use an inverted form of Amdahl�s
argument to develop a new speedup formula for explaining their results�
This new formula is also claimed to show that it in general is much easier to
achieve e�cient parallel performance than implied by Amdahl�s paradigm�

In my opinion� this new formula� just as Amdahl�s law� can be derived
from a very standard speedup calculation� As will be shown� the two for�
mulas are strongly related� Nevertheless� the new law looks much more
optimistic with respect to the viability of parallelism� The reason for this is

��Amdahl found that about �� � of the operations are forced to be sequential� �� � is
due to �data management housekeeping�� and �� � to �problem irregularities�	

��Grosch�s law states that the speed of computers is proportional to the square of their
cost	 It is discussed at page �� in
Qui���	

��Amdahl assumed that the sequential part �and therefore also the parallel part� of the
total computation both are una�ected by the number of processors used in the parallel
execution	 In retrospect� I think this implicit assumption is the crucial part of the article�
and the reason why the law has been named after Amdahl	 Several authors
Qui��� Gus���
refer to
Amd��� as the source of Amdahl�s law	 However� the arguments of Amdahl are
rather informal and are formulated as a belief �prophecy�	 No explicit law is de�ned	

��
GMB��� uses the term massive parallelism for general purpose MIMD systems with
���� or more autonomous �oating point processors	

�

an implicit assumption which is hidden by the derivation of the law� Fur�
thermore� standard speedup analysis gives the same more optimistic picture
as the new formula� provided that the same assumptions are made� In this
light I think it is appropriate to discuss in more detail Amdahl�s law and
the alternative speedup formula suggested by the team from Sandia�

������� Amdahl�s Law

De�nition ���� �Serial work� parallel work�
Consider a given algorithm ,� Let T��,� be the total time used for executing
, on a single processor� The part of the time T��,� used on computations
which must be performed sequentially�� is denoted sw � The remaining part
of the time T��,� is used on computations that may be done in parallel� and
is denoted pw� sw is called the serial part �of the uni�processor execution
time�� It is sometimes called the serial work� Correspondingly� pw is called
the parallel part� or parallel work� By de�nition� sw & pw $ T��,�� �

De�nition ���� �Serial fraction� parallel fraction�
Let s denote the serial fraction of the uni�processor execution time� and p

the parallel fraction of the uni�processor execution time� s and p are given
by�

s $
sw

sw & pw
� p $

pw
sw & pw

�����

�

Now consider executing the same algorithm , on a parallel machine with
N processors� each with the same capabilities as the single processor used
above� The time used is TN�,�� Assume that the parallel work pw can
be split evenly among the N processors without any extra overhead� The
execution time by this direct parallelisation of , is then TN�,� $ sw&pw�N �
The speedup achieved is given by

SAmdahl $
T��,�

TN�,�
$

sw & pw
sw & pw�N

$
	

s & p�N
$

	

s & �	� s��N
� �����

has often been used to plot the possible speedup as a function of N �for
�xed s�� or as a function of s �for �xed N�� see Figure ����

��Sequentially here means that this part of the computation must be performed step
by step �i	e	 sequentially�� and alone	 No other parts of the total computation may be
executed while the serial part is performed	

�	

�������
�������
������������������������

��������������������������
������������

���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� �������

���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� �������

��������������������������
������������

�������
�������
������������������������

�
�
�
�
�
�
�
� � � � � � � � � � � � � � � ��

�
�
�
�
�
�
�
� �

� �
� �

� � � � �
� � � �

	

Speedup S�s�

S

N

	

a�

S

	

	

Speedup S�N�

N

	�s

b�

s

Figure 	��� Two interpretations of SAmdahl �

������� �Inverted� Amdahl�s Law

Amdahl�s law can be viewed as a result of considering the execution time of
a given serial program run on a parallel machine� �GMB���� The team at
Sandia has derived a new speedup formula� here called SSandia� by inverting
this reasoning� They consider how much time is needed to execute a given
parallel program on a serial processor�

De�nition ����
Consider a given parallel algorithm *� Let TN�*� be the total time used
for executing * on a parallel machine using N processors� The part of the
time TN�*� used on computations which must be performed sequentially is
denoted s�w � The remaining part of the time TN�*� is used on computations
that may be done in parallel� and is denoted p�w� s�w is called the serial
part �of the N�processor execution time�� Correspondingly� p�w is called the
parallel part �of the N�processor execution time�� By de�nition� s�w & p�w $
TN�*�� �

De�nition ����
Let s� denote the serial fraction of the N �processor execution time� and p�

the parallel fraction of the N �processor execution time� s� and p� are given

��

�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������
�������
������������������������

��������������������������
������������

��������������������������
������������

�������
�������
�������������������������������

�������
������������������������

��������������������������
������������

��������������������������
������������

�������
�������
������������������������

s�

Speedup S�s��

slope $ 	� s�

	

S

	

a�

S

	

Speedup S�N�

N

b�

N

a�

	

Speedup S�N�

b�

Figure 	��� Two interpretations of SSandia�

by�

s� $
s�w

s�w & p�w
� p� $

p�w
s�w & p�w

�����

�

On a single processor� the time used to execute *� T��*� is s
�

w & p�wN �
This gives the following alternative speedup formula�

SSandia $
T��*�

TN �*�
$
s�w & p�wN

s�w & p�w
$ s�& p�N $ s�& �	� s��N $ N & �	�N�s�

�����
SSandia is shown as a function of N �for �xed s��� and as a function of s� �for
�xed N� in Figure ����

Discussion
At �rst sight� it seems like this inverted Amdahl�s reasoning gives a new and
much more optimistic law� SSandia expresses that speedup increases linearly
with N for a �xed s�� The upper bound for possible speedup expressed by
Amdahl�s law has been removed� We may be led to believe that Amdahl�s
law is without practical value when we consider uni"processor execution of
a parallel computation� or even worse � that the law is wrong�

��

It is important here to realise the e�ects of keeping s �xed instead of
keeping s� �xed when N is varied� This is in fact the only source for the
di�erence between the two formulas��� In Amdahl�s reasoning� where we
have a �xed uni�processor execution time� keeping s �xed while N increases
corresponds to computing a �xed amount of parallel work pw faster and
faster by using more processors� However� in the inverted reasoning which
assumes �xed N �processor execution time� keeping s� �xed while N increases
corresponds to performing a larger and larger parallel work�	 in �xed time
p�w at the parallel system� while the serial work remains unchanged�

These two situations are rather di�erent� Keeping s� �xed when N in�
creases corresponds to decreasing s and thus �lifting the upper bound��
 in
part a� of Figure ���� Similarly� keeping s �xed with varying N corresponds
to increasing s� and thus reducing the slope of the curve in part a� of Figure
����

������� Problem Scaling and Scaled Speedup

Discussion

Which speedup formula is correct! Both are� The team at Sandia has an�
nounced their formula because they think it better describes parallelisation
e�orts as it is done in practice� Gustafson in �Gus��� argues that Amdahl�s
law is most appropriate for academic research�

One does not take a �xed�sized problem and run it on various
numbers of processors except when doing academic research� in
practice� the problem size scales with the number of processors�

Agreeing with this statement or not� there certainly exist situations
where it is natural to scale the problem with the number of processors avail�
able� Often� the �xed quantity is not the problem size but rather the amount
of time a user is willing to wait for an answer��� In handling three real prob�
lems� wave mechanics� uid dynamics and beam strain analysis� the team

��Both for the direct parallelisation leading to SAmdahl and the direct serialisation giving
SSandia we have in general that sw
 s�

w and pw
 p�

wN 	 If we in Equation �	� substitute
sw and pw with s�

w and p�

wN respectively� we get the new speedup formula given by
Equation �	�	 Similarly SAmdahl can be directly derived from SSandia	

�	This work is the time needed to execute the parallel computation on a single processor�
i	e	 pw
 p�

wN 	 Thus� the parallel work increase linearly in N 	
��This is seen directly from the de�nition of s when sw is �xed and pw increases	
�
A good example is weather forecasting which illustrates both the �xed�sized model

�Amdahl reasoning� and the scaled�sized model �inverted Amdahl reasoning�	 Assume that
the weather prediction is guided by a simulation model of the atmosphere	 Two important

��

at Sandia found it natural to increase the size of the problem when using
more processors� This is what they call problem scaling�

In their work� they found that it was the parallel part of the program that
scales with the problem size� Therefore� as an approximation� the amount
of work pw� that can be done in parallel varies linearly with the number of
processors N � In other words� since p�w $ pw�N and pw varies linearly with
N � such problem scaling corresponds to keeping s� �xed� Therefore� under
these conditions Figure ��� gives a correct picture of the possible speedup�
The team at Sandia called this speedup measure for scaled speedup to re ect
that it assumes problem scaling�

�This section was written in December 	���� Similar thoughts have
later been expressed by several authors� see for instance the discussion in
�HWG��� and �ZG���� and the detailed treatment given in �SN�
���

������	 A Simple Example� Floyd�s Algorithm

The intention of the following example is to illustrate parts of the theory
described above� It also gives a background for a further discussion of Am�
dahl�s law in Section ��������

The famous Floyd " Warshall algorithm�� for the all pairs shortest path
problem is shown in Figure ���� The reader is referred to pages 	
�"	
� of
�CM��� for further details about the algorithm� The variable names in Figure
��� are the same as used in �CM���� Other descriptions of the algorithm can
be found in pages �
�"�		 of �AHU���� and pages ��"�
 of �Law����

The execution of this algorithm on a single processor requires O�n��
time� There are exactly n� instances of the assignment in line ���� �CM���
shows that the n� assignments given by line ��� for a �xed value of k in
the outermost for�loop are independent� Therefore� they can be executed
in any order� or simultaneously �i�e� in parallel�� Thus the algorithm may

factors for the quality of the forecasting are �� how new the inputs �weather samples� to
the simulation model are� and �� how detailed the simulation is	 If the computer used for
the simulation is upgraded by increasing the number of processors� there are principally
two main alternatives for quality improvement of the forecasting� Amdahl reasoning� Solve
the same problem faster� i	e	 use newer weather data in the simulation	 Inverted Amdahl

reasoning� Solve a bigger problem within the same execution time� i	e	 use a more detailed
simulation model	

��The names Floyd�s algorithm and the Warshall�Floyd algorithm do also appear in the
literature	 The algorithm was �rst presented by Robert W	 Floyd in
Flo���� and is based
on a theorem on Boolean matrices published by Stephen Warshall in
War���	

��

SEQUENTIAL procedure Floyd�
f Initially all d�i� j� $ W �i� j� g
begin

�	� for k �$ 	 to n do

��� for i �$ 	 to n do
��� for j �$ 	 to n do

��� d�i� j� �$ min�d�i� j�� d�i� k� & d�k� j��
end�

Figure 	��� Floyd�s algorithm�

be executed in O�n� time on a synchronous machine with O�n�� processors�
�See program P� in Section ����	� in �CM�����

We will now use the theory presented in this section on the parallelisation
described above for the algorithm Floyd� Assume that the �loop control�
for one iteration of a for loop takes one time unit� and that one execution
of line ��� requires four time units� The serial work sw of the computation
consists of line �	� taking n time units� The parallel work pw consists of
line ���� ��� and ��� taking n�� n�� �n� time units respectively� T��Floyd� $
sw&pw $ �n�&n�&n� Assuming that the parallel part of the computation
can be distributed evenly among N processors without extra overhead� we
have TN�Floyd� $ sw & pw�N $ n & ��n� & n���N �

Now consider a �xed problem size� for instance n $ 	

� The serial
fraction of the uni�processor execution time is s $ n���n� & n� & n� $
	��
	
	 	
�

�-� Hence� we observe that this algorithm has a very small
serial part even for relatively small problem sizes� and that limn�� s $
�
The speedup as a function of the number of processors used �N� is then
given by Amdahl�s law in Equation ����

SAmdahl $
	

s & �	� s��N
$

�
	
	
N

N & �
	

�����

This corresponds to the general speedup curve shown in part a� of Figure
���� For N � �
	
	 Equation ��� does express a �nearly linear speedup��
and for N $ n� $ 	

 we get S 	 �����N � Further we see that the
maximum speedup is limited by 	�s $ �
	
	 using an in�nitely large number
of processors for this �xed sized problem�

Let us now consider the speedup formula derived by the team at Sandia�

��

We have s�w $ n� and the time used to execute the parallel part of the
computation using N processors is p�w $ pw�N $ ��n� & n���N � Further�
the serial fraction of the parallel execution time is

s� $ n��n& ��n� & n���N � �����

When we used Amdahl�s law above we assumed a �xed problem size n �
corresponding to a �xed value for the serial fraction s of the uni�processor
execution time� In this case we assume that s� is kept �xed� which requires
that the problem size is scaled with the number of processors� The necessary
relation between n and N can be found by solving Equation ��� with respect
to n or N � for instance N $ ��n� & n�s���	 � s��� Now� assume that this
relation holds between N and n� and that s� $ �

�
� Using the Sandia speedup

formula in Equation ��� we get the speedup as a function of N

SSandia $ s� & �	� s��N $
	

�
��n� & n& 	� �����

For large n� where n� � n keeping s� �xed at �

�
corresponds to scaling the

problem size by setting n $
p
N�� 	
���

p
N � In this case Equation ���

gives S 	 �

�
N � which corresponds to part a� of Figure ����

This example shows that a rather moderate problem scaling gives an
�unlimited� speedup function� The upper bound for the speedup given by
Amdahl�s law occurs because only a limited number of processors can be
used e�ectively on a �xed amount of parallel work� This upper bound is
removed if we increase the amount of parallel work in correspondence with
the number of processors used� It should therefore be no surprise that it is
easier to obtain optimistic speedup results if we allow problem scaling�

������� Using Amdahl�s Law in Practice

There are many problems associated with the use of Amdahl�s law in prac�
tice� This section aims at illuminating some of the problems� not solving
them�

Choice of parallelisation
Consider an arbitrary given sequential program� and the question �What
speedup can be achieved by parallel processing this program!�� The �rst
issue encountered is the choice of parallelisation� In this context� an optimal
parallelisation may be de�ned as one which gives the �best� speedup curve�

��

But what is the �best� speedup curve! Is it most important to obtain a high
speedup for reasonably low values of N �ten�s or hundred�s of processors�� or
should one strive for a parallelisation giving the highest asymptotic �N �
�� speedup value!

Even if one could decide upon a de�nition of an optimal speedup curve�
we still have the generally di�cult problem of �nding the parallelisation
giving this speedup� and proving that it is optimal� However� there exists a
large number of non"optimal parallelisations for most problems� and most
of them are interesting in some manner� In the literature the most usual
situation is speedup analysis of a given parallelisation� which is the approach
adopted here�

Calculation of serial and parallel work
Assume a given parallelisation of a sequential program� In the general case�
identifying the amount of serial and parallel work will be a more complicated
task than exampli�ed by the analysis of Floyd�s algorithm in Section ��������
The calculation of sw and pw for the described parallelisation of Floyd was
straightforward partly due to the simplicity of the algorithm� and partly due
to some implicit and simplifying assumptions�

In Figure ��� we assumed that all the work in lines ��� could be done
in parallel� The amount of parallel work for line ��� was calculated by
accumulating the e�ect of the three enclosing for"loops� Now suppose that
each single execution of line ��� has to be performed serially� What is now
the amount of serial work described by line ���! If we use the �accumulated
amount of work� for line ��� which is �n�� we get a serial work sw $ �n�&n�
If this is used together with the corresponding pw $ n� & n�� Amdahl�s
law gives a constant speedup of approximately �

�
for large values of n and

N $ n�� However� using n� processors makes Floyd into a simple loop with
n iterations� each of constant time� Thus N $ n� processors gives a speedup
of order O�n��� Therefore� the ad hoc method for calculating sw and pw used
in Section ������� can not be used in the general case�

These problems are caused by a mix of serial and parallel parts in the
nested program structure� Branching and procedures will certainly introduce
further di�culties in the calculation of sw and pw�

Another question which arise is to what extent it is correct to calculate
one global measure of the parallel work pw as the sum of the parallel work
in various parts of the program�

��

How many processors can e�ectively be exploited

Now assume that the parallel work pw has been calculated and that �over�
lapping of all parallel work� is possible� According to the theory� in this
case N $ pw number of processors may be used to execute the parallel work
in one time unit� This is in most practical cases very unrealistic� Distribut�
ing all the parallel work evenly among the N processors may be impossible�
A more detailed analysis which takes into account the varying number of
processors which may be used in the execution of the various parts of the
parallel work is needed�

��

�

Chapter �

The CREW PRAM Model

This chapter is devoted to the CREW PRAM model and how it may be pro�
grammed� Section ��	 starts by describing the model as it was proposed for
use in theoretical computer science by Fortune and Wyllie �FW��� Wyl����
This description is then extended by some few details and assumptions that
are necessary to make the model to a vehicle for implementation and exe�
cution of algorithms� The following two sections describe how the CREW
PRAM model may be programmed� and a high level notation for express�
ing CREW PRAM programs is outlined� Section ��� ends the chapter by
describing a top down approach that has shown to be useful for developing
parallel programs on the CREW PRAM simulator system� The approach is
described by an example�

��� The Computational Model

�Large parallel computers are also di�cult to program� The
situation becomes intolerable if the programmer must explicitly
manage communication between processors��

A� G� Ranade� S� N� Bhatt and S� L� Johnsson in The Fluent
Abstract Machine �RBJ����

�The reason is that most all parallel algorithms are described in
terms of the PRAM abstraction� which is a practice that is not
likely to change in the near future��

Tom Leighton in What is the Right Model for Designing Parallel
Algorithms� �Lei���

�	

��������������������������
�������
�����

�������
�������
�������������������������������

�������
�������������������������������

�������
������������������������

���������� ���������� ���������� ���������� ����������
��������������������������
�������
�������������������������������

�������
�������������������������������

�������
�����

���������� ���������� ���������� ���������� ����������

���������� ���������� ���������� �����������������
����������
���

���
�������
���
��� ���������� ���������� ���������� ��������������������

����������
��

���
�������
���
��� ���������� ���������� ���������� �������������

����������
���

���
�������
���
���

���������� ���������� ���������� �������������
����������
���

���
�������
���
������
�

���

���

��

Global Memory

� � �� � �
PiP�P�

L L L

L $ local memory

Pi $ processor no i

Program

Figure ���� The CREW PRAM model�

�Based on quite a few years of experience in designing paral�
lel algorithms� the author believes that di�culties in designing
parallel algorithms� will make any parallel computer that does
not support the PRAM model of parallel computation less than
competitive �as a general purpose computer� with the strongest
non parallel computer that will become available at the same
time��

Uzi Vishkin in PRAM Algorithms
 Teach and Preach �Vis����

In this section we �rst describe the original CREW PRAM model as it
was proposed by Fortune and Wyllie �FW��� Wyl���� This is followed by
a documentation of some additional properties that have been necessary
to de�ne for making the CREW PRAM model into a vehicle for executing
and measuring parallel algorithms� �The main characteristics of the CREW
PRAM have been collected in small �de�nitions� with the heading �CREW
PRAM property�� This have been done for easy reference��

����� The Main Properties of The Original P�RAM

A CREW PRAM is a very simple and general model of a parallel computer
as outlined in Figure ��	� It consists of an unbounded number of processors

��

Instruction Function

LOAD operand Transfer operand to�from the

STORE operand accumulator from�to memory�

ADD operand Add�proper subtract the value of

SUB operand the operand to�from the accumulator�

JUMP label Unconditional branch to label�

JZERO label Branch to label if accumulator is zero�

READ operand See text�

FORK label See text�

HALT See text�

Figure ��	� CREW PRAM instruction set� �From �Wyl���
�

which are connected to a global memory of unbounded size� The processors
are controlled by a single� �nite program�

Processors
A CREW PRAM has an unbounded number of equal processors� Each has
an unbounded local memory� an accumulator� program counter� and a ag
indicating whether the processor is running or not�

Instruction set
In the original description of the P�RAM model the instruction set for the
processors was informally outlined as shown in Figure ���� This very small
and simple instruction set was su�ciently detailed for Fortune and Wyllie�s
use of the P�RAM as a theoretical model� Each operand may be a literal�
an address� or an indirect address� Each processor may access either global
memory or its local memory� but not the local memory of any other pro�
cessor� Indirect addressing may be through one memory to access another�
There are three instructions that need further explanation�

READ Reads the contents of the input register speci�ed by the operand� and
places that value in the accumulator of the processor executing the
instruction�

��

FORK If this instruction is executed by processor Pi� Pi selects an inactive
processor Pj � clears Pj �s local memory� copies Pi�s accumulator into
Pj �s accumulator� and starts Pj running at the label which is given as
part of the instruction�

HALT This instruction causes a processor to stop running�

Global memory
A CREW PRAM has an unbounded global memory shared by all processors�
Each memory location may hold an arbitrary large non�negative integer�

CREW PRAM property � �Concurrent read exclusive write�
Simultaneous reads of a location in global memory are allowed� but if two
�or more� processors try to write into the same global memory location
simultaneously� the CREW PRAM immediately halts� ��Wyl��� p� 		� �
CREW PRAM property � �Reads before writes�
Several processors may read a location while one processor writes into it� all
reads are completed before the value of the location is changed� ��Wyl��� p�
		� �
CREW PRAM property � �Simultaneous reads and writes�
An unbounded number of processors may write into global memory as long
as they write to di�erent locations� An unbounded number of processors
may read any location at any time� �Implicit in �Wyl���� �

Local memory
Each processor has an unbounded local memory� Each memory location
may hold an arbitrary large non�negative integer�

Input and output
The input and output features of the original P�RAM re ects its intended
use in parallel complexity theory� The input to a CREW PRAM is placed
in the input registers� one bit per register�� When used as an acceptor� the
CREW PRAM delivers its output �	 or
� in the accumulator of processor
P�� When used as a transducer� the output is delivered in a designated area
in the global memory�

�In some contexts� Wyllie permitted the input registers to hold integers as large as the
size of the input object	

��

One �nite program

All processors execute the same program� The program is de�ned as a �nite
sequence of labelled instructions from the instruction set shown in Figure
���� Fortune and Wyllie allowed several occurrences of the same label�
resulting in nondeterministic programs�

Operation

The CREW PRAM starts with all memory cleared� the input placed in the
input registers� and with the �rst processor� P�� storing the length of the
input in its accumulator� The execution is started by letting P� execute the
�rst instruction of the program�

CREW PRAM property � �Synchronous operation�
At each step in the computation� each running processor executes the in�
struction given by its program counter in one unit of time� then advances
its program counter by one unless the instruction causes a jump� ��Wyl���
p� 	
� �

CREW PRAM property 	 �Processor requirement�
The number of processors required to accept or transform an input �i�e� to
do a computation� is the maximum number of processors that were active
�started by a FORK and not yet stopped by a HALT instruction� at any instant
of time during the P�RAM�s computation� ��Wyl��� p� 		� �

����� From Model to Machine�Additional Properties

������� Di�culties Encountered When �Implementing�
Algorithms on a Computational Model

The original work by Fortune and Wyllie does not give descriptions of the P�
RAMmodel which are detailed enough for our purpose�which is to simulate
real parallel algorithms as if they were executed on a �materialised� P�RAM�
The simplicity of computational models is achieved by adopting technically
unrealistic assumptions� and by hiding a lot of �uninteresting� details�

Hidden details are typically how various aspects of the machine �model�
should be realised� If it is commonly accepted that a certain function f

may be realised within certain limits that do not a�ect the kind of analysis
that is performed with the model�the details of how f is realised may be
omitted� For instance� if the model is used for deriving order�expressions for

��

the running time of programs� the detailed realisation of the function f is
uninteresting� as long as it is known that it may be done in constant time�
It is therefore no surprise that it is di�cult to �nd detailed descriptions for
how the CREW PRAM operates�

Nevertheless� some implicit help may be found in Wyllie�s thesis �Wyl����
In addition to its contributions to complexity theory� it describes well how
the P�RAM may be programmed to solve various example problems� Al�
though these descriptions are at a relatively high level� they indicate quite
well how the P�RAM was intended to be used for executing parallel algo�
rithms�

Implementing parallel algorithms as complete and measurable programs�
made it necessary to make a lot of detailed implementation decisions� These
decisions required modi�cations and extensions of the originalCREWPRAM
properties� de�ned in Section ��	�	� They are intended to be a �common
sense� extension of Wyllie�s CREW PRAM philosophy� and are presented
in the following�

������� Properties of The Simulated CREW PRAM

In the current version of the simulator the time consumption must �with a
few exceptions� be speci�ed by the programmer for the various parts of the
program� see Section ���� In a more complete system� this should be done
automatically by a compiler�

Extended instruction set

CREW PRAM property � �Extended instruction set�
The original instruction set shown in Figure ��� is extended to a more com�
plete� but still simple instruction set� Nearly all instructions use one time
unit� some few �such as divide� use more� The time consumption of each
instruction is de�ned as parameters in the simulator�and it is therefore
easy to change� �

Input and output
Our use of the CREW PRAM model makes it natural to read input from
the global memory and to deliver output to global memory�

��

Operation

Nondeterministic programs are not allowed in the simulator�

CREW PRAM property � �Cost of Processor Allocation�
Allocation of n processors on a CREW PRAM initiated by one �other�
processor can be done by these n & 	 processors in at most C� & C�blognc
time units� �

In the current version of the simulator we have C� $ �� and C� $ �� time
units for n
 �� These values have been obtained by implementing an asyn�
chronous CREW PRAM algorithm for processor allocation� The algorithm
uses the FORK instruction in a binary tree structured �chain�reaction��

Processor set and number
When programming parallel algorithms it is often very convenient to have
direct access to the processor number of each processor� This feature was
not included in the original description of the P�RAM� In a P�RAM used
for developing and evaluating parallel algorithms it seems natural to include
such a feature by letting each processor have a local variable which holds
the processor number�

There are also cases where the processors need to know the address
in global memory of its processor set data structure�� �The processor set
concept is introduced in Section ������ See also Section A�������� It is natural
to assign this information to each processor when it is allocated�

CREW PRAM property � �Processor set and processor number�
After allocation� each processor knows the processor set it currently is mem�
ber of� and its logical number in this set �numbered 	��� � � � �� The processor
number is stored in a local variable called p� �

The use of the simulator and related tools is documented in Appendix A���

��� CREW PRAM Programming

This section describes how the CREW PRAM model may be programmed
in a high level synchronous MIMD programming style� The style follows the
original thoughts on PRAM programming described by James Wyllie in his

�One such case is the resynchronisation algorithm outlined in Section �	�	�	�	

��

thesis �Wyl���� We present a notation called Parallel Pseudo Pascal �PPP�
for expressing CREW PRAM programs� The section starts with a descrip�
tion of some other opinions on the PRAMmodel and its programming�they
are included to indicated that the �state�of�the�art� is far from consistent
and well�de�ned�

����� Common Misconceptions about PRAM Programming

The PRAM model is SIMD

A common misconception about the �CREW� PRAM model is that it is
a SIMD model according to Flynn�s taxonomy �Fly��� �see page �	�� In a
recent book on parallel algorithms �Akl��� the author writes at page �� ����
shared�memory SIMD computers� This class is also known in the literature
as the Parallel Random Access Machine �PRAM� model�� It may be that
a large part of the algorithms presented for the �CREW� PRAM model is
SIMD style� Michael Quinn �Qui���� and Gibbons and Rytter �GR��� do
also classify the PRAM model as SIMD�

Using the PRAM as a SIMD model is a choice made by the programmers�
not a limitation enforced by the model� The CREW PRAM model implies a
single program� which does not necessarily imply a single instruction stream�
The crucial point here is the local program counters as described in Wyllie�s
Ph�D� thesis�

�Wyl��� page ��
 �� � �each processor of a P�RAM has its own
program counter and may thus execute a portion of the program
di�erent from that being executed by other processors� In the
notation of �Fly���� the P�RAM is therefore a �MIMD� � � ��

Stephen Cook express the same view�

�Coo
�� page ��

 �The P�RAM of Fortune and Wyllie � � �di�erent
parallel processors can be executing di�erent parts of their pro�
gram at once� so it is �multiple instruction stream��

The PRAM model is asynchronous

In �Sab��� pp� 	��"	�� the author compares his own model for parallel pro�
gramming with the PRAM model� He starts by stating that the processors
in the PRAM model operates asynchronously�which certainly is not the
case for the original PRAM model� Further he writes �about the PRAM
model� that it ���� is confusing and hard to program��� �Probably� it is

��

asynchronous shared memory multiprocessors the author considers as the
�PRAM model���

The author states that the �asynchronous� MIMD power is overwhelm�
ing� and that PRAM programmers deal with this power by writing SIMD
style programs for it� he claims that �all parallel algorithms in the proceed�
ings of the ACM Symposia on Theory of Computing �STOC� 	���� �� and
���are of data parallel form� �i�e� SIMD�� This is not true� Algorithms
in the proceedings of the STOC �and other similar� Symposia are typically
described in a high�level mathematical notation�where the choice between
SIMD or MIMD programming style to a large extent is left open to the pro�
grammer� Parts of an algorithm are most naturally coded in SIMD style�
while other parts most naturally are expressed in MIMD style�

����� Notation� Parallel Pseudo Pascal�PPP

Wyllie outlined a high level pseudo code notation� called parallel pidgin algol�
for expressing algorithms on a CREW PRAM� The notation introduced here�
called Parallel Pseudo Pascal �PPP� is intended to be a modernisation of
Wyllie�s notation� PPP is an attempt to combine the pseudo language nota�
tion �called �super pascal�� used for sequential algorithms by Aho� Hopcroft
and Ullmann in �AHU���� with the ability to express parallelism and pro�
cessor allocation as it is done in parallel pidgin algol�

Informal speci�cation of PPP
The PPP notation is outlined in Table ��	� Since PPP is pseudo code it
should only be used as a framework for expressing algorithms� The PPP
programmer should feel free to extend the notation and use own construc�
tions� �See the last statement in the list below��

A Statement may be any of the alternatives shown in the table� or a list
of statements separated by semicolons and enclosed within begin � � �end�
Variables will normally not be declared� their de�nition will be implicit from
the context or explicitly described�

It is crucial to separate local variables from global variables� This is
done in PPP by underlining global variables� Local variables and procedure
names are written in italics�

Statement 	 to � should be self�explaining� and statement � should be
familiar to all which have experienced pseudo code� Here� only statement �
and � need some further explanation�

��

Table ���� Informal outline of the Parallel Pseudo Pascal �PPP
 notation�

	� �a� LocalVariableName �$ Expression

�b� GlobalVariableName �$ Expression

�� if Condition then Statement	 f else Statement� g
�� while Condition do Statement

�� for Variable �$ InitialValue to FinalValue do Statement

�� procedure ProcedureName � FormalParameterList � Statement

�� ProcedureName � ActualParameterList �

�� assign ProcessorSpeci�cation�f� to ProcSetName g
�� for each processor ProcessorSpeci�cation�f where Condition g do

Statement

�� any other well de�ned statement

�

Processor allocation

The assign statement is used to allocate processors� An example might be
�assign a processor to each element in the array A� to Aprocs�

The to ProcSetName clause may be omitted in simple examples when only

one set of processors is used� The assign statement is realised by the pro�
cessor allocation procedure �Section ��	����� which assigns local processor
numbers to the processors� Thus processor no i may refer to the i�th ele�
ment in the global array A by A�p� since p $ i� �Remember that p is the local
variable which always stores the processor number�� The actual number of
processors allocated by the statement may be run time dependent�

Processor activation
Statement type � is the way to specify that code should be executed in par�
allel� The processor speci�cation may simply be the keyword in followed by
the name of a processor set�in that case all the processors in that processor
set will execute the statement in parallel�

The where clause is used to specify a condition which must be true for
a processor in the processor set for the statement to be executed by that
processor� A �rather low�level� PPP example �which might have been taken
from a PPP program of an odd�even transposition sort algorithm� is shown
in Figure ����

for each processor in Aprocs where p is odd and p � n do begin
temp �$ A�p& 	��
if temp � A�p� then begin

A�p& 	� �$ A�p�� A�p� �$ temp�
end�

end�

Figure ���� Example program demonstrating the where clause� A is a global array�
temp and n are local variables� and p is �a local variable
 holding the processor
number�

�In this case� a ProcessorSpeci�cation may be a text which implicitly describes a num�
ber of processors to be allocated� or simply �IntegerExpression processors�	

�Here� ProcessorSpeci�cation may be prose �describing text�� or more formally �in
ProcSetName�	

�	

����� The Importance of Synchronous Operation

Synchronous operation simpli�es

Parallel programs are in general di�cult to understand� However� requiring
that the processors operate synchronously may often make it much easier to
understand parallel algorithms� Consider the simple program in Figure ����
This example is taken from �Wyl����

�	� for each processor in ProcSet do
��� if cond�p� then
��� x �$ f�y��

else
��� y �$ g�x��

Figure ���� Example program with unpredictable behaviour�

The processor activation statement �line �	�� describes that the if state�
ment shall be executed in parallel by all processors in the set called ProcSet�
Assume that ProcSet contains two processors� Further assume that one pro�
cessor evaluates the condition �cond�p�� to true while the other evaluates
it to false� �This may happen because the condition may refer to variables
local in each processor� or to the processor number�� x and y are global
variables�

Now consider the else clause� Depending on the relative times required
to compute the functions f and g� either the old or new value of x will be used
in the else clause� Thus it is di�cult to argue about the precise behaviour
of this program� As Wyllie points out �Wyl���� the code generated from the
program in Figure ��� is a legitimate program for the P�RAM model�but
this kind of programming is not recommended�

A program with more self�evident behaviour can easily be obtained from
Figure ���� as shown in Figure ���� �It is here assumed that �cond�p�� is
una�ected by lines ��� and �����

Line ��� describes an explicit synchronisation which is necessary to guar�
antee that the old values of x and y are used in the computation of f and
g� Such synchronisations are in general valuable tools to restrict the space
of possible behaviours and make it easier to understand parallel programs�
This observation probably led Wyllie to de�ne what is the most important
property of �high�level� programming of the P�RAM�

��

�	� for each processor in ProcSet do begin

��� if cond�p� then
��� tx �$ f�y��

else
��� ty �$ g�x��
��� wait for both processors to reach here�
��� if cond�p� then
��� x �$ tx�

else
��� y �$ ty�

end�

Figure ���� Example program transformed to predictable behaviour by using ex�
plicit resynchronisation �line ��

� �Line ��
 may be omitted from a PPP pro�
gram�see the text�

CREW PRAM property
 �Synchronous statements�
If each processor in a set P begins to execute a PPP statement S at the same
time� all processors in P will complete their executions of S simultaneously�
�Adapted from �Wyl��� p� ��� �

This surely is a severe restriction which puts a lot of burden on the pro�
grammer� However� the property is crucial in making the PPP programs
understandable and easy to analyse� From now on� we will assume the exis�
tence of a PPP compiler that� whenever possible� automatically ensures that
the PPP statements are executed as synchronous statements� Therefore we
may omit statement ��� in Figure ��� since the PPP compiler on reading the
if statement in line ��"�� will produce code so that all processors in ProcSet

simultaneously will start executing the if statement in line ��"���

Given the property synchronous statements� the time needed to execute
a general �probably compound� PPP statement S is the maximum over all
processors executing S plus the time needed to resynchronise the processors
before they leave the statement�

The need for resynchronisation after each high�level statement may seem
to give a lot of overhead associated with the high�level programming� As
will be shown below� this is not the case� A very simple resynchronisation
code may be added automatically by the compiler in most cases�

��

����� Compile Time Padding

Assuring the synchronous statements property may in most cases be done by
so called compile time padding� When the PPP compiler knows the execution
time of the then and else clauses�inserting an appropriate amount of
waiting ��No op�s�� in the shortest of these will make the whole if statement
to a synchronous statement�

Automatic compile time padding is in fact a necessity for making it
possible to express algorithms in a synchronous high level language� The
exact execution times of the various constructs should be hidden in a high
level language� Neither is it desirable� nor should it be possible that the
property of �synchronous statements� is preserved by the programmer�

Compile time padding should be used wherever it is possible by the
compiler� It is simple� and it does not increase the execution time of the
produced code� �It is only the uncritical execution paths which are padded
till they have the same length as the critical �longest� execution path�� The
alternative� which is to insert code for explicit resynchronisation� may be
simpler for the compiler�but should be avoided since it introduces a signif�
icant increase in the running time� see Section ������

������� �Helping the Compiler�

There are cases where compile time padding cannot be used� but where the
use of general processor resynchronisation can be avoided by clever program�
ming� Consider the following example� taken from �Wyl���� The program
in Figure ��� is a simple�minded program to set an array A of non�negative
integers to all zeros�

In this example it is not possible for the compiler to know the execution
time of the while loop� It must therefore insert code for general resynchro�
nisation just after the while loop� This may lead to a substantial increase
in the execution time�

However� if the programmer knows the value of the largest element in
the array A� M $ maxi�A�i��� this fact may be used to help the compiler as
shown in the program in Figure ���� Here the compiler knows that we will
get M iterations of the for loop for all the processors� Further it can easily
make the if statement synchronous by inserting an else wait t� where t is

�A less arti�cial example is given on page ��	

��

begin

assign a processor to each element in A�
for each processor do

while A�p� �
 do
A�p� �$ A�p�� 	�

end�

Figure ���� Example program which requires general resynchronisation to be in�
serted by a PPP compiler�

begin
assign a processor to each element in A�
for each processor do

for i �$ 	 to M do

if A�p� �
 then
A�p� �$ A�p�� 	�

end�

Figure ���� Example program where the need for general resynchronisation has
been removed�

the time used to execute the then clause� All processors will simultaneously
exit from the for loop�

������� Synchronous MIMD Programming�Example

Assume that we are given the task of making a synchronous MIMD pro�
gram which computes the total area of a complex surface consisting of var�
ious objects� We will consider three cases that illustrate various aspects of
synchronous MIMD programming�

Case��

Assume that the surface consists of only three kinds of objects� Rectangle�
Triangle or Trapezium� The program is sketched in PPP in Figure ����

Statement ��� demonstrates a multiway branch statement which utilise
the multiple instruction stream property to give faster execution and better

�See for instance
HS��� or
KR���	

��

� � �
�	� f Each processor holds one object g
��� if type of object is Rectangle then

Compute area of Rectangle object
else if type of object is Triangle then

Compute area of Triangle object
else

Compute area of Trapezium object�
f All processors should be here at the same time unit g

��� Compute total sum� f O�logn� standard parallel pre�x�g
� � �

Figure ���� Synchronous MIMD program in PPP� case���

���� Rectangle ���� wait ������

� �

before �� 	��� Triangle ���no wait �����
 �� after

� �

���� Trapezium ������� wait ���

Figure ���� Compile time padding�

processor utilisation than on a SIMD machine� If the time used to compute
the area of each kind of object is roughly equal� MIMD execution will be
roughly three time faster than SIMD execution for this case with three
di�erent objects�

As expressed by the comment just before statement ���� the processors
should leave the multiway branch statement simultaneously� In this case this
is easily achieved by compile time padding since the time used to compute
the area of each kind of object may be determined by the compiler� If we
assume that the most lengthy operation is to calculate the area of Triangle
the e�ect of compile time padding can be illustrated as in Figure ����

Case��

Now� assume that each object is a polygon with from � to 	
 edges� As
shown in Figure ��	
 the area of each object �polygon� is computed by a

��

� � �
f Each processor holds one polygon g

�	� Area �$ ComputeArea�this polygon��
f All processors should be here at the same time unit g

��� Compute total sum� f O�logn� standard parallel pre�x g
� � �

Figure ����� Synchronous MIMD program in PPP� case�	�

� � �
f Each processor holds one polygon g

�	� Area �$ ComputeArea�this object��
��� SYNC� f O�logn� time g

f All processors should be here at the same time unitg
��� Compute total sum� f O�logn� standard parallel pre�x g

� � �

Figure ����� Synchronous MIMD program in PPP� case���

function called ComputeArea� Knowing the maximum number of edges in
a polygon� the compiler may calculate the maximum time used to execute
the procedure� and produce code which will make all calls to the procedure
use this maximum time��

In many cases the compiler may calculate the maximum time needed by
a procedure and insert code to make the time used on the procedure to a
�xed� known quantity� This is important to provide high�level synchronous
programming �CREW PRAM Property ���

Case��

We now consider the case that each object is an arbitrary complex polygon
�i�e� with an unknown number of edges�� and that the size of the most com�

�Technically� this enforcing of the maximum time consumption may be done by insert�
ing dummy operations and!or iterations� or by measuring the time used by reading the
global clock	

��

plex polygon is not known by the processors�	 In this situation it is impossi�
ble for the compiler to know the maximum execution time of ComputeArea�
The best it can do is to insert an explicit synchronisation �statement ����
just after the return from the procedure� SYNC is a synchronisation mech�
anism provided by the CREW PRAM simulator� and it is described in the
next subsection� It is able to synchronise n processors in O�logn� time� In
this case the use of SYNC does not in uence on the time complexity of the
computation� since the succeeding statement ��� also requires O�logn� time�

����� General Explicit Resynchronisation

There are cases where general resynchronisation cannot be avoided� In gen�
eral� the number of processors leaving a statement must match the number
of processors which entered it� The number of entering processors is known
at run time� so the task reduces to count the number of processors which
have �nished the statement and are ready to leave it�

One of the main purposes of our CREW PRAM model simulator is to
be a vehicle for polylogarithmic algorithms� Many such algorithms use at
least O�n� processors where n is the problem size� The use of a simple syn�
chronisation scheme with a linear �O�n�� time requirement would make it
impossible to implement parallel algorithms using explicit processor resyn�
chronisation with sublinear time requirement�

However� as Wyllie claims� synchronisation of n processors may be done
in O�logn� time� He does not describe the implementation details� but
they are rather straightforward� One implementation is outlined in Section
������	�

Since processor synchronisation may be necessary in CREW PRAM pro�
grams� the time requirement modelling should use a realistic measure for the
time used by resynchronisations� One will soon realise that the time needed
by �most� resynchronisation algorithms depends on when the various pro�
cessors starts to execute the algorithm� Thus� the time requirement cannot
be computed as an exact function of solely the number of synchronising
processors� One way to exactly model the time usage is to implement the
synchronisation�

	Knowing the size of the most complex polygon would make it possible to use the
techniques described for case��	

��

����	�� Synchronisation Algorithm

We will now outline the implementation of processor resynchronisation which
is used in the CREW PRAM simulator� It should be noted that this is just
one of many possible solutions� It may be omitted by readers who are not
interested in what happens below the high�level language �PPP��

Assume that n processors �nish a statement at unpredictable� di�erent
times� When all have �nished� they should� as fast as possible� proceed
simultaneously �synchronously� to the next statement� Before this happens�
they must wait and synchronise�

As is often the case for O�logn� algorithms� the necessary computation
may be done by organising the processors in a binary tree structure� Assume
that the processors are numbered 	� �� � � �n� The waiting time may be used
to let each processor count the number of processors in the subtree �below
and including itself� which have �nished the statement� This is done in
parallel by all ��nished� processors� The number of �nished processors will
�bubble� up to the root of the whole tree� which holds the total number of
�nished processors�

When all have started to execute the resynchronisation algorithm� the
time used before this is known by the root processor is given by the time
used to propagate the information in parallel from the leaves to the root of
the tree� This is surely O�logn�� A similar O�logn� time algorithm is the
synchronisation barrier reported in �Lub����

Figure ��	� illustrates the performance of the resynchronisation algo�
rithm for processor sets of various sizes �number of processors�� For each
size ten cases have been measured� In each case� every processor uses a
random number of time units� in the range �	� 	

�� before it calls the syn�
chronisation procedure� The synchronisation time is measured as the time
from the last processor calls the synchronisation procedure to all the pro�
cessors have �nished the synchronisation�

��

��� Parallelism Should Make Programming

Easier�

This section describes some of the thoughts presented at the Workshop
On The Understanding of Parallel Computation under the title Parallelism
Should Make Programming Easier� �Nat�
c��

The motivation for the section is two�fold� First of all� it gives a brief ex�
planation of my opinion that parallelism may be used to make programming
easier� and it shortly mentions some related work� Secondly� two examples
of �easy parallel programs� are provided� These examples illustrate the use
of the PPP notation introduced in the previous section�

����� Introduction

Parallelism should not add to the �software crisis�

The so�called �software crisis��� is still a major problem for computer indus�
try and science� Contemporary parallel computers are in general regarded to
be even more di�cult to program than sequential computers� Nevertheless�
the need for high performance has made it worthwhile to develop complex
program systems for special applications on parallel computers�

The use of parallelism should not add to the �software crisis�� For general
purpose parallel computing systems to become widespread� I think it is
necessary do develop programming methods that strive for making �parallel�
programming easier�

How can parallelism make programming easier

There are at least two main reasons that the use of parallelism in future
computers may make programming easier�

The main motivation for using parallel processing is to provide more
computing power to the user� This power may in general make it possible for
the programmer to use simpler and �dumber� algorithms�to some extent�
It is well know that coding to achieve maximum e�ciency is di�cult and
�programmer��time consuming� Consequently� parallelism may increase the
number of cases where we can a�ord to use simple �brute force� techniques�
Also� increased computing power �or a large number of processors� may

�The use of the PPP notation is the reason for placing this relatively �high�level�
section between two technical sections ��	� and �	��	

�
Booch in
Boo��� page ��" �The essence of the software crisis is simply that it is much
more di�cult to build software systems than our intuition tells us it should be�	

�

�

�

Number of processors

Synchronization time

�� ��� ��� 	�� 	��
��

���

���

	��

	��

���

�

�
��

���
����
���
����
��
�

��
�
���

��

���
���
���
�������

�

�
�

�

�

���
��

��
�
�
�
�
�����

�

��
��
���
�
�
�
�

�

�

�

�

�

�

��
�
�

�
�

���
�
��
����
�
�
��
��

�

���

�

�
�

�
�

�

�

�

����
�
�

�

�

�
�

�

��
��
��

�
�
�
�

�

�
�
�

�

����
���

�

��
�
�
��
�

�

�

�

�
����

�
�

�

���
�
��
�

�
�
�

�

��
�
��
�
�

�
�

��
�
�
����
��
�
�

�
�
�
�

��
� �
�

��

�
��

�
��� �

�

�
�

��

��
�
�

�
�
����
�
��
�
��

�

�

��

�
���
��� �

�

�
�
��
�

��

�
�

�

�
��

�

��
��

�

� ����
�
���
�

�
�

�
�
�

�

�

�

�

�

�
�
�

�

�
�
�

�

�

�

�
�
�� ��

��

��
�

�
�

��
�
�

�
��

�
����
� ���

�
�

�

�

�
�

��
�
���

�

�

�
�

��
� ���

��

�
�

�
�
�
� �

�

�
�
��
�
�
�

�

�

�

�
�

�

���
�
��
� �

�
�

�
��

����

� �

�

�

��

��
�

�
��

Figure ���	� Performance of the resynchronisation algorithm provided by the
CREW PRAM simulator� The symbol � is used to mark the average time used
of ten random cases� A � is used to mark each random case� �See the text�

�	

make it more common to use �redundancy� in problem solving strategies�
which again may imply conceptually simpler solutions� �See the example in
Section ������	 below��

Many of our programs try to re ect various parts of� or processes in�
the real world� There is no doubt that the real world is highly parallel�
Therefore� the possibility of using parallelism will in general make it easier
to re�ect real world phenomena and natural solution strategies� �See the
example in Section ������� below��

Related work
Most computer scientists would of course prefer easy programming� Conse�
quently� there have been made several proposals of programming languages
that aim at providing this� In this paragraph� I will mention some of these
to provide a few pointers to further reading� I will not judge the relative
merits of the various approaches�

The August 	��� issue of IEEE computer was titled �Domesticating
Parallelism� and contains articles describing several of these new languages�
Linda �ACG���� Concurrent Prolog �Sha���� ParAl �a parallel functional
language� �Hud��� and others�

Linda consists of a small set of primitives or operations that is used
by the programmer to construct explicitly parallel programs� It supports a
style of programming that to a large extent makes it unnecessary to think
about the coupling between the processors� �See also �CG�����

Concurrent Prolog is just one of several logic programming languages
designed for parallel programming and execution� Numerous parallel vari�
ants of LISP have also been developed� one of the �rst was Multilisp �Gel���
Hal����

Strand is a general purpose language for concurrent programming �FT�
�
and is currently available on various parallel and uni�processor computers�

UNITY by Chandy and Misra �CM��� is a new programming paradigm
that clearly separates the program design� which should be machine inde�
pendent� from the mapping to various architectures� serial or parallel� �See
also �BCK�
���

SISAL is a so�called single assignment language derived from the data ow
language VAL� Unlike data ow languages� SISAL may be executed on se�
quential machines� shared memory multiprocessors� and vector processors
as well as data ow machines �OC���� See also �CF�
� and �Lan����

For traditional� sequential programming� there is far from any consensus

��

about which of the various programming paradigms being most successful in
providing easy programming� We must therefore expect similar discussions
for many years about the corresponding parallel programming paradigms�

A very important approach to avoid that the use of parallelism will add
to the software crisis is simply to let the programmers continue to write
sequential programs� The parallelising may be left to the compiler and
the run�time system� A lot of work has been done in this area� see for
instance �Pol��� Gup�
� KM�
�� The method has the great advantage that
old programs can be used on new parallel machines without rewriting�

����� Synchronous MIMD Programming Is Easy

The use of synchronous MIMD programming to implement the algorithms
studied and described in this thesis was motivated by a wish to program in
a relatively high level notation which was consistent with the �programming
philosophy� used by James Wyllie �Wyl���� It came as a surprise that high�
level synchronous MIMD programming on a CREW PRAM model seems to
be remarkably easy�

Easy programming
The CREW PRAM property Synchronous statements described at page
�� implies that the bene�ts of synchronous operation are obtained at the
�source code level�� and not only at the instruction set level� It gives the
advantages of SIMD programming� i�e� programs that are easier to reason
about �Ste�
�� However� we have kept the exibility of MIMD program�
ming� This was illustrated by the example in Section �������� where Figure
��� shows a MIMD program that may compute the area of three di�er�
ent kinds of objects simultaneously� Such natural and e�cient handling of
conditionals is not possible within the SIMD paradigm���

At �rst� making the statements synchronous may be perceived as a heavy
burden to the programmer� However� my experience is that it is a relatively
easy task after some training� and that it may be helped a lot with simple
tools�

Note that the synchronous operation property may be violated by the
programmer if wanted� Asynchronous behaviour can be modelled on a
CREW PRAM�with the only restriction that the time�di�erence between

��On a SIMD system� nested conditionals can in principle reduce processor utilisation
exponentially in the number of nesting levels
Ste���	

��

any two events must be a whole number of CREW PRAM time units� This
�discretisation� should not be a problem in practice�

Easy analysis

Synchronous programs exhibit in general a much more deterministic be�
haviour than asynchronous programs� This implies easier analysis�

The process of making high level statements synchronous does also sim�
plify analysis� This is demonstrated by case�� of the example in Section
�������� In that example� compile time padding was used to assure that a
computational task would use an equal amount of time for three di�erent
cases� Here� redundant operations �i�e� wait�operations� simplify�

Making high level statements synchronous may also make it necessary
to code a procedure such that its time consumption is made independent of
its input parameters� A natural approach is then to code the procedure for
solving the most general case� and to use this code on all cases� This removes
the possibility of saving some processor time units on simple cases�but more
important� it simpli�es the programming of the procedure�

A consequence of synchronous statements is that the time consumption
of an algorithm will typically be less dependent on the actual nature of the
problem instance� such as presortedness �Man��� for sorting� This makes it
easier to use the algorithm as a substep of a larger synchronous program�

Easy debugging

�The main problems associated with debugging concurrent pro�
grams are increased complexity� the �probe e�ect�� nonrepeata�
bility� and the lack of a synchronised clock��

McDowell and Helmbold in
Debugging Concurrent Programs �MH����

The debugging of the synchronous MIMD programs developed as part of
the work reported in this thesis has been quite similar to debugging of uni�
processor programs� The synchronous operation and the execution of the
programs on a simulator have eliminated most of the problems with con�
current debugging� The CREW PRAM model implicitly provides a syn�
chronised clock known by all the processors� Synchronous operation will
in general imply an increased degree of repeatability� and full repeatabil�
ity is possible on the simulator system� The simulator does also provide

��

monitoring of the programs without any disturbance of the program being
evaluated�i�e� no �probe e�ect��

Not all of these bene�ts would be possible to obtain on a �CREW PRAM
machine�� However� a proper programming environment for such a machine
should contain a simulator for easy debugging in �early stages� of the soft�
ware testing�

Having experienced the bene�ts of synchronous MIMD programming after
only a few months of �training� and with the use of very modest prototype
tools� I am convinced that this paradigm for parallel programming is worth
further studies in future research projects�

������� Example��� Odd�even Transposition Sort

The purpose of this example is to illustrate how parallelism through in�
creased computing power and redundancy may give a faster and simpler
algorithm� We know that sorting on a sequential computer can not be done
faster than O�n logn� �Akl��� Knu���� This is achieved by several algo�
rithms� for instance Heapsort invented by �Wil���� �The famous Quicksort
algorithm invented by C� A� R� Hoare �Hoa��� is O�n logn� time on average�
but only O�n�� in the worst case �AHU�����

However� if we have n processors available for sorting n items� it is
very easy to sort faster than O�n logn� time if we allow a higher cost than
O�n logn�� O�n� time sorting is easily obtained by severalO�n�� cost parallel
sorting algorithms�

Perhaps the simplest parallel sorting algorithm is the odd�even transpo�
sition sort algorithm� The algorithm is now being attributed �Qui��� Akl���
to Howard Demuth and his Ph�D� thesis from 	���� See �Dem���� The algo�
rithm is so well known that I will only outline it brie y� Readers unfamiliar
with the algorithm are referred to one of �Qui��� Akl��� Akl��� BDHM���
for more detailed descriptions�

The odd�even transposition sort algorithm is based on allocating one
processor to each element of the array which is to be sorted� See the example
in Figure ��	� which shows the sorting of � items� If n� the number of items to
be sorted is an even number� we need n�� iterations� Each iteration consists
of an odd phase followed by an even phase� The processors are numbered by
starting at 	� In the odd phase� each processor with odd number compares
its element in the array with the element allocated by the processor on the

��

Iteration �� � � � �
� � � �

odd phase 	 	

� � � �
� �

even phase 	

Iteration �� � � � �
� � � �

odd phase 	 	

� � � �
� � � �

even phase 	 	

Figure ����� Sorting � numbers by odd even transposition sort� The operation of a
processor comparing two numbers are marked with 	�

right side� In the example� processor 	 compares � with �� and processor
� compares � with 	� If a processor �nds that the two elements are out
of order� they are swapped� In even phases� the same is done by the even
numbered processors�

A PPP program for the algorithm is given in Figure ��	�� Note that
n � 	 processors are needed���

I would guess that most readers familiar with this algorithm or similar
parallel algorithms will agree that it is simpler than heapsort and quicksort�
In my opinion� it is also simpler than straight insertion sort�which is com�
monly regarded to be one of the simplest uni�processor sorting algorithms
�see the next example��

������� Example��� Parallel Insertion Sort

This example is provided to show how the use of parallelism may make it
easier to re ect a natural solution strategy�

One of the simplest uniprocessor algorithms is straight insertion sort�
This is the method used by most card players �Wir���� A good description
is found in Bentley�s book �Programming pearls� �Ben����

The method is illustrated in Figure ��	�� One starts with a sorted se�
quence of length one� The length of this sequence is increased with one

��The reader may have observed that only n�� processors are active at any time during
the execution of the algorithm	 A slightly di�erent implementation that takes this into
account is described in Section �	�	

��

assign n � 	 processors to ProcArray�
for each processor in ProcArray begin

for Iteration �$ 	 to n�� do begin
if p is odd then

if A�p� � A�p& 	� then Swap�A�p�� A�p& 	���
if p is even then

if A�p� � A�p& 	� then Swap�A�p�� A�p& 	���
end�

end�

Figure ����� Odd even transposition sort expressed in the PPP notation�

start� �
� � � �sorted�
 �unsorted�
after iteration �� � �
� �
after iteration �� � � �
�
after iteration �� � � � �

Figure ����� Straight insertion sort of � numbers�

��

�T� for Next �$ � to n do begin
f Invariant� A�	��Next�	� is sorted g

�T� j �$ Next�
�F�M�I� while j � 	 and A�j � 	� � A�j� do begin

Swap�A�j�� A�j � 	���
j �$ j � 	�

end�
end�

Figure ����� Straight insertion sort with one processor �Ben����

number in each iteration� Each iteration can be perceived as consisting of
four tasks�

�T� Take next� This corresponds to picking up the card to the right of the
� in Figure ��	��

�F� Find the position where this card should be inserted in the sorted
sequence �the numbers to the left of ���

�M� Make space for the new card in the sorted sequence�

�I� Insert the new card at the new free position�

The algorithm is shown in Figure ��	�� The code corresponds to the
simplest version of the algorithm presented at top of page 	
� in Bentley�s
book �Ben���� To the left of each statement the letters �T�� �F�� �M�� and
�I� have been used to show how the various parts of this code model the
four main tasks just described� The three tasks of �nding the right position�
making space and inserting the next card are all taken care of by the simple
while loop�

In my opinion� the straight insertion sort algorithm� as performed by
card players� is easier to model and represent by using parallelism� See
Figure ��	�� Processor p is allocated to A�p�� The position of the next
card to be inserted in the sorted subsequence is stored in the variable Next
which is local to each processor� The sorted subsequence is represented by
the processors to the left of Next� Statement �a� assures that the following
code is performed only by the processors allocated to numbers in the sorted

��

assign n � 	 processors to ProcArray�
for each processor in ProcArray

�T� for Next �$ � to n do
�a� if p � Next then begin

NextVal �$ A�Next ��
�F��b� if NextVal � A�p� then begin

�M��c� A�p& 	� �$ A�p��
�F��d� if NextVal
 A�p� 	� then
�I��e� A�p� �$ NextVal�

end�
end�

Figure ����� Parallel CREW PRAM implementation of straight insertion sort ex�
pressed in PPP� �See the text�

sequence� Each of these processors start by reading the value of the next
card into the local variable NextVal�

The two statements marked �F� model how the right position for in�
serting the next card is found� Statement �b� selects all cards in the sorted
sequence with higher value than the next card� To make space for the next
card� these are moved one position to the right� as described by statement
�c�� Statement �d� speci�es that if the value of the next card is larger �or
equal� to the card on the left side �A�p� 	��� then we have found the right
position for inserting the card �Statement �e���

I will not claim that this program is easier to understand� but it seems
to me that its behaviour does more clearly re ect the sorting strategy per�
formed by card players� The �pattern matching� used by card players to
�nd the right position for insertion� and especially the making of space for
the next card are typical parallel operations��� �I hope to �nd more striking
examples in the future���

��See also the VLSI parallel shift sort algorithm by Arisland et al	
AAN���	

��

��� CREW PRAM Programming on the

Simulator

Introduction
This section outlines an approach for top down development of synchronous
MIMD programs in the CREW PRAM simulator environment� It is placed
in this chapter since it describes CREW PRAM programming� However�
it does refer to technical details of the CREW PRAM simulator which is
described in Appendix A� For a detailed study� Appendix A should be read
�rst� Alternatively� use the index provided at the end of the thesis�

It should be noted that this approach is not an ideal approach for syn�
chronous CREW PRAM programming� because it re ects limitations of the
used CREW PRAM simulator prototype�

The recommended development approach
The approach for top down development is a natural extension of the top
down stepwise re�nement strategy often used when developing sequential
algorithms� It is explained how early� incomplete versions of the program
may be made and kept synchronous in a convenient manner� Further� it
is described why the exact modelling of the time consumption should be
postponed to the last stage in the development process�

The approach is illustrated by showing four possible steps �i�e� repre�
sentations� in the development of an odd�even transposition sort CREW
PRAM algorithm� More complicated algorithms will probably require a
further splitting of one or several of these steps�

����� Step �� Sketching the Algorithm in Pseudo�Code

The algorithm used as an example for outlining the development approach
is a slightly di�erent version of the odd�even transposition sort algorithm
presented in Section ������	� In that version only one half of the processors
are participating in each stage of the algorithm� the other half is waiting�
That implementation� using n� 	 processors� was chosen because it is very
similar to the odd�even transposition sort algorithms presented for a linear
array of n processors� such as �Akl��� pp� �	"��� �Qui��� pp� ��"��� or
�Akl��� pp� ��"���

However� doing odd�even transposition sort on a CREW PRAM� there
is no need to use more than n�� processors� The n�� processors may act
as �odd� and �even� processors in an alternating style� Processor number

�

� � �

�i

	 �

���	Array element no��

Processor no�� i

� � �

n��

n

Figure ����� Processor allocation using n�	 processors for odd�even transposition
sort of n elements�

i may be assigned to the element in position �i of the array which is to be
sorted� see Figure ��	�� In even numbered stages� processor i acts as an
even numbered processor assigned to element �i� and compares this element
with the element in position �i&	� In odd numbered stages� processor i acts
as an odd numbered processor assigned to the element �i� 	� and compares
that element with the element in position �i� High level pseudo code for the
algorithm� expressed in the PPP notation� is shown in Figure ��	��

����� Step �� Processor Allocation and Main Structure

A crucial part of every parallel algorithm is the processor allocation and
activation� The exact number of processors that will be used should be
expressed as a function of the problem size� Further� the main structure of
the algorithm including the activation of the processors should be clear at
this stage�

A possible �rst version of a program for our odd�even transposition sort
algorithm is shown in Figure ���
� This is a complete program that may be
compiled and executed on the simulator� It is written in a language called
PIL �see Section A�����	� which is based on SIMULA �BDMN��� Poo����

The program demonstrates various essential features of PIL� The

include statement includes a �le called sorting which contains the pro�
cedure GenerateSortingInstance� The assignment of processors and pro�
cessor activation are done by statements which are quite similar to the PPP
notation� The READ n FROM � � � statement shows the syntax for reading
from the global memory� �The corresponding WRITE statement is shown in
Figure ������ T ThisIs outputs the identi�cation of the calling processor
and is used for debugging� T TO is a procedure for program tracing� The
procedure call Use��� speci�es that each processor should consume one time

�	

CREW PRAM procedure OddEvenSort
begin

assign n�� processors� to ProcArray�
for each processor in ProcArray begin

Initialise local variables�
for Iteration �$ 	 to n do begin

Compute address of array element associated with each
processor during this iteration�

Read that array element� and also its right neighbour
element if it exists�

Compare the two elements just read and swap
them if needed�

end�
end�

end�

Figure ����� Pseudo code �PPP
 for odd�even transposition sort using n�	 proces�
sors�

��

% oesNew1.pil
% Odd Even Transposition sort with n/2 processors.

#include<sorting>

PROCESSOR_SET ProcArray;
INTEGER n; ! problem size ;
ADDRESS addr;

BEGIN_PIL_ALG
 n := 10;
 addr := GenerateSortingInstance(n, RANDOM);
 ASSIGN n//2 PROCESSORS TO ProcArray;

 FOR_EACH PROCESSOR IN ProcArray
 BEGIN ! parallel block ;
 INTEGER Iteration;

 ! Initialize local variables ;
 ! n is written on the UserStack by GenerateSortingInstance ;
 READ n FROM UserStackPtr-1;

 FOR Iteration := 1 TO n DO
 BEGIN
 T_ThisIs;
 IF IsOdd(Iteration) THEN T_TO(" Odd iteration")
 ELSE T_TO(" Even iteration");
 Use(1);
 END_FOR;

 END of parallel block;
 END_FOR_EACH PROCESSOR;

END_PIL_ALG

Figure ��	�� Main structure of PIL program for our odd�even transposition sort
algorithm� It contains processor allocation and activation�

��

unit before it �nishes the last iteration of the FOR Iteration � � � loop� For
the purpose of this program� this is su�cient time modelling� For further
details� consult Section A���

����� Step �� Complete Implementation With Simpli	ed

Time Modelling

The next main step in the development process should be to make a com�
plete implementation of the algorithm� Normally� this should be done in
several substeps� The resulting PIL program might be as shown in Figure
���	 and ����� This version of the program implements the alternation of
the processors between odd and even by adjusting the value of ThisAddr in
each iteration� The two values to be compared by every processor in each
iteration are read by the procedure ReadTwoValues and later processed by
CompareAndSwapIfNeeded� ArrayPrint is a built in procedure which prints
a speci�ed area of the global memory�in this case the array of sorted num�
bers�

Note that it is generally recommended to do only a simpli�ed time mod�
elling at this stage� The exact modelling of the time used by the parallel
algorithm should be postponed to the last stage of the development� There
is no need to go into full detail with respect to the time consumed before
a complete and correct version of the algorithm have been made� However�
whenever it is possible� all early versions of the program should be made
synchronous� The absence of proper compile time padding makes it neces�
sary to use manual methods for achieving synchronous programs� This is
discussed below�

Making programs synchronous using SYNC

The currently used PIL compiler pilc is unfortunately not able to perform
compile time padding to make the statements synchronous� Therefore� this
dull work must be done by the PIL programmer� However� the burden may
to a large extent be alleviated by using a stepwise re�nement strategy on
the time modelling�

Consider the IF statement in the procedure CompareAndSwapIfNeeded in
the PIL program in Figure ����� The ELSE clause could have been omitted
by the programmer if the compiler was able to do compile time padding�
The compiler would then automatically insert the ELSE clause to guarantee
that all processors executing the IF statement would leave that statement

��

% oesNew2.pil
% Odd Even Transposition sort with n/2 processors,
% complete algorithm with simplified time modelling.

#include<sorting>

PROCESSOR_SET ProcArray;
INTEGER n;
ADDRESS addr;

BEGIN_PIL_ALG
 n := 10;
 addr := GenerateSortingInstance(n, RANDOM);

 ASSIGN n//2 PROCESSORS TO ProcArray;
 FOR_EACH PROCESSOR IN ProcArray
 BEGIN ! parallel block;
 INTEGER n, Iteration;
 INTEGER ThisVal, RightVal;
 ADDRESS ThisAddr;

#include<oesNew2.proc>

 ! n is written on the UserStack by GenerateSortingInstance ;
 READ n FROM UserStackPtr-1;
 ThisAddr := (UserStackPtr - 1 - n) + ((p*2)-1);

 FOR Iteration := 1 TO n DO
 BEGIN
 IF IsOdd(Iteration) THEN ThisAddr := ThisAddr - 1
 ELSE ThisAddr := ThisAddr + 1;
 ReadTwoValues;
 CompareAndSwapIfNeeded;
 END_FOR;

 END of parallel block;
 END_FOR_EACH PROCESSOR;
 ArrayPrint(addr, n);
END_PIL_ALG

Figure ��	�� PIL main program for our odd�even transposition sort algorithm�
The program contains a simpli
ed time modelling which is su�cient to keep it
synchronous� The included
le oesNew��proc is shown in Figure ��		�

��

% oesNew2.proc
 PROCEDURE ReadTwoValues;
 BEGIN
 READ ThisVal FROM ThisAddr;
 IF ThisAddr + 1 >= UserStackPtr - 1 THEN
 BEGIN
 Use(t_READ); RightVal := INFTY;
 END
 ELSE
 READ RightVal FROM ThisAddr+1;
 END_PROCEDURE ReadTwoValues;

 PROCEDURE CompareAndSwapIfNeeded;
 BEGIN
 IF RightVal < ThisVal THEN
 BEGIN
 WRITE RightVal TO ThisAddr;
 WRITE ThisVal TO ThisAddr+1;
 END
 ELSE ! Numbers compared are in right order, need not write;
 Wait(t_WRITE + t_WRITE); ! to preserve synchrony ;
 END_PROCEDURE CompareAndSwapIfNeeded;

Figure ��		� Procedures used in Figure ��	��

simultaneously� The parameter value in the Wait call�� must be exactly
equal to the time used in the THEN clause of the IF statement� It is necessary
to recalculate this parameter each time a modi�cation that changes the time
consumption in some part of the �possibly nested� THEN clause is made���

Such modi�cations occur frequently during development of an algorithm�
and the recalculation of this parameter is typical compiler work�

The only motivation for the Wait call is to assure that all processors
leave the IF statement simultaneously� This property may be achieved in
an alternative way� Insert a call to the general resynchronisation procedure
SYNC just after the IF statement� This makes it possible to omit the ELSE

part and the code executed in the THEN clause may be changed without
destroying the synchronous property of the IF statement �considered as one
statement including the appended call to SYNC��

The use of SYNC� will result in an increase in the time used by the algo�
rithm� This is no problem since the exact time modelling have been post�
poned to a later stage�

��This parameter is written as t WRITE � t WRITE to re�ect that it represents the time
used by two succeeding WRITE statements	 For the use of �symbolic constants� such as
t WRITE see also Section �	�	�	

��In this simple example� the time used in the THEN clause is easy to calculate�however
most real examples will imply more elaborate calculations	

��

Strive for a correct ordering of the global events

All time consumption may not be omitted from early versions� The crucial
issue is to distinguish between local and global events� Local events are
those occurring inside a processor� They cannot a�ect other processors� and
they cannot be a�ected by other processors� Global events� such as access
to the global memory� may a�ect �writes� or be a�ected by �reads� other
processors�

Early versions of the program should use a simpli�ed time modelling�
but should try to obtain the same ordering of the global events
that is expected in a complete implementation with exact time
modelling���

For the correctness of an algorithm� it is irrelevant whether a set of com�
pletely local computations take one time unit or x time units� as long as the
order of all global events implied by the algorithm is kept unaltered�

The READ and the WRITE statement both take one time unit �see page
	�
 in Section A�������� This time consumption is automatically modelled
by the simulator� In addition� the simpli�ed time modelling in Figure ����
consists of one call to Wait as discussed above� and a call Use�t READ�� in
the procedure ReadTwoValues� The latter call ensures that all processors
will leave that procedure synchronously�

����� Step �� Complete Implementation With Exact Time
Modelling

When a complete implementation of the algorithm has been tested and found
correct�it is time to extend the program with more exact modelling of the
time consumption� This is a relatively trivial task which may be split into
two phases�

Specifying time consumption with Use
A complete program with exact time modelling for our example algorithm
is shown in Figure ����� The main di�erence between this program and the
previous version �Figure ���	� is that a lot of calls to the Use procedure
have been introduced� Note that this explicit speci�cation of the time used
implies the advantage that the programmer is free to assume any particular
instruction set or other way of representing the time used by the program�

��This would in general be very di�cult for an asynchronous algorithm	 For synchronous
programs it will generally be much easier	

��

% oesNew3.pil
% Odd Even Transposition sort with exact time modelling.

#include<sorting>

PROCESSOR_SET ProcArray;
INTEGER n;
ADDRESS addr;

BEGIN_PIL_ALG
 n := 10;
 addr := GenerateSortingInstance(n, RANDOM);
 ClockReset; !****** Start of exact time modelling ;

 ASSIGN n//2 PROCESSORS TO ProcArray;
 FOR_EACH PROCESSOR IN ProcArray
 BEGIN ! of parallel block;
 INTEGER n, Iteration;
 INTEGER ThisVal, RightVal;
 ADDRESS ThisAddr;

#include<oesNew3.proc>

 ! SetUp: ;
 Use(t_LOAD + t_SUB);
 READ n FROM UserStackPtr-1;
 Use((t_LOAD + t_SUB + t_SUB) + t_ADD +
 (t_LOAD + t_SHIFT + t_SUB) + t_STORE);
 ThisAddr := (UserStackPtr - 1 - n) + ((p*2)-1);

 Use(t_LOAD + t_SUB + t_JZERO);
 FOR Iteration := 1 TO n DO
 BEGIN
 Use(t_SHIFT + t_JZERO);
 IF IsOdd(Iteration) THEN
 BEGIN
 Use(t_SUB);
 ThisAddr := ThisAddr - 1;
 END
 ELSE
 BEGIN ! even Iteration;
 Use(t_ADD);
 ThisAddr := ThisAddr + 1;
 END;

 ReadTwoValues;
 CompareAndSwapIfNeeded;

 Use(t_LOAD + t_ADD + t_STORE + t_SUB + t_JZERO);
 END_FOR;
 END of parallel block;
 END_FOR_EACH PROCESSOR;

 ArrayPrint(addr, n);
END_PIL_ALG

Figure ��	�� Complete PIL program for odd�even transposition sort with exact time
modelling� The included
le oesNew��proc is shown in Figure ��	��

��

% oesNew3.proc

 PROCEDURE ReadTwoValues;
 BEGIN
 READ ThisVal FROM ThisAddr;
 Use(t_ADD + t_IF);
 IF ThisAddr + 1 >= UserStackPtr - 1 THEN
 BEGIN
 Use(t_READ);
 RightVal := INFTY;
 END
 ELSE
 READ RightVal FROM ThisAddr+1;
 END_PROCEDURE ReadTwoValues;

 PROCEDURE CompareAndSwapIfNeeded;
 BEGIN
 Use(t_LOAD + t_SUB + t_JNEG);
 IF RightVal < ThisVal THEN
 BEGIN
 WRITE RightVal TO ThisAddr;
 Use(t_ADD);
 WRITE ThisVal TO ThisAddr+1;
 END
 ELSE ! Numbers compared are in right order, need not write;
 Wait(t_WRITE + t_ADD + t_WRITE); ! to preserve synchrony ;
 END_PROCEDURE CompareAndSwapIfNeeded;

Figure ��	�� Procedures used in Figure ��	��

��

The following �working rules� may be useful when introducing more
exact time modelling in a PIL program�

	� Use �symbolic time constants�
When specifying time consumption as a parameter to Use or Wait the
programmer should try to make also this part of the code as readable
as possible� Using prede�ned constants such as t ADD� t SHIFT etc�
is a simple way to document how the programmer imagines that the
various parts of the high level PIL program would have been repre�
sented in CREW PRAM machine code��� Also� using such sums of
symbolic constants instead of so�called magic numbers makes it easier
to do the necessary modi�cations to the time modelling when changes
to the PIL program are made�
In larger programs� it may be practical to de�ne constants that re ect
the time used by various logical subparts�

�� �Cluster local time consumption�
Bearing in mind the di�erence between local and global events dis�
cussed at page ��� the time used on several subsequent local compu�
tations may in general be collected into one call to Use� Consider for
instance the Use call at the end of the FOR loop in Figure ����� which
models the time used to control that loop�

�� Work systematically from time zero
It is natural to introduce the exact time modelling by �following the
code structure� from �execution� time zero in a top down� depth �rst
approach�

�� Do small changes and test systematically
Since the time used in various parts of a parallel system may a�ect
the order of the global events� it may indirectly a�ect the correctness
of the algorithm� Experience have shown that minimal changes of the
timing may cause disastrous changes to the program� Therefore� the
introduction of the exact time modelling should be split into several
substeps�with systematically testing in between�

��These constants are de�ned in the simulator source �le times�sim stored in the src

directory �see Appendix A	��	 They are used in central parts of the simulator and should
therefore not be changed	

	

Replacing SYNC by CHECK

If exact time modelling has been introduced properly together with the nec�
essary Wait calls for achieving synchronous operation� it should be possible
to remove all explicit resynchronisation which have been inserted as discussed
at page ��� Simply removing all the calls to SYNC may be too optimistic�
It is likely that you will do future modi�cations to your program that may
change the time used� Therefore� �far�sighted� programmers will replace
SYNC by CHECK� CHECK checks whether the processors are synchronous at the
given point� and may detect cases where �synchrony� have been lost due
to erroneous program modi�cations� Replacing calls to SYNC with calls to
CHECK should be done one by one� with testing after each replacement�

Closing remarks
The reader should have noticed that exact time modelling requires the spec�
i�cation of a lot of boring details that are strictly related to the details
of the program implementing the algorithm� Considering the amount of
changes normally done during the development of a program� it should be
clear that a lot of unnecessary work may be avoided by postponing the exact
time modelling to the very end of the program development� Please note
that most of these details would have been taken care of by a proper PIL
compiler�

	
	

	
�

Chapter �

Investigation of the

Practical Value of Cole�s

Parallel Merge Sort

Algorithm

�A fundamental choice is whether to base the message routing
strategy of such an emulation on sorting or to use a method that
does not require sorting� and� if sorting is to be used� whether
there exists an O�logn��time sorting method for which the con�
stant hidden by the big�O is not excessive��

Richard M� Karp in A Position Paper on Parallel Computation�Kar���

This chapter describes the investigation of Cole�s parallel merge sort algo�
rithm� It starts by describing why this parallel algorithm is an important
contribution to theoretical computer science� The practical value of Cole�s
algorithm is evaluated by comparing its performance with various simple
sorting algorithms� The performance of these simple algorithms are sum�
marised in Section ��	�

The main part of the chapter is a top down and complete explanation of
Cole�s algorithm� followed by a description of how it has been implemented
on the CREW PRAM simulator� This includes details that are not available
in earlier documentation of the algorithm� The chapter ends by presenting
the results from the comparison of Cole�s algorithm with the simpler algo�
rithms�

	
�

��� Parallel Sorting

�As an aside� it is interesting to speculate on what are the all time
most important algorithms� Surely the arithmetic operations &�
�� �� and � on decimal numbers are basic� After that� I suggest
fast sorting and searching� ��� �

Stephen A� Cook in his Turing Award Lecture An Overview of
Computational Complexity �Coo����

����� Parallel Sorting�The Continuing Search for Faster Al�
gorithms

The literature on parallel sorting is very rich� in 	���� there was published
a bibliography containing nearly four hundred references �Ric���� Neverthe�
less� it is still appearing new interesting parallel sorting algorithms�

Within theoretical computer science there are mainly two computational
models that have been considered for parallel sorting algorithms�the circuit
model and the PRAM model� An early and important result for the circuit
model was the odd�even merge and bitonic merge sorting networks presented
by Batcher in 	��� �Bat���� A bitonic merge sort network sorts n numbers
in O�log� n� time� see for instance �Akl����

The AKS sorting network

The �rst parallel sorting algorithm using only O�logn� time was presented
by Ajtai� Koml�os and Szemer�edi in 	��� �AKS���� This algorithm is often
called the three Hungarians�s algorithm� or the AKS�network� The original
variant of the AKS�network used O�n logn� processors and was therefore not
cost�optimal �recall De�nition ��	� at page ���� However� Leighton showed
in 	��� that the AKS�network can be combined with a variation of the odd�
even network to give an optimal sorting network with O�logn� time on O�n�
processors �Lei���� Leighton points out that the constant of proportionality
of this algorithm is immense and that other parallel sorting algorithms will
be faster as long as n � 	
���� a problem size that probably never will occur
in practice��

�The total number of elementary particles in the observable part of the universe has
been estimated to about ��	

Sag���	

	
�

In spite of being commonly thought of as a purely theoretical achieve�
ment� the AKS�network was a major breakthrough� it proved the possibility
of sorting in O�logn� time� and implied the �rst cost optimal parallel sorting
algorithm described by Leighton� The optimal asymptotical behaviour ini�
tiated a search for improvements for closing the gap between its theoretical
importance and its practical use� One such improvement is the simpli�ca�
tion of the AKS�network done by Paterson �Pat���� However� the algorithm
is still very complicated and the complexity constants remain impractically
large �GR����

Cole�s CREW PRAM sorting algorithm
The PRAM model is more powerful than the circuit model� Even the weak�
est of the PRAM models� the EREW PRAM� may implement a sorting
circuit such as Batcher�s network without loss of e�ciency�

Also for the PRAM model� there has been a search for a O�logn� time
parallel sorting algorithm with optimal cost� In 	���� Richard Cole pre�
sented a new parallel sorting algorithm called parallel merge sort with this
complexity �Col���� This was an important contribution� since Cole�s algo�
rithm is the second O�logn� time and O�n� processor sorting algorithm�the
�rst was the one implied by the AKS�network� Further� it is claimed to have
complexity constants which are much smaller than that of the AKS�network�
To make it possible to evaluate its practical value� it was necessary to de�
velop an implementation of the algorithm� This work is described in Section
��� and Section ����

Are algorithms using more than n processors practical

Many researchers would argue that sorting algorithms requiring more than
n processors to sort n items are of little practical interest� A reasonable�
general assumption is that the number of processors� p� should be smaller
than n� However� there are situations where p � n should be considered�

Imagine that you are given the task of making an extremely fast sorting
algorithm for up to 	�

 numbers on a Connection Machine with ��

processor� Reading the description of Cole�s O�logn� time algorithm in the
book on �e�cient� parallel algorithms by Gibbons and Rytter �GR���� it is
far from evident that Cole�s algorithm should not be considered�

It is interesting in this context to read the recent work of Valiant on
the BSP model �Val�
� �see Section ��	������ where he advocates the need
for algorithms with parallel slackness� Only the future can tell us whether

	
�

�

�

Number of items sorted

Execution time

� �� �� 	� 	�

�	��

	���

����

������������� ������������� ������������� ������������� ������������� �����������
�� ����������
�

�� ����������
�

�� ������
����
�

�
� ����������
�

�
� �����
����
�

�

�
� ����������
�

�

� �����
�����

�

�

� �
�
����
����

�

�

�
�
�
��
�
��
�
��

�

�

�
�
���
�����

�

�

�

�
�
�
�
�
�
�
���
�

�

�

�
��
��
�

��
�
��

�

�

� �
�
���
���
��

�

�

�
���������
�

�

�

� �
��

��
��
�
�
�

�

�

�

�

��

�
�

�
��
�
�

�

�

�
�������
�

�

�

�

�

�
�

���
��

�
�
�
�

�

�

�

�
�
�
��

�

���

�

�

�

�
�

�

�
�����

�

�

�
��

�

�

�

�
���

�

�
��
�����
�
�
�

�

�

�

�

�

�

�
�
����

�

�

Figure ���� Insertion sort algorithm �Ben��� which demonstrates worst� average
and best case behaviour� � represents best case�which for this algorithm is a
sorted sequence� � represents the worst case� i�e� an input sequence sorted in the
opposite order� Each small dot ��
 shows the time used to sort one of ten random
input sequences for each problem size �x�axis
� and � shows the average of these ten
samples� The random cases were generated by drawing numbers from an uniform
distribution�

algorithms with very high �virtual� processor requirement will be widely
used�

����� Some Simple Sorting Algorithms

This section summarises the performance of the three simple sorting algo�
rithms described earlier in Chapter �� For all sorting algorithms evaluated
in this thesis� the execution time is measured from the algorithm starts
with the input sequence placed in the global memory� until it �nishes with
the sorted sequence placed in the global memory� The time is measured in
number of CREW PRAM time units�

������� Insertion Sort

Perhaps the simplest sequential sorting algorithm is the straight insertion
sort algorithm outlined in Section �������� see Figure ��	� at page ��� A

	
�

Table ���� Performance data for a CREW PRAM implementation of the parallel
insertion sort algorithmpresented in Figure ���� at page ��� Time and cost are given
in kilo CREW PRAM time units and kilo CREW PRAM �unit�time
 instructions
respectively� The number of read�write operations to�from the global memory are
given in kilo locations�

Problem size n time .processors cost .reads .writes

�
�� � 	��
��
�
�

� 	�	 � ��� 	��
��

	� ��� 	� �	�� ��� 	��

�� ��� �	 �
��� ���� ���

�� 	��� �� ����� 	���� ����

	�� ���� 	�� ���	�� �	��� 	����

��� ���� ��� 	�����
 �		��� �		��

tuned version �the second program from the top of page 	
� in �Ben���� has
been implemented on the CREW PRAM simulator� The execution time of
the algorithm is strongly dependent on the degree of presortedness in the
problem instance� This is illustrated in Figure ��	�

������� Parallel Insertion Sort

The parallel version of the insertion sort algorithm described in Section ��	�
�Figure ��	� at page ��� has also been implemented on the simulator� Its
performance is summarised in Table ��	�

������� Odd�Even Transposition Sort

Table ��� summarises the performance of the implementation of the odd�even
transposition sort algorithm using n�� processors� which was developed and
described in Section ����

����� Bitonic Sorting on a CREW PRAM

This section gives a brief description of a CREW PRAM implementation of
Batcher�s bitonic sorting network and its performance�

	
�

Table ��	� Performance data measured from execution of OddEvenSort on the
CREW PRAM simulator� Time and cost are given in kilo CREW PRAM time
units and kilo CREW PRAM �unit�time
 instructions respectively� The number of
read�write operations to�from the global memory are given in kilo locations�

Problem size n time .processors cost .reads .writes

�
�� �
��
�
�
�
	

�
�� � 	�	
�
�
�
�

	�
�� � ���
��
�	

��
�� 	� 	��� 	�	
��

�� 	�� �� ���� ��� ���

	�� ��� �� 	���� 	��� ��

��� ��� 	�� ����� ���� ����

�	� 	
�� ��� ������ ����� 	�
��

	
�� �
�� �	� 	
����� 	
�
�	 �
���

������� Algorithm Description and Performance

Batcher�s bitonic sorting network �Bat��� for sorting of n $ �m items con�
sists of �

�
m�m & 	� columns each containing n�� comparators �comparison

elements�� A detailed description of the algorithm may be found in Chap�
ter � of Akl�s book on parallel sorting �Akl���� In this section we assume
that n is a power of �� A natural emulation on a CREW PRAM is to use
n�� processors which are dynamically allocated to the one active column
of comparators as it moves from the input side to the output side through
the network�� The global memory is used to store the sequence when the
computation proceeds from one step �i�e� comparator column� to the next�
The main program and its time consumption are shown in Figure ��� and
Table ����

When discussing time consumption of PPP programs� we will in general
use the following notation��

De�nition ��� t�i� n� denotes the time used on one single execution of
statement i of the discussed program when the problem size is n� t�j��k� n�
is a short hand notation for

Pi�k
i�j t�i� n�� �

�The possibility of sorting several sequences simultaneously in the network by use of
pipelining is sacri�ced by this method	 This is not relevant in this comparison� since Cole�s
algorithm does not have a similar possibility	

	
�

CREW PRAM procedure BitonicSort
begin

�	� assign n�� processors�
��� for each processor do begin
��� Initiate processors�
��� for Stage �$ 	 to logn do
��� for Step �$ 	 to Stage do begin
��� EmulateNetwork�
��� ActAsComparator�

end�
end�

end�

Figure ��	� Main program of a CREW PRAM implementation of Batcher�s bitonic
sorting algorithm�

Table ���� Time consumption of BitonicSort�

t�	� n� $ �� & ��blog�n���c
t������ n� $ ��
t��� n� $ 	

t������ n� $ ��

	
�

Table ���� Performance data measured from execution of BitonicSort on the CREW
PRAM simulator� Time and cost are given in kilo CREW PRAM time units and
kilo CREW PRAM �unit�time
 instructions respectively� The number of read�write
operations to�from the global memory are given in kilo locations�

Problem size n time .processors cost .reads .writes

�
�� �
��
�
�
�
�

�
�� � ���
�
�
�
�

	� 	�
 � ���
��
��

�� 	�� 	� ����
��
��

�� ��
 �� ���� 	�� 	��

	�� ��� �� 	���
 ��� ���

��� ��� 	�� ����� ��� ���

�	� ��	 ��� 	
���� ���� ����

	
�� ��
 �	� ������ ���� ����

�
�� ��
 	
�� �	
��	 	�
�� 	����

�
�� ��
 �
�� 	������ ����� ��	��

EmulateNetwork is a procedure which computes the addresses in the
global memory corresponding to the two input lines for that comparator
in the current Stage and Step� ActAsComparator calculates which of the
two possible comparator functions that should be done by the processor
�comparator� in the current Stage and Step� performs the function� and
writes the two outputs to the global memory� Both procedures are easily
performed in constant time�

The main program shown in Figure ��� implies that the time consumption
of the implementation may be expressed as

T �BitonicSort � n� $ t�	���� n�& t��� n�
 logn& t������ n�
 	

�
log n�logn&	�

���	�
Note that this equation gives an exact expression for the time consump�

tion for any value of n� �where n is a power of ���

		

��� Cole�s Parallel Merge Sort Algorithm �

Description

�Cole �Col��� has invented an ingenious version of parallel merge
sorting in which this merging is done in O�	� parallel time��
Alan Gibbons and Wojciech Rytter in �E	cient Parallel Algo�
rithms� �GR����

Richard Cole presented two versions of the parallel merge sort algo�
rithm� one for the CREW PRAM model and a more complex version for the
EREW PRAM model �Col���� Throughout this thesis� we are considering
the CREW variant�

without the modi�cation presented at the bottom of page ��� in �Col����
The EREW variant is substantially more complex�

A revised version of the original paper was published in the SIAM Jour�
nal on Computing in 	��� �Col���� This paper has been used as the main
reference for my study and implementation of the CREW PRAM variant of
the algorithm� Cole did also write a technical report about the algorithm
�Col���� but has informally expressed that it is less good than the SIAM
paper �Col�
��

This section explains Cole�s CREW PRAM parallel merge sort algo�
rithm� Section ��� describes the most important decisions that were made
during the implementation� This is followed by pseudo code for the main
parts of the algorithm along with an exact analysis of the time consumption�

Motivation for the Description
Many researchers in the theory community refer to Cole�s algorithm as sim�
ple� However� the e�ort needed to get the level of understanding that is re�
quired for implementing the algorithm is probably counted in days and not
hours for most of us� It is therefore natural to use a top down approach in de�
scribing the algorithm� The reader may consult the SIAM paper �Col��� for
some further details or an alternative presentation� The description found
at pages 	��"	�� in the book E	cient Parallel Algorithms by Gibbons and
Rytter �GR��� is not completely consistent with Cole�s paper� but may add
some understanding�

			

����� Main Principles

Cole�s parallel merge sort assumes n distinct items� These items are dis�
tributed one per leaf in a complete binary tree�thus it is assumed that n is
a power of �� At each node in the tree� the items in the left and right sub�
tree of that node are merged� The merging starts at the leaves and proceeds
towards the top of the tree� Before the merging in a node is completed�
samples of the items received so far are sent further up the tree� This makes
it possible to merge at several levels of the tree simultaneously in a pipelined
fashion�

As a motivation� let us consider two other parallel sorting algorithms
based on a n�leaf complete binary tree�

������� Two Simpler Ways of Merging In a Binary Tree

One processor in each node

Perhaps the simplest way to sort n items initially distributed on the n leaf
nodes of a binary tree� is to assign one processor to each node� and to merge
subsequences level by level starting at the bottom of the tree� At the �rst
stage� the nodes one level above the leaf nodes will merge two sequences of
length 	 into one sequence of length �� In the next stage� the nodes one
level higher up will merge two sequences into one sequence of length �� and
so on� The degree of parallelism is restricted to the number of nodes in the
active level of the tree� Worse though� as the algorithm proceeds towards
the top of the tree� the work to be done in each node increases� while the
parallelism becomes smaller� At the top node� two sequences of length n��
are merged by one single processor� This last stage alone takes O�n� time�
and this form of tree�based merge sort is de�nitely not �fast��

Parallel processing inside each node

Cole gives a motivating example that is similar to the algorithm just sketched
�Col���� The computation proceeds up the tree� level by level from the leaves
to the root� Each node merges the sorted sets computed at its children� But�
as Cole points out� merging in a node may be done by the O�log logn� time
n�processor merging algorithm of Valiant �Val���� In this case we also have
parallelism inside the nodes at the active level� However� the merging is still
done level by level�resulting in O�logn log logn� time consumption�

		�

������� Cole�s Observation� The Merges at the Di�erent Levels

of the Tree Can be Pipelined

Borodin and Hopcroft have proved that there is an '�log logn� lower bound
for merging two sorted arrays of n items using n processors �BH���� There�
fore� as Cole points out� it is not likely that the level by level approach may
lead to an O�logn� time sorting algorithm�

Cole�s algorithm is based on an O�logn� time merging procedure which
is slower than the merging algorithm of Valiant� The main principle is
described by the following simpler� but similar merging procedure�

Cole�s logn merging procedure

�The problem is to merge two sorted arrays of n items� We
proceed in logn stages� In the ith stage� for each array� we take
a sorted sample of �i�� items� comprising every n��i��th item in
the array� We compute the merge of these two samples�� ��Col���
page ��	��

Cole made two key observations�

Merging in constant time

Given the results of the merge from the i� 	st stage� the merge
in the ith stage can be done in O�	� time�

Since we have logn levels in the tree� using this merging procedure in the
level by level approach gives an O�log� n� time sorting algorithm�

The second observation explains how the use of a slower merging proce�
dure may result in a faster sorting algorithm�

The merges at the di�erent levels of the tree can be pipelined

This is possible since merged samples made at level l of the
tree may be used to provide samples of the appropriate size for
merging at the next level above l without losing the O�	� time
merging property�

This may need som further explanation� Consider node u at level l� see
Figure ���� In the level by level approach� as soon as node v �and w� store
a sorted sequence containing all the items in the subtree rooted at v �and
w�� the merging may start at level l� The merging in node u takes log k
stages where k is the size of the sorted sequences in node v and w� Each
of these stages may be done in constant time due to the systematical way

		�

���������
���������
���������
���������
���������
����������
���������
�������

�������
��������
�����������������������

���������
���������
���������
���������
���������
����������
���������
������� ������������
��������������������������

��������������
���������������
���������������
��������������
���������������
�������������
����������
����������������������������

v w

u

x

level l

level l � 	

Figure ���� An arbitrary node u� its two child nodes v and w� and parent node x�
The root of the tree is at level ��

of sampling the sorted sequences in v and w�� When node u has completed
the merging� the merging may start at node x�

In the pipelined approach� the nodes are allowed to start much earlier
on the merging procedure� Once node u contains � items� it starts to send
samples to its parent node x� �These samples are taken from the sequence
stored in node u� which in this case may only be a sample of the items
initially stored in the leaves of the subtree rooted at u�� Node x follows the
same merging procedure�as soon as it contains � items it starts sending
samples to its parent node� and so on� It is shown in �Col��� that this way
of letting the nodes start to merge sorted subsequences from its left and
right child node� before these two nodes have �nished their merging� may be
implemented without destroying the possibility of doing each merge stage in
constant time�

����� More Details

This section gives a more detailed description of Cole�s parallel merge sort
algorithm� It attempts to provide a thorough understanding� by also ex�
plaining some details vital for an implementation which are not given in
Cole�s description �Col����

� In stage i� the sample from v and w may be merged in constant time because the
array currently stored in node u �which was obtained in stage i � �� is a so called good

sampler for the new samples from v and w	 The term �good sampler� is used by Gibbons
and Rytter
GR��� and re�ects that the old array may be used to split the new array into
roughly equal sized parts in the following manner	 �Informally� If the items in the new
and bigger array are inserted at their right positions �with respect to sorted order� in the
old array� a maximum of three items from the new array will be inserted between any two
neighbour items in the old array	 �Full details in
Col���	�

		�

������� The Task of Each Node u

Each node u should produce a list L�u�� which is the sorted list containing
the items distributed initially at the leaves of the subtree with u as its top
node �root�� During the progress of the algorithm� each node u stores an
array Up�u� which is a sorted subset of L�u�� Initially� all leaf nodes y have
Up�y� $ L�y�� At the termination of the algorithm the top node of the
whole tree� t� has Up�t� $ L�t� which is the sorted sequence� In the progress
of the algorithm� Up�u� will generally contain a sample of the items in L�u��

Up�u�� SampleUp�v�� SampleUp�w� and NewUp�u�
Before we proceed� we need some simple de�nitions� A node u is said to be
external if jUp�u�j $ jL�u�j� otherwise it is an inside node� Initially� only
the leaf nodes are external� In each stage of the algorithm� a new array�
called NewUp�u� is made in each inside node u� NewUp�u� is formed in the
following manner �see Figure �����

�Phase 	� Samples from the items in Up�v� and Up�w� are made and
stored in the arrays SampleUp�v� and SampleUp�w�� re�
spectively�

�Phase �� NewUp�u� is made by merging SampleUp�v� and SampleUp�w�
with help of the array Up�u��

For all nodes� the NewUp�u� array made in stage i is the Up�u� array at
the start of stage i& 	� At external nodes� Phase � is not performed�since
these nodes have already produced their list L�u��

������� Phase �� Making Samples

The samples SampleUp�u� are made in parallel by all nodes u according to
the following rules�

	� If u is an inside node� SampleUp�u� is the sorted array comprising of
every fourth item in Up�u�� The items are taken from the positions
	� �� �� etc�� If Up�u� contains less than four items� SampleUp�u�
becomes empty�

�� At the �rst stage when u is external� SampleUp�u� is made in the
same way as for inside nodes� At the second stage as external node�
SampleUp�u� is every second item in Up�u�� and in the third stage�
SampleUp�u� is every item in Up�u�� SampleUp�u� is always in sorted
order�

		�

���������� ���������������
����������
��

���
�������
���
������
����

���������� ���������������
����������
���

����
�������
���
�������
���

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�

�������
�������
������������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
������
�������
�������
�������
�������
�������
�������
�������
������
�������
�������
�������
�������
�������
������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
������
�������
�������
���

��������
��������
����������������������

�������
������
�������������������������

�������
�������
������������������������ �������

�������
������������������������

�������
������
�������������������������

�������
�������
������������������������

������
�������
�������������������������

MakeSamples �Phase 	�

MergeWithHelp �Phase ��

SampleUp�w�

NewUp�u�

MergeWithHelp

MakeSamples

Up�u�

SampleUp�v�

Up�v� Up�w�

Figure ���� Computation of NewUp�u
 in two main phases�

		�

The algorithm has � logn stages

Initially� only the leaves are external nodes� In the third stage as external�
a node v has used all the items in L�v� to produce SampleUp�v� in Phase
	� and its parent node u has merged SampleUp�v� and SampleUp�w� into
Up�u� in Phase �� Node u has now received all the items in L�u�� and the
child nodes v and w have �nished their tasks and may �terminate�� In the
next stage� the parent node u will have Up�u� $ L�u�� and this is the �rst
stage as external for node u�

We see that the level with external nodes moves up one level every third
stage� After � logn stages the top node t becomes external� it has Up�t� $
L�t�� and the algorithm may stop �Lemma � in �Col�����

The size of Up�u� is doubled in each stage
The size of the samples made by the external nodes double in each stage�
because the sample rate is halved in each stage� As a consequence� the size
of Up�u� in the inside nodes one level higher does also double in each stage�
At this level� the sample rate is �xed ��� as long as the nodes are inside
nodes� But� since jUp�u�j doubles in each stage� the samples made at this
level will also double in each stage� By induction� we see intuitively that the
size of Up�u� doubles in each stage for each inside node with jUp�u�j �
�

������� Phase �� Merging In O�	� Time

The most complicated part of Cole�s algorithm is the merging of SampleUp�v�
and SampleUp�w� into NewUp�u� in O�	� time� It constitutes the major
part of the algorithm description in �Col���� and about �
- of the code in
the implementation� The merging is described in the following� Proofs and
some more details are found in �Col����

Using ranks to compute NewUp�u�
The merging is based on maintaining a set of ranks� Assume that A and
B are sorted arrays� Informally we de�ne A to be ranked in B �denoted
A � B� if we for each item e in A know how many items in B that are
smaller or equal to e� Knowing A� B means that we know where to insert
an item from A in B to keep B sorted�

When using this concept in an implementation� it is necessary to do the
following distinction� The rank of an item x in a sorted array S is denoted
R�x� S�� When using R�x� S� to represent the correct position �with respect

		�

to� of x in S�it is important to know whether x is in S or not� as made
clear in the following observation�

Observation ���
Assume that the positions of the items in the sorted array S are numbered
f	� �� �� � � � jSjg� If x � S� R�x� S� represents the correct position of x in S�
However� if x �� S� R�x� S� gives the number of items in S which are smaller
than x� thus if x is to be inserted in S� its correct position will be R�x� S�&	�

At the start of each stage we know Up�u�� SampleUp�v� and SampleUp�w��
In addition� we do the following assumption�

Assumption ���
At the start of each stage� for each inside node u with child nodes v and w
we know the ranks Up�u� � SampleUp�v�� and Up�u� � SampleUp�w��

The making of NewUp�u� may be split into two main steps� the merging of
the samples from its two child nodes� and the maintaining of Assumption
��	� The calculation of the ranks constitutes a large fraction of the total
time consumption of Cole�s algorithm� However� as we will see� they are
crucial for making it possible to merge in constant time�

������� Phase �� Step �� Merging

We want to merge SampleUp�v� and SampleUp�w� into NewUp�u�� see Fig�
ure ���� This is easy if we for each item in SampleUp�v� and SampleUp�w�
know its position in NewUp�u�� The merging is then done by simply writing
each item to its right position�

Consider an arbitrary item e in SampleUp�v�� see Figure ���� We want to
compute the position of e in NewUp�u�� i�e�� the rank of e in NewUp�u�� de�
noted R�e� NewUp�u��� Since NewUp�u� is made by merging SampleUp�v�
and SampleUp�w� we have

R�e�NewUp�u�� $ R�e� SampleUp�v�� & R�e� SampleUp�w�� �����

The problem of merging has been reduced to computation of R�e� Sample�
Up�v�� and R�e� SampleUp�w��� Since e is from SampleUp�v�� R�e� Sample�
Up�v�� is just the position of e in SampleUp�v�� Computing the rank of e in
SampleUp�w� is much more complicated� Similarly� for items e in Sample�
Up�w� it is easy to compute R�e� SampleUp�w��� but di�cult to compute
R�e� SampleUp�v���

		�

������
��
���������

��
���������

��
���������

��
��� ������

��
��� ������

��
��� ������

��
��� ������

���
���

�������
���
��� �������

���
��� �������

���
��� �������

���
���

������
��
��� ������

��
��� ������

��
��� ������

��
��� ������

��
���������

��
���������

��
���������

��
���

�������
���
�������
���
�������
���
�������
���
�������
���
�������
���
�������
���
�������
���
������
����
�������
�����
��������
����������
����������
����������
����������
����������
�������������������
���������
��������������������

�
�
�
� � � � � � � � � � � � �

�
�
�
�
�
�
�
�
��������������������������
�������
�����

�
�
�
�
�
�
� � � � � �

�
�
�
�
�
�
�
�
�

��������������������������
������
������

�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
������
�������
�������������������������

� � �
� � �

� � � � � � � � � � � � � � � � � � �
�
�
�

�������������������������
������
�������

r� & r�

trr� $ �

r� $ �

e

fd

e

SampleUp�w�SampleUp�v�

Up�u�

NewUp�u�

Figure ���� The use of ranks in Cole�s O��
 time merging procedure� Knowing the
position of the item e in SampleUp�v
� R�e� SampleUp�v

 � r�� and its position
in SampleUp�w
� R�e� SampleUp�w

 � r�� the position of e in NewUp�u
� R�e�
NewUp�u

 is simply r� � r� �� in this example
�

The computation of the ranks SampleUp�v�� SampleUp�w� and Sample�
Up�w� � SampleUp�v� is termed computation of crossranks� In the mass
of details and levels which follows� Figure ��� may be used as an aid for
keeping track of �where we are� in the algorithm�

������	 Computing Crossranks

Up�u� and Assumption ��	 may be to a great help in computing the cross�
ranks� Consider Figure ��� and the item e from SampleUp�v�� We want to
�nd the position of e in SampleUp�w� as if it was to be inserted according
to sorted order in that array�

Note that it is only the situation where e is from SampleUp�v� that is
described in this and the following sections �������� and ��������� The other
case� e is from SampleUp�w�� is handled in a completely symmetric manner�

First� for each item e in SampleUp�v� we compute its rank in Up�u��
This computation is done for all the items in SampleUp�v� in parallel� and
is described as Substep � in Section ������� below�

R�e� Up�u�� gives us the items d and f in Up�u� which would straddle� e

�Let x� y and z be three items� with x � z	 We say that x and z straddle y if x � y

		�

One stage in Cole�s parallel merge sort algorithm
Phase 	� Making Samples �page 		��
Phase �� Merging in O�	� time �page 		��

Step 	� Merging �page 		��
Computing crossranks �page 		��

Substep 	 �page 	�	�
Substep � �page 	���

Make NewUp�u� �Eq� ��� at page 		��
Step �� Maintaining Ranks �page 	���

� � � from sender node �page 	���
� � � from other node �page 	���

Figure ���� Main structure of one stage in Cole�s algorithm�

if e had to be inserted in Up�u�� Further� Assumption ��	 gives R�d� Sample�
Up�w�� and R�f � SampleUp�w���the right positions for inserting d and f
in SampleUp�w�� These ranks are called r and t in Figure ���� Informally�
since e � �d� fi the right position for e in SampleUp�w� is bounded by the
positions �ranks� r and t� It can be shown that r and t always speci�es a
range of maximum � positions� and the right position� R�e� SampleUp�w���
may thus be found in constant time� This is explained in more detail as
Substep � in Section ��������

Before the two substeps are explained in more detail� we mention an
analogy which may help to one�s understanding� Imagine that you are sup�
posed to navigate to a certain position �R�e� SampleUp�w��� far away in
an unknown area �SampleUp�w��� You know where you are� and have a
detailed map covering the entire area� The normal smart way to solve such
a problem is to split it into two succeeding steps� coarse and �ne navigation�

Coarse navigation is done by using an imagined high�level map where
many details have been omitted� This map �Up�u�� is simpler than the full
detail map �SampleUp�w��� but it is good enough �good sampler� for navi�
gating to a small area �given by r and t� containing the exact position� Fine
navigation is then done by detailed searching in this small area �comparing
e with the elements given by r and t��

and y � z� i�e�� y �
x�zi	

	�

�
�
�
�
� � � � � � � � � � � � �

�
�
�
�

��������������������������
�������
�����

�
�
�
�
�
�
�
�
�
�������������������������
�������
������

� � �

i�i�

cb�	

� � �� � �

� � �

	 � r

r & 	

Up�u�

� � �

SampleUp�v� s� 	

s

Figure ���� Substep �� Computing SampleUp�v
 � Up�u
 by using
Up�u
 � SampleUp�v

������� Substep �� Computing SampleUp�v� � Up�u�

SampleUp�v� � Up�u� is computed by using Up�u� � SampleUp�v�� Con�
sider an arbitrary item i� in Up�u�� see Figure ���� The range �i�� i�i is
de�ned to be the interval induced by item i�� We want to �nd the set of
items in SampleUp�v� which are contained in �i�� i�i� denoted I�i���

The items in I�i�� have rank in Up�u� equal to b� where b is the position
of i� in Up�u�� and the array positions are numbered starting with 	 as
shown in the �gure� Once I�i�� have been found� a processor associated
with item i� may assign the rank b to the items in the set� Simultaneously�
a processor associated with i� should assign the rank c to I�i���

Computing I�i��
The precise calculations necessary for �nding I�i�� are not explained in
Cole�s SIAM paper �Col���� However� we must understand how it can be
done to be able to implement the algorithm� We want to �nd all items � �
SampleUp�v� with R��� Up�u�� $ b� These items must satisfy

��
 i��� �� � i�� �����

Let item�j� denote the item stored in position j of SampleUp�v�� Assump�
tion ��	 gives R�i�� SampleUp�v�� $ r and R�i�� SampleUp�v�� $ s� which
implies

�item�r� � i�� � �item�s� � i�� �����

	�	

We have the following observation

Observation ���
�See Figure ����� If there exist items � in SampleUp�v� between �and not
including� position r and s they must have R��� Up�u�� $ b�

Proof
 Let item�r & 	� denote an item which is to the right of item�r� and
to the left of item�s�� see Figure ���� The de�nition of the rank r implies
that i� � item�r & 	�� Hence� R�item�r & 	��Up�u��
 b� Let item�s � 	�
denote an item which is to the left of item�s� and to the right of item�r��
The requirement of distinct items implies item�s� � item�s � 	�� and the
de�nition of the rank s implies item�s� � i�� Distinct items then gives
item�s � 	� � i�� so we have R�item�s � 	�� Up�u�� � c� Since b $ c � 	�
all items in SampleUp�v� in positions r & 	� r& �� � � � � s� 	 have rank b in
Up�u�� �
The items in positions r and s must be given special treatment� we have�

item�r� $ i� � R�item�r��Up�u�� $ b
item�r� � i� � R�item�r��Up�u�� � b

item�s� $ i� � R�item�s��Up�u�� $ c
item�s� � i� � R�item�s��Up�u�� � c� R�item�s��Up�u�� $ b

To conclude� I�i�� is found by comparing item�r� with i� and item�s�
with i�� A processor associated with item i� may do these simple calculations
and assign the rank b to all items in I�i�� in constant time� This is possible
because it can be proved that I�y� for any item y in Up�u� will contain at
most three items��

������� Substep �� Computing SampleUp�v� � SampleUp�w�

See Figure ���� As described in Section �������� R�e� Up�u�� �which was
computed in Substep	� gives the straddling items d and f in Up�u�� Further�
Assumption ��	 gives the ranks r and t� We want the exact position of e
if it had to be inserted in SampleUp�w�� Which items in SampleUp�w�
must be compared with e! The question is answered by the following two
observations�

�Cole proves that Up�u� is a so called ��cover for SampleUp�v�
Col���	 ��cover is the
same concept as good sampler mentioned in Footnote � at page ���	 Up�u� is a ��cover for
SampleUp�v� if each interval
i�� i�i induced by an item i� from Up�u� contains at most �
items from SampleUp�v�� see Figure �	�	 Note that the de�nition allows i�
 �� as an
imagined item to the left of the �rst element of Up�u�� and similarly i�
�	

	��

��������
���
�� ��������

���
�� ��������

��
�� ��������

���
����������

��
����������

���
���

�������
���
����������

���
���������

���
����������

���
���

��������
���
��

�������
���
�������
���
�������
���
�������
�������
������������������������

�������
���
�������
���
�������
���

������
�������
�������������������������

�
�
�
�
�
�
�
� � � �

�
�
�
�
�
�
�
�
�
�
��������������������������
�������
�����

�
�
�
�
�
�
� �

� �
� �

�
�
�
�
�
�
�
�
������
������
��������������������������

�
�
�
� � � � � � � � � � � � � � � � � �

�
�
�
�
�
��������������������������
������
�������

Up�u�

SampleUp�w�

d f
� � � � � �

� � � � � �

tr

� e � e

R�e�Up�u��

e

���� ����

r& 	 t & 	

Figure ���� Substep 	� Computing SampleUp�v
 � SampleUp�w
 by using
SampleUp�v
 � Up�u

Observation ���
All items in SampleUp�w� to the left of� and including� position r are smaller
than item e�

Proof
 Let item�x� denote the item in SampleUp�w� at position x� Since
d and f straddle e� we have e
 d� The rank r implies that d
 item�r��
so we have e
 item�r�� The assumption of distinct elements implies that
SampleUp�v� and SampleUp�w� never will contain the same element� hence
e �$ item�r�� This implies that e � item��r��� �

Observation ���

All items in SampleUp�w� to the right of position t are larger than item e�

Proof
 The rank t implies that f � item�t & 	�� and we know that e � f �
Therefore� e � item�t& 	�� �

How many items must be compared with e! Observations ��� and ���
tell us that e must be compared with the items from SampleUp�w� with
positions in the range �r & 	� t�� Since Up�u� is a ��cover for SampleUp�w�
we know that �d� fi contains at most three items in SampleUp�w�� But� the
set of items in SampleUp�w� contained in �d� fi is not necessarily the same

	��

as the items with positions in the range �r & 	� t�� However� we can prove
the following observation by using the ��cover property of �d� fi�
Observation ��	
�See Figure ����� Item e must be compared with at most three items from
SampleUp�w� starting with item�r & 	�� going to the right� but not beyond
item�t�� In other words� the items item�r & i� for 	 � i � min��� t� r��

Proof
 First� let us consider which items in SampleUp�w� may be contained
in �d� fi� We have four possible cases�

	� d $ item�r�� item�r� � �d� fi
�� d �$ item�r�� d � item�r�� item�r� �� �d� fi
�� f $ item�t�� item�t� �� �d� fi
�� f �$ item�t�� f � item�t�� item�t� � �d� fi

�����

which imply four cases for the �placement� of �d� fi in SampleUp�w��

i� �item�r�� item�t � 	��
ii� �item�r�� item�t��
iii� �item�r& 	�� item�t� 	��
iv� �item�r& 	�� item�t��

Case i�� The ��cover property implies that j�item�r�� item�t � 	��j � �� By
deleting one and adding one item we get j�item�r& 	�� item�t��j � ��
Case ii�� The ��cover property gives j�item�r�� item�t��j � �� which implies
j�item�r& 	�� item�t��j � ���

Case iii�� j�item�r & 	�� item�t� 	��j � �� At �rst sight� one may think that
this case makes it necessary to compare e with � items in SampleUp�w��
However� this case does only occur when item�t� $ f �see case � in equation
����� and since e � f we know that e � item�t�� so there is no need to
consider item�t�� We need only consider items in �item�r & 	�� item�t � 	��
which contains at most � items�
Case iv�� The ��cover property implies j�item�r& 	�� item�t��j � ��
Thus we have shown that e must be compared with at most three items for
all possible cases� �

Since these �at most� three items in SampleUp�w� are sorted� two com�
parisons are su�cient to locate the correct position of e� Therefore� R�e�
SampleUp�w�� can be computed in O�	� time�

�In this case Figure �	� is not correct� at most one item �item�r���� may exist between
item�r� and item�t�	

	��

When Substep � has been done �in parallel� for each item e in Sample�
Up�v� and SampleUp�w�� every item knows its position �rank� in NewUp�u�
by Equation ���� and may write itself to the correct position of that array�

������� Phase �� Step � � Maintaining Ranks

This is only half the story� We assumed in Assumption ��	 at page 		� that
the ranks Up�u� � SampleUp�v� and Up�u� � SampleUp�w� are avail�
able at the start of each stage� We therefore must compute NewUp�u�
� NewSampleUp�v� and NewUp�u� � NewSampleUp�w� at the end of
each stage� so that the assumption is valid at the start of the next stage�
�NewSampleUp�x� is the SampleUp�x� that will be produced in the next
stage��

Doing this in O�	� time is about just as complicated as the merging
described above� We explain the computation of NewUp�u� � NewSample�
Up�v�� NewUp�u� � NewSampleUp�w� is computed in an analogous way�

Consider an item e in NewUp�u�� The computation of R�e� NewSample�
Up�v�� is split into two cases� The �rst case occurs when e came from
SampleUp�v� �or e came from SampleUp�w� during the computing of R�e�
NewSampleUp�w���� We term this case computation of rank in NewSam�
pleUp from sender node� and it is described in Section ������� below� The
other case is called computation of rank in NewSampleUp from other node�
and is described in Section ������	
�

First we solve the from sender node case for all items in NewUp�u�� The
results of this computation are then used to solve the from other node case�

������
 Computing the Rank in NewSampleUp From Sender Node

We know Up�u� � SampleUp�v� and Up�u� � SampleUp�w�� NewUp�u�
contains exactly the items in SampleUp�v� and SampleUp�w�� Therefore�
the rank R��� NewUp�u�� for all items � in Up�u� is easily computed as the
sum of R��� SampleUp�v�� and R��� SampleUp�w��� This is done for all
nodes in parallel�

SampleUp�v� is made from Up�v� by taking every fourth item in that
array�� Thus� knowing the position of an item in SampleUp�v�� it is easy
to �nd the position of the corresponding �same� item in Up�v�� Since we

�Every fourth item is the normal case	 An implementation must also handle the two
other sampling rates which may occur when node v is external	 �See Section �	�	�	�	�

	��

just have computed Up�v� � NewUp�v� we may compute SampleUp�v� �
NewUp�v� by going through Up�v��

For each item � in SampleUp�v� we have found R��� NewUp�v��� Simi�
larly as for SampleUp�v�� NewSampleUp�v� is made by taking every fourth
item from NewUp�v��	 Informally� R��� NewSampleUp�v�� is therefore sim�
ply R��� NewUp�v�� divided by four�

At this point we know SampleUp�v� � NewSampleUp�v� and that the
item e in NewUp�u� came from SampleUp�v�� To �nd R�e� NewSampleUp�v��
it remains to locate the corresponding �same� item e in SampleUp�v�� This
may easily be done if we for each item in NewUp�u� records the sender
address �position� of e in SampleUp�v��

�������� Computing the Rank in NewSampleUp FromOther Node

See Figure ��� which illustrates the case when e is from SampleUp�w��
We want to �nd the correct position of item e if it had to be inserted in
NewSampleUp�v�� The following assumption will help us�

Assumption ���

�See Figure ����� In each stage� at the start of step � �Maintaining Ranks��
for each item e in NewUp�u� that came from SampleUp�w� we know the
straddling items d and f from SampleUp�v�� �And vice versa for items from
SampleUp�v���

The item d is the �rst item in NewUp�u� from �the other node� �SampleUp�v��
to the left of e� and similarly f is the �rst item to the right�

Further� we know the ranks r and t of d and f in NewSampleUp�v��they
were computed in the from sender node case� Compare this situation with
Substep � described in Section �������� We see that Figure ��� and Figure
��� illustrate the same method for computing the correct position of e in
NewSampleUp�v� and SampleUp�w� respectively� R�e� NewSampleUp�v��
is found by comparing item e with at most three items in NewSampleUp�v��
�Recall Observation ��� at page 	���� Since these three items are sorted�
two comparisons will su�ce�

It remains to explain how to make Assumption ��� valid� Consider Figure
��� at page 	�� which illustrates the calculation of R�e� SampleUp�w�� for
an item e in SampleUp�v�� �Do not consider the items d and f in that �gure�
They have a slightly di�erent meaning than d and f in Assumption �����

	The same precautions as mentioned in the previous footnote must be taken here	 In
addition� we must remember to use the sampling rate that will be used in the next stage	

	��

��������
���
��������
������������������������������������
��

��
��������
���
��� ��������

���
����������

���
��� �������������������������������

��
��������
���
�� �������������������������������

��
��������
���
���

��������
��
�� ��������

���
�� ��������

���
����������

���
����������

���
����������

��
��

�������
���
��

�������������������������������
���
��������
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��������������������������
�������
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��������������������������
�������
�����

�
�
�
� �

� � �
� � � � � �

�
�
�

��������������������������
��������
����

�
�
�

��
����

�
�
�
������������������������������
��������

tr

fd

e
� � �� � �

NewUp�u�

��������

� e� e

� � �� � �

NewSampleUp�v�

from SampleUp�v�

from SampleUp�w�

Figure ���� Maintaining Ranks� The so called �from other node� case� The strad�
dling items d and f stored at end of Step � are used to compute the rank of e in
NewSampleUp from the other node� The position of item e in NewSampleUp�v
 is
bounded by the ranks r and t which are computed in the �from sender node� case�

Since we know e �� SampleUp�w��still Figure ����� R�e� SampleUp�w�� gives
exactly the two items from the other set that straddle e� For an item e from
SampleUp�w� a completely symmetric calculation gives R�e� SampleUp�v���
and therefore implicitly the two items d and f from SampleUp�v� that strad�
dle e� These are the items d and f needed in Figure ���� Thus� Assumption
��� is kept valid if we at the end of Step 	� the making of NewUp�u�� record
the positions �ranks� of d and f in NewUp�u��

��� Cole�s Parallel Merge Sort Algorithm	

Implementation

This section describes those aspects of the implementation of Cole�s parallel
merge sort algorithm that are most relevant to parallel processing� Proces�
sor activation� how the processors are used in parallel� the communication
of local variables between the processors� and CREW PRAM programming
are emphasised� Programming details that are well known from sequen�
tial programming are given less attention� The text assumes a reasonable
knowledge of the algorithm description given in the preceeding section�

	��

����� Dynamic Processor Allocation

A key to the implementation of Cole�s algorithm is to understand how the
processors should be allocated to the work which has to be done in the
various nodes of the tree during the computation�

Cole�s description �Col��� omits many details concerning how the work
is distributed on the processors� Program designers may regard this lack of
detail as a de�ciency�but they should not fail to see its advantages� Cole�s
description is detailed enough to explain the main principles of the processor
usage� Still� it is at an su	ciently high level for making the programmer
free to decide on the details of how the processors are used�

The main principles of the processor usage are described in this section�
The full details of the processor usage in the actual implementation are
explained in Section ������

������� A growing number of active levels

When designing the processor allocation� it is natural to start by �nding out
where and when there is work to do� As described in Section ������� at page
		�� at the end of every third stage the lowest active level moves one level
up towards the top� Further� the �rst samples received by an inside node u
will have size equal to one� Thus jUp�u�j $ � in the �rst stage when node u
is active� Node u will not produce samples during this stage because Up�u�
is too small� However� in the next stage� the size of Up�u� will have been
doubled
 and node u will produce samples for its parent node� We see that
the highest active level will move one level upwards every second stage�

Because of the di�erence in �speed� of the lowest and highest active
level in the tree� the total number of active levels will increase during the
computation� until the top level has been reached� This is illustrated in
Figure ��	
 for the case n $ 	��

������� The Number of Items in the Arrays

Cole gives a detailed analysis of the number of items in the Up� NewUp�
and SampleUp arrays� The size of the arrays will be di�erent from stage to
stage� Consider a node u with jUp�u�j �
 and child nodes v and w which
are not external� Since jUp�u�j doubles in each stage we have �jUp�u�j $

�As explained in Section �	�	�	� at page ���	

	��

 Stage No�

Level�
 � � � � � � � � � �� �� ��

root node �
 M M M M

�
 M M M � � �

�
 M M � � �

�
 M � � �

leaf nodes �
 � � �

Figure ����� The active levels of the binary tree used by Cole�s algorithm for the
case n � ��� M represents that inside nodes at that level perform merging in the
stage� i� �i � �� 	� �
� represents that nodes at that level are in their i�th stage as
external nodes�

jNewUp�u�j $ jSampleUp�v�j & jSampleUp�w�j $ �

�
�jUp�v�j& jUp�w�j� $

�

�
jUp�v�j� which gives jUp�u�j $ �

�
jUp�v�j� Also� the number of nodes at

u�s level is the number of nodes at v�s level divided by �� This implies that
the total size of the Up arrays at u�s level is �

	
of the total size of the Up

arrays at v�s level� if v is not external� This is also true for the �rst stage
in which nodes at v�s level are external� But for the second stage� the nodes
at v�s level produce samples by picking every second item� which implies
jUp�u�j $ �

�
jUp�v�j� Similarly� for the third stage we have jUp�u�j $ jUp�v�j�

To summarise�

Observation ���
The total size of the Up arrays at u�s level is �

	
of the total size of the Up

arrays at v�s level� if v is not external� or if v is in its �rst stage as external�
The fraction is �

�
if v is in its second stage as external� and it is �

�
if v is in

its third stage as external�

This gives the following upper bound for the total size of the Up arrays��

X

u

jUp�u�j � n & n�� & n�	� & n�	�� & � � � �$ 		n��� �����

The total size of the SampleUp arrays for a given level equals �

�
of the

total size of the Up arrays at the same level in the normal case� As before� we
have two exceptions given by the di�erent sampling rates used when nodes

�

P

u
denotes a summation over all active nodes u	 The right part of the equation has

been put into parentheses to remind the reader that the
 sign only is valid when n is
in�nitely large	

	��

are in their second or third stage as external� The third stage as external
gives the largest total size� so we have the following upper bound

X

u

jSampleUp�u�j � n& n�� & n��� & n��	� & � � ��$ �n��� �����

The NewUp arrays contain the items in the SampleUp arrays� They are
located one level higher up in the tree� but the total size becomes the same

X

u

jNewUp�u�j $
X

u

jSampleUp�u�j �����

������� A Sliding Pyramid of Processors

Cole describes that one should have one processor standing by each item in
the Up� NewUp� and SampleUp arrays� This strategy implies a processor
requirement which is bounded above by 		n�� & ���n��� $ ��n�� which is
slightly less than �n�

Consider the Up arrays� and the expression given for its size in Equa�
tion ���� There are n processors �array items� at the lowest active level� a
maximum of n�� processors at the next level above� a maximum of n�	�
processors at the level above that� and so on� This may be viewed as a pyra�
mid of processors� Each time the lowest active level moves one level up�the
pyramid of processors follows so that we still have n processors at the lowest
active level� Similarly� the NewUp processors �and SampleUp processors�
may be viewed as a pyramid of processors that slides up towards the top of
the tree during the progress of the algorithm�

������� Processor Allocation Snapshot

Since the processor allocation is so crucial for the whole implementation�
we illustrate it by a simple example� Consider a problem size of n $ 	��
In this case� Equations ��� to ��� imply a maximum processor requirement
of �	 processors� As discussed above� this requirement may only occur in
every third stage� Nevertheless� since the main goal for the implementation
was to obtain a simple and fast program� not to minimise the processor
requirement� we allocate �	 processors once at the start of the program�

We get three �pyramids� of processors as shown in Figure ��		� The
distribution into levels is static� Thus processor no 	� is always the lowest

	�

Up processors�

��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

SampleUp processors�

�� ��

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

NewSampleUp processors�

�� ��

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

Figure ����� Cole�s algorithm� n � ��� 	� Up processors� �� SampleUp processors
and �� NewSampleUp processors distributed into levels�

numbered processor used for the Up arrays one level above the external
nodes�

Figure ��	� shows how these processor pyramids are allocated to the
binary tree nodes during stage �� �The nodes in the binary tree are numbered
as depicted in Figure ��	��� The snapshot illustrates several situations which
must be handled�

Not all levels of the processor pyramids are active in every stage� recall
Figure ��	
� The set of active levels change during the computation� All
nodes that are situated at active levels are called active nodes� In some
stages� the size of the arrays is smaller than its maximum size at that level�
Since we have allocated enough processors to cover the maximum size� there
may exist levels with some active and some passive processors �e�g� the bot�
tom level of the SampleUp pyramid in Figure ��	��� Since the processor
pyramid �slides� towards the top of the binary tree during the computa�
tion� the number of nodes covered by a certain level of a processor pyramid
will vary� Consequently� the processors must be distributed to the nodes
dynamically� As an example� in stage � the lowest level of the Up processors
is allocated to the four nodes �"�� In stage 		� the same processors are dis�
tributed on the two nodes � and �� Further� since the size of the arrays at
a certain level may change between two stages� the allocation of processors
to array items within a node must be done at the start of each stage� As an
example� processor no 	� �an Up processor� is allocated to item 	 in node �
in stage �� but to item � in node � in stage ��

	�	

Up processors� P

� � � � P P P P

� � � � � � � � � � � � � � � �

SampleUp processors� P P

� � � � � � � � P P P P P P P P

NewUp processors� P P

� � � � � � � � P P P P P P P P

Figure ���	� Snapshot of processor allocation taken during stage � when sorting ��
items� For each processor �see Figure ����
 it is shown which node the processor
is allocated to� Legend� i indicates that the processor is allocated to node i� P
indicates that the processor is passive�

�������
��������
����������������

���
�������
�������
���������

��������
��������������

��
�������
�������
��

�������
��������
�����������
��
��������
�������
�

�������
�������
�����������
��
��������
�������
�

�������
��������
�������������

��
��������
��������������

��������
�����������
��
��������
�������
� �������

��������
�����������
��
��������
�������
�

�������
�������
��������
���������
����������
���
���������
���������
��������
�������
����� �������

�������
��������
���������
����������
��
���������
���������
��������
�������
�����

�������
�������
�������
���������
���������
��
�����������
��������
��������
������
�����

��

��

���

��

���

��

���

���

��

	

� � � �

�i

i

�i& 	

Figure ����� �Standard� numbering of nodes in binary tree used throughout this
thesis�

	��

CREW PRAM procedure ColeMergeSort
begin

�	� Compute the processor requirement� NoOfProcs�
��� Allocate working areas�
��� Push addresses of working areas and other facts on the stack�
��� assign NoOfProcs processors�
��� for each processor do begin
��� Read facts from the stack�
��� InitiateProcessors�
��� for Stage �$ 	 to � logn do begin
��� ComputeWhoIsWho�
�	
� if Stage � 	 then CopyNewUpToUp�
�		� MakeSamples�
�	�� MergeWithHelp�

end�
end�

end�

Figure ����� Main program of Cole�s parallel merge sort expressed in Parallel
Pseudo Pascal �PPP
�

����� Pseudo Code and Time Consumption

Cole�s succinct description of the algorithm is at a su�ciently high level
to give the programmer freedom to choose between the SIMD or MIMD
�Fly��� programming paradigms� The algorithm has been programmed in a
synchronous MIMD programming style� as proposed for the PRAM model
by Wyllie �Wyl���� It is written in PIL and the program is executed on the
CREW PRAM simulator�

We will use the PPP notation �Section ������ to express the most im�
portant parts of the implementation in a compact and readable manner� �A
complete PIL source code listing is provided in Appendix B��

������� The Main Program

The main program of Cole�s parallel merge sort algorithm is shown in Fig�
ure ��	�� When the program starts� one single CREW PRAM processor is
running� and the problem instance and its size� n� are stored in the global

	��

Table ���� Time consumption for the statements in the main program of Cole�
MergeSort shown in Figure ����� �The entries for statements ����	
 are valid only
for stage � and later stages� The time used is shorter for some of the early stages�
See Section ����	�� at page ����

t�	� n� $ �� & �blog
	
�n���c& �blog

	
nc

t������ n� $ ��
t��� n� $ �� & ��blogNoOfProcsc
t������ n� $ 	�
t��� n� $ ��� & ��blog

	
�n���c& ��blog

	
nc

t������ n� $ ��
t�	
� n� $ ��
t�		� n� $ ��
t�	�� n� $ ���

memory� Statements �	"�� are executed by this single processor alone�

Computing the processor requirement

The maximum processor requirement� here denoted NoOfProcs� is given by
the sum of the maximum size of the Up�u�� NewUp�u� and SampleUp�u�
arrays for all nodes u during the computation� Thus we have�

NoOfProcs $
X

u

jUp�u�j&
X

u

jNewUp�u�j&
X

u

jSampleUp�u�j �����

For a given �nite n� the exact calculation of NoOfProcs is done by re�
placing the � sign with $ in Equation ��� and ���� and summing terms as
long as n is not smaller than the divisor� A simple way to implement these
calculations is to use �divide by � loops��

The resulting time consumption for statement �	� as a function of the
problem size is given in Table ��� as t�	� n��

Working areas and address broadcasting
When the total number of processors has been computed� it is possible to
allocate working areas of the appropriate size in the PRAM global mem�
ory� These are dedicated areas which are used to exchange various kinds of
information between the processors� see Figure ��	��

	��

�������������������������
�������
������

������
����
�������
���
���������� ���������� ������������������������������������

�������
�����

�������
���
�������
���
�������
���
�������
���
������������� ���������� ���������� ���������� ���������� ��������������������

�
�
�
�

�
�
�
�

	

Name of working area

No of integer locations

parameters to SetUp �Statements ��� and ����

NodeSizeTable

NodeAddressTable

ExchangeArea

Up� SampleUp and NewUp arrays

problem size� n

problem instance

�

�n� 	

�n� 	

NoOfProcs

NoOfProcs

n

Figure ����� Memory map for implementation of Cole�s algorithm� NoOfProcs
locations are used to store the contents of the Up� SampleUp and NewUp ar�
rays�one integer location for each array item �processor
� The ExchangeArea is
used to communicate array items between the processors� The NodeAddressTable
and NodeSizeTable are used to help the processors
nd the address and size of the
arrays of other nodes in the tree�

	��

Statement ��� describes how central facts such as the addresses of the
working areas are broadcasted from the single master processor� It is done
by pushing values on the �user� stack in the PRAM global memory� When
all NoOfProcs processors have been allocated and activated� they may read
these data in parallel from the stack �Statement ����� Due to the concur�
rent read property of the CREW PRAM this kind of broadcasting is easily
performed in O�	� time�

Processor allocation and activation
The processors are allocated with the standard procedure described in CREW
PRAM property � at page ��� Since NoOfProcs is O�n� the expression given
for t��� n� in Table ��� is O�logn��

The desire for developing a simple and fast implementation did also
in uence the structure of processor allocation and activation�

Implementing �sliding processors�
Recall the description given in Section ����	 of how the processors should
be allocated to the binary computation tree� When implementing this� it is
crucial to split the necessary computation into a static and dynamic part�
The dynamic part� called ComputeWhoIsWho �see page 	���� is executed at
the beginning of each stage� Consequently� it must be done in O�	� time�
to avoid spoiling the O�logn� time overall algorithm performance� This is
possible since the most �di�cult� part need only be computed once initially�
The static part is represented by statement ����

InitiateProcessors� which is executed by all processors in parallel� starts
by computing the address in the global memory of the �Up� SampleUp or
NewUp� array item associated with the processor� It reads the problem size
n� computes the number of stages� and decides its own processor type �Up�
SampleUp or NewUp�� Then� the Up processors read one input number each
and place it in its own Up array item�

Then� it is time to perform the static part of the �processor sliding�� It is
done level by level for each processor type� It is calculated which level in the
�pyramid� �See Figure ��		� the processor is assigned to� This is counted in
number of levels �zero or more� above the lowest active level �which always
contains the external nodes�� Thus� whether a processor is assigned to an
inside node or an external node is also known at this point� Finally� the
�local� processor number at that level� numbered from the left� is computed�
Again� the level by level approach is implemented by �divide by � loops�

	��

giving the logarithmic terms for t��� n� shown in Table ����

������� The Main Loop�Implementation Details

The � logn stages each consists of four main computation steps�

ComputeWhoIsWho

ComputeWhoIsWho starts by calculating the lowest and highest active level
in the binary computation tree �recall Figure ��	
�� Together with the �level
o�set� computed initially �InitiateProcessors� this gives the exact level for
each processor in the current stage� Knowing the stage and the level� it
is possible for each �Up� SampleUp and NewUp� processor to compute the
size of the �Up� SampleUp or NewUp� array in each node at that level� This
again makes it possible for each processor to calculate the node number� and
item number within the array for that node� and whether the processor is
active or passive during the stage� All the calculations may be done in O�	�
time�

CopyNewUpToUp

CopyNewUpToUp transfers the array contents and ranks computed for the
NewUp arrays in the previous stage to the corresponding Up arrays in the
current stage� The procedure is quite simple� but it will be described in
some detail to illustrate how data typically are communicated between the
processors�

The procedure is outlined in Figure ��	�� It assumes that the NodeAdd�
ressTable �Figure ��	�� for each node in the tree stores the address of the
�rst item in the NewUp array for that node during the previous stage���

The local variable CorrNewUpItem is used by each Up processor to hold
the address of the NewUp processor�� in the previous stage which corre�
sponds to the Up item associated with the Up processor in the current stage�
The processor activation in statement �	� is realised by selecting all active
Up processors which are assigned to an inside node� In every third stage�

��This assumption is made valid by letting each processor which is assigned to the �rst
item of a NewUp array store the address of that item in the NodeAddressTable at the end
of each stage	

��I�e�� the address in the dedicated part of the global memory used to store the Up�
SampleUp� and NewUp arrays� see Figure �	��	

	��

CREW PRAM procedure CopyNewUpToUp
begin

address CorrNewUpItem�
�	� for each processor assigned to an Up array element where the

NewUp array for the same node was updated in the
previous stage do begin

��� CorrNewUpItem �$
NodeAddressTable�this node�& this item no �	�

��� Up�this processor� �$ NewUp�CorrNewUpItem��
end�

��� for each processor of type NewUp do
��� ExchangeArea�this processor� �$ RankInLeftSUP�
��� for each processor assigned to an Up array element where the

NewUp array for the same node was updated in the
previous stage do

��� RankInLeftSUP �$ ExchangeArea�CorrNewUpItem��
f Transfer RankInRightSUP in the same manner g

end�

Figure ����� CopyNewUpToUp outlined in PPP�

	��

when the external nodes are in their �rst stage as external� the Up pro�
cessors assigned to the external nodes should also be selected�since these
nodes were inside nodes in the previous stage�

In statement ���� the Up processors compute CorrNewUpItem in parallel�
The concurrent read property of the CREW PRAM is exploited since several
Up processors are assigned to the same node� The copying of all NewUp
arrays to the Up arrays is then done simultaneously by the Up processors
�statement ����� The possibility of doing many writes simultaneously to
di�erent locations of the global memory is used� No write con ict will occur
because every Up processor is assigned to one unique Up array element�

Knowing the mapping from an Up processor in the current stage to the
corresponding NewUp processor in the previous stage� it is straightforward
to communicate the ranks computed at the end of each stage to keep As�
sumption ��	 at page 		� valid� In the description of Phase � " Step ��
maintaining ranks at page 	��� it was shown how to compute NewUp�u� �
NewSampleUp�v� and NewUp�u� � NewSampleUp�w�� For each NewUp
and Up processor these two ranks are stored in the local variables RankIn�
LeftSUP and RankInRightSUP respectively��� Thus Up�u� � SampleUp�v�
and Up�u� � SampleUp�w� will be known in the current stage if we copy
these two variables from each NewUp processor to the corresponding Up
processor�

The ExchangeArea �Figure ��	�� is allocated for this kind of commu�
nication� First� each NewUp processor writes the value of RankInLeftSUP
to the unique location associated to that processor �statement ����� Then�
since we already know the mapping� the Up processors simply read the new
value of RankInLeftSUP from the appropriate position in the ExchangeArea
�statement ����� RankInRightSUP is transferred in the same way�

CopyNewUpToUp is performed in constant time on a CREW PRAM�

MakeSamples

MakeSamples is a procedure performed by the Up and SampleUp processors
in cooperation to produce the samples SampleUp�x� for all active nodes x�
This is a straightforward task �see Section ��������� and can easily be done
in constant time�

First� the Up processors write the address of the �rst item of the Up
array in each active node to the NodeAddressTable� Then� every active

��SUP is short for SampleUp �and NUP for NewUp�	

	��

CREW PRAM procedure DoMerge
begin

�	� for each processor of type Up or SampleUp do
��� ComputeCrossRanks�
��� for each processor of type SampleUp do begin
��� RankInParentNUP �$ RankInThisSUP & RankInOtherSUP�
��� Compute SLrankInParentNUP and SRrankInParentNUP�
��� Find address of the NewUp array in the parent node

and store it in ParentNUPaddr�
��� WriteAddress �$ ParentNUPaddr & RankInParentNUP � 	�
��� NewUp�WriteAddress� �$ own value�
��� Record the sender address for each new NewUp item

in the ExchangeArea�
end�

end�

Figure ����� DoMerge outlined in PPP�

SampleUp processor calculates the SampleRate ��� � or 	� to be used to
produce the samples at that level� Every SampleUp processor knows the
node x and item number �index� i within SampleUp�x� it is assigned to�
It reads the address of the �rst item in Up�x� from the NodeAddressTable�
and uses the SampleRate to �nd the address of the item in Up�x� which
corresponds to item i in SampleUp�x�� Finally and in parallel� each active
SampleUp processor copies this Up array item to �its own� SampleUp array
item�

������� Merging in Constant Time�Implementation Details

Having read the entire algorithm description in Section ��� it should be
no surprise that the implementation of Phase �� merging in constant time�
constitutes the major part of the implementation� MergeWithHelp is split
into two parts� DoMerge which performs Step 	 of the algorithm �recall
Figure ��� at page 	�
�� and MaintainRanks which performs Step ��

	�

DoMerge

DoMerge is outlined in Figure ��	�� Its main task is to compute the position
of each SampleUp array item in the NewUp array of its parent node� �See
Figure ��� at page 		��� This rank is stored in the variable RankInPar�
entNUP� It is given as the sum of the rank of the item in the SampleUp
array which itself is a part of� and its rank in the SampleUp array of its
sibling node� These two ranks are stored in the variables RankInThisSUP
and RankInOtherSUP respectively� and they are computed by the procedure
ComputeCrossRanks�

Postpone statement ��� for a moment� After having computed RankIn�
ParentNUP the SampleUp processors must get the address of the NewUp
array of the parent node� as expressed by statement ���� It is done by using
the NodeAddressTable in the same way as in the procedure CopyNewUp�
ToUp described above� Then� each SampleUp processor knows the right
address in the NewUp array for writing its own item value �statement �����
Notice that all the items in all the NewUp arrays are updated simultaneously�
We do not get any write con icts� but surely the simultaneous writing of n
values performed by n di�erent processors represents an intensive utilisation
of the CREW PRAM global memory�

Before DoMerge terminates� the SampleUp processors must also store
the sender address for each NewUp item just written� This information is
needed in MaintainRanks� The sender address of an item is represented by
the item no �index� in the SampleUp array it was copied from� and it is
stored in the ExchangeArea� If the SampleUp item is situated in a left child
node� the address is stored as a negative number�

Now� let us return to statement ���� Repeat Assumption ��� at page
	�� which states that for each SampleUp array item we should know the
straddling items from the other SampleUp array� In the terms used in Figure
����for each item e we must know d and f � These positions are possible
to compute now� because RankInParentNUP has been computed by all the
SampleUp processors�

The calculation is based on the two variables SLindex and SRindex��

computed by ComputeCrossRanks� For an item e in SampleUp�v� �see Fig�
ure ���� SLindex and SRindex are the positions in SampleUp�w� of the two
items in SampleUp�w� that would straddle e if e was inserted according to
sorted order in SampleUp�w�� Thus in general we have SLindex $ Rank�
InOtherSUP and SRindex $ RankInOtherSUP & 	�

��SL is short for straddling on the left side� and SR for straddling on the right side	

	�	

Again we use the ExchangeArea� All SampleUp processors write their
own value of RankInParentNUP to it� Then� SLindex is used to �nd the
address in the ExchangeArea of the SampleUp item from the sibling node
that would straddle this item on the left side� The position of this item
in NewUp of the parent node� called SLrankInParentNode is then read
from the ExchangeArea� Similarly� SRindex gives the address for reading
SRrankInParentNode�and we have reached our goal which was to know
the positions of d and f for each item e in NewUp�u� in Figure ���� Note
that SLrankInParentNUP and SRrankInParentNUP are stored locally in
each processor and need not be communicated to other processors before
they are used in MaintainRanks�

ComputeCrossRanks

ComputeCrossRanks is outlined in Figure ��	�� It is performed by the Up
and SampleUp processors in cooperation� As explained in Section �������
RankInThisSUP�� is easily found �statement����� However� the calculation
of RankInOtherSUP is rather complicated and split into two substeps���

The pseudocode for Substep 	 describes that all left child nodes �v� are
handled �rst� and then all right child nodes �w�� In other cases �such as
statements ��"�� in DoMerge� both SampleUp arrays are handled in par�
allel� The reason for the reduced parallelism in this case is that the work
represented by statements ��� and ��� is done by the Up processors in their
common parent node���

Recall Figure ��� at page 	�	� A description of the code that implements
statement ��� follows� The Up processors starts by writing its value of Up�u�
� SampleUp�v� to the ExchangeArea� Then� in addition to knowing r� the
Up processors may read the value s from the ExchangeArea� Further� in
addition to knowing its own value i�� it reads the value of i� stored in the
Up array� The address of the SampleUp�v� array is found by using the
NodeAddressTable� Now� the situation is exactly as in Figure ���� and each

��The variable RankInThisSUP stores R�e�SampleUp�x�� where e � SampleUp�x� and
x
 v or x
 w	 The rank of an item e in the SampleUp array of its sibling node is stored
in RankInOtherSUP	

��An exception which is much simpler than the general case occurs in nodes with Sam�
pleUp arrays containing only one item	 This implies that there is no Up array in the
parent node to help us in computing the rank in the SampleUp array of the sibling node	
However� since that array also contains only one item� RankInOtherSUPmay be computed
by doing one single comparison	

��Can you suggest a possible strategy for handling both child nodes in parallel#

	��

CREW PRAM procedure ComputeCrossRanks
begin

�	� for each processor of type SampleUp do
��� RankInThisSUP �$ position �index� of item in own array�
��� for each processor of type Up do begin

f Substep 	� �Section �������� page 	�	� g
��� For each item e in SampleUp�v� compute its rank in Up�u��
��� For each item e in SampleUp�w� compute its rank in Up�u��

fRankInParentUP is now stored in the ExchangeArea g
end�

��� for each processor of type Up or SampleUp do begin
f Substep �� �Section �������� page 	��� g

��� if processor type is SampleUp then
��� Read RankInParentUP from the ExchangeArea�
��� if processor type is Up then begin

�	
� Store address#size into the NodeAddress#SizeTable�
�		� Store RankInRightSUP into the ExchangeArea�

end�
�	�� if processor type is SampleUp in a left child node then
�	�� Find r and t�
�	�� if processor type is Up then
�	�� Store RankInLeftSUP into the ExchangeArea�
�	�� if processor type is SampleUp in a right child node then
�	�� Find r and t�
�	�� if processor type is SampleUp then begin
�	�� Read maximum � values from the other SampleUp array�
��
� LocalO�set �$ position of own value among these ��
��	� RankInOtherSUP �$ r & LocalO�set�

end�
end�

end�

Figure ����� ComputeCrossRanks outlined in PPP�

	��

Up processor considers the candidates in positions r to s according to the
rules described in Section �������� When the Up processor which represents
item i� �Figure ���� has found that an item in SampleUp�v� is contained
in the interval induced by i�� denoted I�i��� it assigns the index of i� to
the variable RankInParentUP of that SampleUp item� This assignment is
done indirectly by writing the value to the ExchangeArea� At the start of
Substep�� the SampleUp processors read this value�

The SampleUp item pointed to by s for i� is the same as the item pointed
to by r for i�� Consequently� these �border items� are considered by two
processors� Therefore� one might think that our strategy for updating Rank�
InParentUP may lead to write con icts� However� this will not occur since
the Up processor associated with an item x only assigns to the value Rank�
InParentUP for those items in SampleUp�v� which are contained in I�x��
and every SampleUp item is member of exactly one such set I�x��

Substep � is performed by the SampleUp and Up processors in cooper�
ation �statement ����� Again� we handle all left child nodes before all right
child nodes �statements �	�� and �	���� The left child nodes must access
the �local Up� variable RankInRightSUP to �nd the values of r and t� and
the right child nodes must access RankInLeftSUP� The SampleUp processors
use the NodeAddressTable and the variable RankInParentUP to locate the
items d and f �Figure ��� page 	���� The values of r and t is then read from
the ExchangeArea at the positions corresponding to d and f �statements
�	�� and �	����

When all SampleUp processors have calculated r and t they may do the
rest of Substep� in parallel �statement �	���� They read the values of the
items in positions �r&	� t� in the SampleUp array of their sibling node� and
compare their own value with these at most three values� The position with
respect to sorted order is found and stored in LocalO�set� RankInOtherSUP
is then given as shown in statement ��	��

MaintainRanks

As described in Section ������� the computation of NewUp�u�� NewSample�
Up�v� and NewUp�u� � NewSampleUp�w� is split into two cases�here
represented by the procedures RankInNewSUPfromSenderNode and Rank�
InNewSUPfromOtherNode� Figure ��	� shows the most important parts of
the �from sender node� case� Both procedures are executed by the Up�
SampleUp and NewUp processors in cooperation�

Recall Section �������� The �rst part of the procedure is performed by the

	��

CREW PRAM procedure RankInNewSUPfromSenderNode
begin

fPerformed in parallel by Up� SampleUp and NewUp processorsg
�	� if processor type is Up then begin

��� RankInThisNUP �$ RankInLeftSUP & RankInRightSUP�
��� ExchangeArea�this processor� �$ RankInThisNUP�

end�
��� if processor type is SampleUp then begin
��� By help of the sample rate used in this stage at this level

�nd the position in the Up array corresponding to this
SampleUp item�

��� Use this position to read the correct value of RankInThisNUP
from the ExchangeArea�

fRankInThisNUP stores SampleUp�x� � NewUp�x�g

��� Compute RankInThisNewSUP from RankInThisNUP by
considering the sample rate that will be used in the next
stage to make NewSampleUp from NewUp�

fRankInThisNewSUP stores SampleUp�x� � NewSampleUp�x�g
��� ExchangeArea�this processor� �$ RankInThisNewSUP�

end�
��� if processor type is NewUp then
�	
� if this item came from SampleUp�v� then
�		� Read the value of RankInLeftSUP �valid for the next

stage� from the position in the ExchangeArea
corresponding to its sender item in SampleUp�v�

�	�� else fitem came from SampleUp�w�g
�	�� Read the value of RankInRightSUP �valid for the next

stage� from the position in the ExchangeArea
corresponding to its sender item in SampleUp�w��

end�
end�

Figure ����� RankInNewSUPfromSenderNode outlined in PPP� Here we have as�
sumed that the processor activation has been done at the caller place� and not
inside the procedure�

	��

Up processors� Since NewUp�u� contains exactly the items in SampleUp�v�
and SampleUp�w�� Up�u� � NewUp�u� is easily computed as expressed in
statement ���� The ExchangeArea is used to transfer these values to the
SampleUp processors�

In the second part of the procedure the SampleUp processors com�
pute SampleUp�x� � NewSampleUp�x�� x � v� w� Note that both the
left and right child nodes are handled in parallel� Each SampleUp item
�processor� calculates its corresponding Up item in the same node� so that
SampleUp�x� � NewUp�x� is known after statement ��� has been executed�
Since NewSampleUp�x� is made from NewUp�x�� we get SampleUp�x� �
NewSampleUp�x� which is stored in the local variable RankInThisNewSUP�
and written to the ExchangeArea�

The last part of RankInNewSUPfromSenderNode is performed by the
NewUp processors� Remember that we used the ExchangeArea to store
the sender address of each NewUp item at the end of procedure DoMerge
�statement ��� in Figure ��	��� This information is read by the NewUp
processors at the very start of MaintainRanks� before RankInNewSUPfrom�
SenderNode is called� We describe statement �		�� statement �	�� contains
di�erent but quite symmetric code��	 Each NewUp item �processor� uses
its sender address to �nd its corresponding in SampleUp�v�� Since the
ExchangeArea stores SampleUp�x� � NewSampleUp�x� for all nodes x� an
arbitrary item e in NewUp�u� that came from SampleUp�v� may indirectly
read R�e�NewSampleUp�v�� from the ExchangeArea�so that NewUp�u��
SampleUp�v� becomes known for all items in v that came from v� �This rank
is stored in the variable RankInLeftSUP� and is copied from the NewUp to
the Up processors at the beginning of next stage by CopyNewUpToUp �Fig�
ure ��	����

Procedure RankInNewSUPfromOtherNode is outlined in Figure ���
� Al�
most all the work is done by the NewUp processors� Recall Section ������	

and Figure ��� at page 	���

The procedure starts by transferring the variables SL� and SRrankInPar�
entNUP �which were computed in DoMerge� from the SampleUp processors
to the NewUp processors� Statement ��� describes that the values r and t
are communicated from the processors holding item d and f to the proces�
sor holding item e� Again the ExchangeArea is used� and we get a reduced

�	Statements �� ��� give a typical example on how the MIMD property of the CREW
PRAM model may be used to reduce the execution time and increase the processor utili�
sation	

	��

CREW PRAM procedure RankInNewSUPfromOtherNode
begin

fPerformed in parallel by Up� SampleUp and NewUp processorsg
�	� Communicate SLrankInParentNUP from the SampleUp processors

to the NewUp processors through the ExchangeArea�
��� Communicate SRrankInParentNUP from the SampleUp processors

to the NewUp processors through the ExchangeArea�
f Each NewUp processor knows the positions of d and f g

��� Use the NodeAddress#SizeTable to let each NewUp processor know
the address#size of the NewUp array in the other child node�

��� For each NewUp item e that came from SampleUp�w� get the
values of RankInLeftSUP from the NewUp items d and f that
came from SampleUp�v��

��� For each NewUp item e that came from SampleUp�v� get the
values of RankInRightSUP from the NewUp items d and f that
came from SampleUp�w��

f Each NewUp processor knows the value of r and t g

��� Compute the local o�set of each NewUp item e within the
�maximum �� items in positions �r & 	� t� in the NewSampleUp
array of its other child node� f See the text g

��� The rank of NewUp item e in the NewSampleUp array of the other
node is now given by r and the local o�set just computed�
and it is stored in RankInLeftSUP or RankInRightSUP�

end�

Figure ��	�� RankInNewSUPfromOtherNode outlined in PPP�

	��

degree of parallelism as implicitly expressed by statements ��� and ���� It is
statement ��� that corresponds to Figure ���� Further note that the ranks r
and t correspond to the �from sender node case� which just has been solved�

For each item e in NewUp�u�� we must locate the items in the po�
sitions �r & 	� t� in NewSampleUp�v� �or NewSampleUp�w��� This is not
trivial because the NewSampleUp arrays do not exist� However� we know
that NewSampleUp�x� will be made by the procedure MakeSamples from
NewUp�x� in the next stage� Thus� a given item � in NewSampleUp�v�
�or NewSampleUp�w�� may be located in NewUp�v� �or NewUp�w�� if we
take into account the sampling rate that will be used at that level �one level
below� in the next stage�

This should explain how it is possible to implement statement ���� and
why we bothered to store the addresses of the NewUp arrays in statement
����

Finally� each NewUp item �processor� that came from SampleUp�w�
�SampleUp�v�� computes its rank in NewSampleUp�v� �NewSampleUp�w���
and stores this value in RankInLeftSUP �RankInRightSUP��

������� Performance

The time used to perform a Stage �statements ���"�	�� in Figure ��	� at page
	��� is somewhat shorter for the six �rst stages than the numbers listed in
Table ��� at page 	��� This is because some parts of the algorithm do not
need to be performed when the sequences are very short� However� for all
stages after the six�th� the time consumed is as given by the constants in
the table� Stages 	"� takes a total of ���� time units� The total time used
by ColeMergeSort on n distinct items� n $ �m� m is an integer� and m � 	�
may be expressed as

T �ColeMergeSort� n� $ t�	���� n�&����& t����	�� n�
 ���logn�� �� ���	
�

The O�	� time merging performed by MergeWithHelp constitutes the
major time consumption of the algorithm� Of the time used by Merge�
WithHelp ���� time units�� about �
- is needed to compute the crossranks
�Substep 	 and �� p� ���� �Col����� and nearly ��- is used tomaintain ranks
�Step �� p� ����� Note that the execution time of Cole�s parallel merge sort
algorithm is independent of the actual problem instance for a given problem
size� Equation ��	
 makes it possible to calculate the time consumption of
the algorithm as an exact �gure for any problem size �which is a power of
���

	��

Table ���� Performance data measured from execution of ColeMergeSort on the
CREW PRAM simulator� Time and cost are given in kilo CREW PRAM time
units and kilo CREW PRAM �unit�time
 instructions respectively� The number of
read�write operations to�from the global memory are given in kilo locations�

Problem size n time .processors cost .reads .writes

� ��� 	� �
��
��
��

� ��� �
 	���� 	�

��

	� ��� �	 ����� ��� 	��

�� 		�� 	�� 	����� ��� ���

�� 	��� ��� ���
�� 	��� 		��

	�� 	��� ��� ������ ���� ����

��� �
�� ��� �
����� 	
��� ����

Table ��� shows the performance of Cole�s algorithm on various problem
sizes�

	��

�������
���
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������������������������
�����������

�������
�������
������������������������

� � � � � � � �

���������� ���������� ���������� ���������� ����������

�������
���
�������
���
������
����
��������
��
���������
�
���������
�
����������
����������
���������� �
��������� ���
������� ����������

���������� ���������� ����������
���������� ���������� ���������� ���������� ����������

���������� ���������� ���������� ���������� ���������� ��
��������

N

O�logn�

O�n�O�n��

logT �n�

logn

Cole�s algorithm

insertion sort

Figure ��	�� Outline of results expected when comparing Cole�s parallel merge sort
with straight insertion sort�

��� Cole�s Parallel Merge Sort Algorithm Com

pared with Simpler Sorting Algorithms

����� The First Comparison

When starting on this work� I expected that Cole�s algorithm was so com�
plicated that it in spite of its known O�logn� time complexity would be
slower than simpler parallel or sequential algorithms�unless we assumed
very large problem sizes� I �planned� to show that even straight insertion
sort executed on one single processor would perform better than Cole�s al�
gorithm as long as n � N � and I expected N to be so large that it would
imply a processor requirement for Cole�s algorithm in the range of hundreds
of thousands� or millions of processors� Then� I could have claimed that
Cole�s algorithm is of little practical value�

The kind of results that I expected is illustrated in Figure ���	� The
point where Cole�s algorithm becomes faster than 	�processor insertion sort
for worst case problems�
 is marked with a circle in the �gure� The cor�
responding problem size is denoted N � Since insertion sort is very simple�
I expected that the relatively high descriptional complexity of Cole�s algo�
rithm would imply N to be as large as 	
�� or even larger�

However� the results for the time consumption of Cole�s algorithm were

��I�e� problems making insertion sort to an O�n�� algorithm	

	�

much better than expected� Figure ���� shows the time used to sort n

integers by Cole�s algorithm compared with 	�processor insertion sort and
n�processor odd�even transposition sort� Note that we have logarithmic scale
on both axes�

Cole�s algorithm is the CREW PRAM algorithm described in the pre�
vious section� and with performance data as summarised in Table ���� In�
sertion sort is the algorithm which was described in Section �������� Its
performance was described in Section ��	���	� The simplest version of odd�
even transposition sort algorithm was described in Section ������	� Here
we are studying the version developed in Section ��� which requires only
n�� processors to sort n items� The performance of that CREW PRAM
implementation was reported in Section ��	����� The time used by Cole�s
algorithm and odd�even transposition sort are independent of the actual
problem instance for a �xed problem size� However� insertion sort requires
O�n�� time in the worst case� and O�n� time in the best case �both shown
in the �gure��

We see that Cole�s algorithm becomes faster than insertion sort �worst
case� for N 	 ��� Also� Cole�s algorithm becomes faster than odd�even
transposition sort �which is very simple�and usesO�n� processors� for prob�
lem sizes at about �
�� items�

These somewhat surprising results �Figure ����� were presented at the
Norwegian Informatics Conference i 	��� �Nat���� It was a preliminary
comparison which did not support my expectations� The practical value of
Cole�s algorithm was still an open question� and it was clear that further
investigations were needed�

In retrospect� being surprised by the obtained results can be considered
as an underestimation of the di�erence between polynomials such as n� and
n� and logn for large and even modest values of n�

����� Revised Comparison Including Bitonic Sorting

A natural candidate for further investigations was Batcher�s bitonic sorting
described in Section ��	��� Its relative simplicity together with a O�log� n�
time complexity may explain claims such as �nobody beats bitonic sorting�
�San��b��

In addition to implementing bitonic sorting� all the compared algorithm
implementations were revised and some improvements were done� The mod�
elling of the time consumption in the various implementations was also re�
vised in order to give a fair comparison� The �nal results� shown in Figure

	�	

�

�

� 	� �� ��� 	
�� �
��

��

���

	
��

�
��

	����

�����

�

�
�
�
�
��
��
�
��
��
��
��
��
��
��
��
��
�
�

�

�
�
�
�
�
��
�
�
��
��
��
��
��
���
��
��
��
��
���

�
�
��

� � � �
����

�������
���������

��������
��������
�������
����
����

��
���

�
�

�

�
�

� � � � � � �

Problem size

Execution time

Figure ��		� Comparison of Cole�s algorithm with O�n
 and O�n�
 time algorithms
�Nat���� Legend� � � cole�s algorithm �O�logn

� � � odd�even transposition sort
�O�n

� � � insertion sort �worst case� O�n�

� and � � insertion sort �best case�
O�n

�

	��

Table ���� Performance data for the CREW PRAM implementations of the studied
sorting algorithms� Problem size n is �	�� Time and cost are given in kilo CREW
PRAM time units and kilo CREW PRAM �unit�time
 instructions respectively�
The number of read�write operations to�from the global memory are given in kilo
locations�

Algorithm time . processors cost . reads . writes

Cole 	��� ��� ������ ���� ����

Bitonic ��� �� 	���
 ��� ���

Odd�Even ��� �� 	���� 	��� ��

Insert�worst 	���� 	 	���� ��� ���

Insert�Average ���� 	 ���� ��� ���

Insert�best ��� 	 ���
��
�	

Table ���� Same table as above but with problem size n � 	���

Algorithm time . processors cost . reads . writes

Cole �
�� ��� �
����� 	
��� ����

Bitonic ��� 	�� ����� ��� ���

Odd�Even ��� 	�� ����� ���� ����

Insert�worst ����� 	 ����� ���� ����

Insert�Average �
��� 	 �
��� 	��
 	���

Insert�best ��� 	 ��� ��	
��

����� were presented at the SUPERCOMPUTING��
 conference �Nat�
b��
We see that bitonic sorting is fastest in this comparison in a large range of
n starting at about ����

Table ��� and ��� show some central performance data for small test
runs� n $ 	�� and n $ ���� The two rightmost columns show the total
number of read operations from the global memory and the total number of
write operations to the global memory�

The implementation of ColeMergeSort counts about �

 PIL lines and
was developed and tested in about �
 days of work� see Appendix B� The
corresponding numbers for BitonicSort are about �

 PIL lines and roughly
� days of work� The listing is given in Appendix C�

	��

�

�

� �� �� 	�� �k �k
Problem size n

��

	��

�k

�k

��k

��k

Execution time

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
��
��
��
��
��
�
�
��

�
�
��

�
�
��

�
��
��
��
���
��

�

�

�
�
�
�
��
��
��
��
��
�
�
��
�
�

�
��
�
�
��

�
� �

� ��
���
�����
��
��
��
��
��
��
��
��
��

Figure ��	�� Time consumption �in number of CREW PRAM time units
 measured
by running parallel sorting algorithms on the CREW PRAM simulator for various
problem sizes n �horizontal axis
� Note the logarithmic scale on both axes� Leg�
end� � � Cole�s algorithm �O�logn

� � bitonic sorting �O�log� n

� � � odd�even
transposition sort �O�n

� � � insertion sort �worst case� O�n�

� and � � insertion
sort �best case� O�n

�

	��

�

�

logn

Execution time

	� �� �� ��� �	�

�����

	����

�����

�����

��
�
�
�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�
�
�
��
���
��
��
�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
��
��
��
��
��
��
��
��
�

Figure ��	�� Comparison of time consumption in the CREW PRAM implementa�
tions of Cole�s parallel merge sort algorithm �marked with �
 and Batcher�s bitonic
sorting algorithm �marked with �
�

������� Bitonic Sorting Is Faster In Practice�

As shown in Section ��	���	 and ������� exact analytical models have been
developed for the time consumption in the implementations of Cole�s al�
gorithm and bitonic sorting� The models have been checked against the
test runs� and have been used to �nd the point where the CREW PRAM
implementation of Cole�s O�logn� time algorithm becomes faster than the
CREW PRAM implementation of O�log� n� time bitonic algorithm� See
Figure �����

The results are summarised in Table ���� The table shows time and pro�
cessor requirements for the two algorithms for n $ ��k� n $ ���k� �k $ �����
for the last value of n making bitonic sorting faster than Cole�s algorithm�
and for the �rst value of n making Cole�s algorithm to a faster algorithm�
The exact numbers� which are shown in the table� of time units consumed
by the algorithms for the various problem sizes are not especially important�
What is important is that the method of algorithm investigation described

	��

Table ���� Calculated performance data for the two CREW PRAM implementa�
tions�

Algorithm n time . processors

ColeMergeSort ����� ���k� ���
 	
� ���
 	
�

BitonicSort ����� ���k� 	��
 	
� ���
 	
�

ColeMergeSort ���	�� ����k� ��	
 	
� 	�

 	
�

BitonicSort ���	�� ����k� 	��
 	
� 	��
 	
�

ColeMergeSort ��� 	��
�� ���
 	
��

BitonicSort ��� 	����
 ���
 	
�

ColeMergeSort ��	 	��
�� 	�	
 	
��

BitonicSort ��	 	����� 	��
 	
��

in this thesis makes it possible to do such exact calculations�

We see that our straightforward implementation of Batcher�s bitonic
sorting is faster than the implementation of Cole�s parallel merge sort as
long as the number of items to be sorted� n� is less than ��	 	 ��

 	
��� In
other words� for Cole�s algorithm to become faster than bitonic sorting� the
sorting problem instance must contain close to � Giga Tera items� �	
�� is
about as large as the number of milliseconds since the �Big Bang� �Har�������

This comparison strongly indicates that Batcher�s well known and simple
O�log� n� time bitonic sorting is faster than Cole�s O�logn� time algorithm
for all practical values of n� The huge value of n ���	� also gives room
for a lot of improvements to the implementation of Cole�s algorithm before
it beats bitonic sorting for practical problem sizes� There are also good
possibilities to improve the implementation of bitonic sorting�

In fact� Cole�s algorithm is even less practical than depicted by com�
parison of execution time� It requires about � times as many processors as
bitonic sorting� and it has a far more extensive use of the global memory�
This is outlined in the following subsection�

�
The problem size making Cole�s algorithm faster than bitonic sorting requires about
��� � ���� processors	 If we assume that each processor occupies � cubic meters� this
corresponds roughly to �lling the whole volume of the Earth with processors	

	��

������� Comparison of Cost and Memory Usage

For both algorithms we have derived exact expressions for the execution
time and processor requirement as functions of n� Consequently the cost of
running each of the two implementations on a problem of size n is known�

Cost�ColeMergeSort � n� $ T �ColeMergeSort� n�
 NoOfProcs�n� ���		�

where T �ColeMergeSort� n� is given in Equation ��	
 and NoOfProcs�n� is
given by Equations ���� and ��� to ����

For bitonic sorting we have

Cost�BitonicSort � n� $ T �BitonicSort � n�
 �n��� ���	��

where T �BitonicSort� n� is given in Equation ��	�
Using Equation ��		 and Equation ��	� it is found that bitonic sorting

has a lower cost as long as n is less than 	
���� another extremely large
number���

This comparison further strengthens the conclusion made above� Cole�s
algorithm is not a good choice for practical problem sizes�

Global memory access pattern

The CREW PRAM simulator o�ers the possibility of logging all references
to the global memory� Since the global memory is the most unrealistic part
of the CREW PRAM model� it may be interesting to monitor how much an
algorithm utilises the global memory� An algorithm with an intensive use
of the memory may be more di�cult to implement on more realistic models
without a global memory� Figures ���� and ���� illustrates the memory
usage of the CREW PRAM implementations of Bitonic sorting and Cole�s
algorithm respectively� Again� it is clearly demonstrated that Bitonic sorting
is the best alternative for practical use�

In the �gures� plots along a horizontal line depict a memory location
accessed by several processors� Plots along a vertical line depict the various
memory locations accessed by a single processor�

��Imagine �lling the whole universe with neutrons such that there is no remaining empty
space�the required number of neutrons is estimated to about ����	
Sag���	

	��

�

�Global memory address

Processor number

� �

	�

��

��

���� � � �� �� �� � � �� �� �

� �
�

��
�

�

�

� �
�

��
�

�

�

��
�

��
�

�

�

��
�

��
�

�

�

� �
�

��
�

�

�

� �
�

��
�

�

�

��
�

��
�

�

�

��
�

��
�

�

�

� �
�

��
�

�

�

� �
�

��
�

�

�

��
�

��
�

�

�

��
�

��
�

�

�

� � �

�� �

�

�

� � �

�� �

�

�

��
�

��
�

�

�

��
�

��
�

�

�

� � �

�� �

�

�

� � �

�� �

�

�

��
�

��
�

�

�

��
�

��
�

�

�

� �
�

��
�

�

�

� �
�

��
�

�

�

��
�

��
�

�

�

��
�

��
�

�

�

� � �
�� �

�
�� � �

�� �
�

�

��
�

��
�

�

�

��
�

��
�

�

�

� �
� ��

�� �� �
� ��

�� �

��
�

��
�

�

�

��
�

��
�

�

�

� � �

�� �

�

�

� � �

�� �

�

�

��
�

��
�

�

�

��
�

��
�

�

�

� �
�

��
�

�

�

� �
�

��
�

�

�

��
�

��
�

�

�

��
�

��
�

�

�
��

Figure ��	�� Access to the globalmemory during execution of BitonicSort for sorting
�� numbers� � marks a read operation� and � marks a write operation�

	��

�

�
Global memory address

Processor number� � �� 	� �� ��

	�

��

��

���

��

���
���� � � � �� � � �� �� �� � �� �� �� �� �� �� �� �� � �� �� �� �� �� �� ��� �� �� ��� �� �� �� �� � � � �� � � �� �� �� � �� �� �� �� �� �� �� �� � �� �� �� �� �� �� ��� �� �� ��� �� �� �� �� � � � �� � � �� �� �� � �� �� �� �� �� �� �� �� � �� �� �� �� �� �� ��� �� �� ��� �� �� �� �� � � � �� � � �� �� �� � �� �� �� �� �� �� �� �� � �� �� �� �� �� �� ��� �� �� ��� �� �� �� �� � � � �� � � �� �� �� � �� �� �� �� �� �� �� �� � �� �� �� �� �� �� ��� �� �� ��� �� �� �� �� � � � �� � � �� �� �� � �� �� �� �� �� �� �� �� � �� �� �� �� �� �� ��� �� �� ��� �� �� �� �

� � � � �� � � �� �� �� � �� �� �� �� �� �� �� �� � �� �� �� �� �� �� ��� �� �� ��� �� �� �� �

� � �
� �� � �

��
�

�
��
� �

�
��
�

�

�
��
�

���
� �� ��

��
�

�
��
��

�
��
�

�

�
��
�

���
� �� ��

��
�

�
��
��

�
��
���
�

�
��
�

�

�
��
�

�
��
���
�

�
��
�

�

�
��
�

�
��
���
�

�
��
�

�

�
��
�

�
��
���
�

�
��
�

�

�
��
�

�
��
���
�

�
��
�

�

�
��
�

���
�
��

�

�
��
�

�

�
��
�

���
�
��

�

�
��
�

�

�
��
�

�
��
���
�

�
��
�

�

�
��
�

�
��

�
�

��
�

�
��
���
�

�
��
�

�

�
��
�

��� ���
�

��� �
�

��� �

���
���

�

�
�

�
�

�

�
��
�

���
���

�

�
�

�
�

�

�
��
�

�
��

�
�

��
�� � � � �� � � �� �� �� � �

� � �
� �� � �

��
�

�
��
� �

���
� �� ��

��
�

�
��
��

��

�

�
�

�

�

�
�

�
�

�
�

�

�

�
�

�
� � �

� �� � �
��
�

�
��
� � ��

�

�
�

�

�

�
�

�
�

�
�

�

�

�
�

�
� � �

� �� � �
��
�

�
��
� �

� � � � � �� � �
��
���
� �

�

�
�

��
�

� �

�
��
���
��

�
��
���
��

�
��
���
��

���
�
��

� �

���
�
��

� ��
��
���
� �

�
��
���
���

��

����

�

��
��

���

��
��

�

���
����
�

���

�
���

�

���

�
���

� �
�

�
�

�
�

�
�

���
� �� ��

��
�

�
��
��

� � � � � �� �
���

��
��

�

��
�

�
�

�
�

�

���

��
��

�

���

��
��

� �
�

�
� �
�

�
�

�
�

�
� �
�

�
�

��
��

��
��

���

��
��

� �
�

�
� �
�

�
����

��
��

� �
�

�
� �
�

�
�

� � � � � �� �

� � � � � �� �

�
�

�
� �
�

�
�

�
�

�
� �
�

�
�

�
�

�
�

�
�

�
�

�

�
�
�

�

�
�

��
�

�
� �

�

�
�

�

�

�

�
�

�

�
�

�
�

�
�

�

�
�

�

��
����� �� �� �

�
��
�

�
��
�

�
��
�

�
��
�

��
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

��
��
�

�
��
�

��
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

��
��
�

�
��
�

� � � � � �� �

� �� �

��� � ��� �
���

����
�

�
��
�

�
��
�

���

��
��

�

�
��
�

�
��
�

���

��
��

�

��� �
���
�

��� �
���
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�

�
�

�

�
�

�

�

�
�

�

�
�

�
�

�

�
�

�

�

�

�

�
�

�

�
�

��
�

� �
��

�
��
�

� �
�

�
�

��
�

� �
��

� �
�

� �
��
�

� �
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�
�

�
��
�

�
��
�

���

��
��

�

� � ��

� � ��

� �
��
�

��
�

� �� ��� ��

� �� �
�� ��

� �� ��� ��

�
� ��� �

��
�

��
�

�� ��� �� �

�
�

�
�

� �� �

�� ��� �� �

� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �

�
�

�
�

�
�

�
�

��

����

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �� ��� ��
�� ��� �� �

� ��
�

��
�

�

�
�

�
�

�
�

�
�

� ��
�

��
�

�

�
�

�
�

�
�

�
�

����� � � � �� � � �� �� �� � �

� � �
� �� � �

��
�

�
��
� �

���
� �� ��

��
�

�
��
��

��
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
� � �

� �� � �
��
�

�
��
� � ��

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
� � �

� �� � �
��
�

�
��
� �

� � � � ��
��

�
�

�
�

��
��

��
��

��
��

�� ��

�� ����
��

��
��� �� �

� �

� �
� �

� �� �

� �
� �

� �
� � � �

� �

���
� �� ��

��
�

�
��
��

� � � � � �
� �

�

�

�

�

� �
� �

� �
� � � �

� �

� �
� �

� �

� �

� �
� � � �

� �� �
� � � �

� �

� � � �

� � � �

� �� �

� �� �

� �
� �� �� �� �� �

�

�

�

�

� �
� �

� �� � ��

� � ��

� ���

��
�

�

�
�

�
�

�
�

�
���

� �
� �� � ��

��
�

�

�
�

�
�

�
�

�
���

� �
� �� � ��

� � � �
� �

� � ��
� �� �

� �
��

�
�

�
�

��
��

� �
� �

� �
� �

� �
� �

� ���� �

��

� � ��� �

� � ��

�
� �
�

�
�

�
� �
�

�
��
�

� ���� �

��

� � ��� �

� � ��

�
�

�
�

�
� �
�

�
� � �

��
� �
� �

� �

� �

� ���

� ���

� ���

� ���

��� ���

����

����

����

� �
��

��
��

��
��

��
��

� �
��

��
��

��
��

��
��

�
� ��
��

�
�

� �
��

��

�

�
�

�
� ���

� ��� � ���

�
�

�
�

��
��

�
�

�
�

��
��

�
���

� �
� �

���
� �� ��

��
�

�
��
���

���

� � � �
� � �

��� � ���

�

�

�

�

� �

��

�

�
�

�
����

��
�� � ���� �� �

�
���

� ��
�

��

��

�

�
�

�
���� �

���
� ��
��

�
�

�
���� �

���
� ��
�

� � � �
� �

� � � �
� �

� ���� �� �

� ���� �� �

�
���

� �
� �

��
� �

�
� � � �
�

�

��
��

�
�
� �

�

��

� �

� �

�
�

�

� �

�

��
� �

� �
�

�

���� ��� � ��

��
��

� � ��

��
��

� ���

��
�

�

�
�

�
�

�
�

��
��

� �
�

�

��
��

� � ��

��
�

�

�
�

�
�

�
�

��
��

� �
�

�

��
��

� � ��

� � � �
�� � �

� �� � �� ��� ��� � ���

�
�

�
�

�
� �

�
�

�

�

�
�

�
� ���

��

�
�

�
��

�
�

�

�

�
�

�
����

��
� ���

��
� ���

� �

� �� �

��
��

� ���

��

�

�
� �

�

�

��
��

� � ��

�� �
� ��

�� ��� � ��

�� ��

� � ��

��

� �

��
��

� � ��

��
�

� �

�

��
��

� ���

��

�

�
� �

�

�

��
��

� � ��

�� �
� ��

�� ��� � ��

� ��

� ��

��

��

�

�

� ��

� ��

��

���
�

�
�

� �
�

�
�

�

�
�

�
� ���

��

��

�
�

���
���

� � � ��� ��

� � �
�

��
��

� � � ��� ��

� � �

��
�

�

���
���

� � � ��� � �

� � � ��� � �

� � � ��� � �

� �
� � �

� � �
�

��
��

� � �
�

�
� � �

���
�

��
��

���
�

�
���

� � �
�

��
�� � � � �

�� � �

� �

��

���
�

��
��

���
�

�
���

�
� �
�

�� � � � �

�� � �

�
�

��

� �

�� � � � �

� � �

���

�
�

�

�

�

��

� �

��

� � �
�

� � �

��� ���� � ��� � � � �� � �

��

�

�

�

��

��

��
��
��

���

��

�

�

�

��

��

��
��
��

���

� �

���
� �� ��

��
�

�
��
��

�
�

���
���

� � � �
�� � �

�
�

��

�� � �

� �

�� �

�� �

�� � ��� � �

� �

� �

� � � �
��

� � � �
��

��� �� �

�

�
� �

�� �� � � � �� � � �� �� �� � � � �

� � �
� �� � �

��
�

�
��
� � �

�

���
� �� ��

��
�

�
��
���

�

�
�

�
�

�
�

�
�

��
��

� �
�

�

��

� � �
� �� � �

��
�

�
��
� � �

�
�

�

�
�

�
�

�
�

��
��

� �
�

�

��

� � �
� �� � �

��
�

�
��
� � �

�� � � �� ��

�
�

�
�

��
��

� �

� �

���

�

� ��

� �

�

�

� �

�

���

�

� ��

� �

� �

�

� �

�� ��
��

�

�

��

��

��

��

��

��

��

��

�

��
��

��
��

�� ��

��
���� ��

� �

�

� ��
�

� �� �

�
�� �

�
�� � � � ��

���
� �� ��

��
�

�
��
���

�

� � � � �� �

�
�

�

�

���
�

�� � � ��

�
� ��

�

�

���
�

�
� �����

�
�
� ��

� � �

� � �

� � ��

� � ��

���� ��� � ��� � ��

��

�
�

�

�

�� �
�

�� �� �

� �� �

����

�
�

�
�

�
�

�
�

��� �

��

���
�� �� �

�
�

�
�

�
�

�
�

��� �

��

���
�� �� �

� � � �� � � �� �� �

�

� �
�

�

� ��

�

�
���

�

���
�

� ��

� ��

����
�

�

� �

� �� �
�� �

� �� �

� ��

��

� � ��

��

� ���� �

�

�

� � ��� ��

� � ��

� � ��

� �

� � ��

� ��� �
� � �

� ��
�

�

�

� ���

� �� �

� �� �

� �� �

��� ���

�� � �

�
� � �

�� � �

� � �

� ��
�

�
� � �

���
�

�
���

� �� �
�

� � �
��

���
�

�
���� �� �

�
� ��

� �� �

� �

�

�
�

� ��
� � �

��� �� � � �

�

�
���
�
��

�

�
���
�
��

��� �
�� �
�

���
� �� ��

��
�

�
��
���

���

� � � ���� �� � � �

��

�

� ��

�
� �

�

�
�

���
� ��

��� ��� ��� � �

�
�
�
���

� �

�

�

�

�
�

���
� �� �

�
�
���

� �

�

�
�

���
� �� �

�
�
���

� �

� � �

� � �

��� ��� � �

��� ��� � �

��� �
���
�

�
��
���
��

� �
�

���
� �

� �
� �

� �

�
���

� �
� �

��

� �
� �

�
���
� �

� �

�� � ��� � ��

� � ��
� � ��

� ���
� ���

�
�

�
�

�
�

�
�

��

�
���
��

� �� � ��
� � ��

�
�

�
�

�
�

�
�

��

�
���
��

� �� � ��
� � ��

� � � �� � � � � � � ����� �� � � �

�
� � �

� � �
�
�
�

�
�

� ��
� � �

�
���

���
� ��

�
�

���
� ��

� ��

� ��

� ���
� ���

� �

�

�
� � ��

� � ��
� � ��

� ��
� � ��

� � ��� � ��

�
� ��

� ��

����

�
�
� ��

� ��

�
�� ��

�
� ���

����
� �

�

�
� ��

�
� � ��

� ���
� ��

� ��

� � � ��� ��

�
� � ��� ��

�
� �

�

�
� � ��� ��

�
�

�
� �
� �

� � �
� � �

�

�
�

� ��
� � �

�

�

�
� ���

���

��� �� � � �

��
� ��
� � �

��� �� � � �

��
� ��
� � �

�
� ���

���

�� � � � � � �

�� � �
� �
� �

�� � � � � � �

�� � �
� �

�
�

� ��
� � �

�
� � �

� � �
�

�
�

���
� ��

�
���

���
�

��
�
�

�
� � �

�� � �
�
�

�
��

�

�

�
�

���
� ��

�
���

���
���

�
�

�
� � �

�� � �
� � �

�

��
�
�

�
� � �

�� � �
�

�

� �

��
�

� ��
� � �

�� �
� �

� ����� �� � � � �� � � �

��

�

�
�

�
�

�

� ��

���
�
�

��

�

�
�

�
�

�

� ��

���
�
�

���
� �� ��

��
�

�
��
���

� ���
���

� � � ��

�
�

��

� �

�

����

� � �

� � �

�

Figure ��	�� Access to the global memory during execution of ColeMergeSort for
sorting �� numbers� � marks a read operation� and � marks a write operation�

	��

	�

Chapter �

Concluding Remarks and

Further Work

�The lack of symmetry is that the power of a computational
model is robust in time� while the notion of technological fea�
sibility is not� This latter notion is uid� since technology keeps
advancing and o�ering new opportunities� Therefore� it makes
sense to �x the model of computation �after carefully selecting
one� and study it� and at the same time look for e�cient imple�
mentations��

Uzi Vishkin in PRAM Algorithms
 Teach and Preach �Vis����

It has been a very interesting job to do the research reported in this thesis�
I have found theoretical computer science to be a rich source of fundamental
and fascinating results about parallel computing� During the work� new and
interesting concepts and issues have continuously �popped up��

��� Experience and Contributions

����� The Gap Between Theory and Practice

The main goal for the work has been to learn about how to evaluate the
practical value of parallel algorithms developed within theoretical computer
science�

Asymptotically large problem sizes does not occur in practice� By evalu�
ating the performance of implemented algorithms for �nite problem sizes� the

	�	

e�ect of the size of the complexity constants becomes visible� My investiga�
tion of Cole�s algorithm has shown that Batcher�s bitonic sorting algorithm
is faster than Cole�s parallel merge sort algorithm for all practical values of
n� This is in contrast to the asymptotical behaviour� which says that Cole�s
algorithm is a factor of O�logn� time faster�

In my view� it is probably a relation between high descriptional complex�
ity and large complexity constants� However� the computational complexity
is not a good indicator for the size of the complexity constants� Recall
that Cole�s algorithm is considered to be a simple algorithm within the the�
ory community� The majority of the parallel algorithms recently proposed
within theoretical computer science has a larger descriptional complexity
than Cole�s algorithm� Consequently� my investigation of Cole�s algorithm
has con�rmed the belief that promising theoretical algorithms can be of
limited practical importance�

This work should not be perceived as criticism of theoretical computer
science� In the Introduction� I argued that parallel algorithms from the �the�
ory world�� and topics such as complexity theory� will become increasingly
important in the future� However� my work has indicated that practitioners
should take results from theoretical computer science with �a grain of salt��
Careful studies should be performed to �nd out what is hidden by high�level
descriptions� and asymptotical analysis�

����� Evaluating Parallel Algorithms

A new method for evaluating PRAM algorithms

The proposed method for evaluating PRAM algorithms is based on imple�
menting the algorithms for execution on a CREW PRAM simulator� I have
not found the use of this or similar methods described in the literature�
The main advantage of the method is that algorithms may be compared
for �nite problems� As shown by the investigation of Cole�s algorithm� such
implementations make visible information about performance that is hidden
behind the �Big�Oh curtain��

Implementation takes time
I originally planned to investigate � � � parallel algorithms from theoretical
computer science� It was far from clear how much work would be needed
to do the implementations� Only Cole�s algorithm has been implemented
so far� Marianne Hagaseth is currently working on an implementation of

	��

the well known �theoretical� sorting algorithm presented by Shiloach and
Vishkin in 	��	 �SV�	�� �Hag�	��

For several reasons� implementing theoretical algorithms takes a lot of
time� First of all� the algorithms are in general rather complex� They are
described at a relatively high level� and some �uninteresting� details may
have been omitted� However� to be able to implement� you have to know ab�
solutely all details� This makes it necessary to do a thorough and complete
study of the algorithm� until all parts are clearly understood� When the al�
gorithm has been clearly described and understood� several implementation
decisions remain�

The �rst implementation of Cole�s algorithm

During the detailed study of Cole�s algorithm� some missing details were
discovered� This made it necessary to do some few completions of the orig�
inal description �Section ���� �Nat�
a��� In the development of the CREW
PRAM implementation of Cole�s algorithm� the most di�cult task was to
program the dynamic processor allocation in the form of a �sliding pyramid�
of processors �Section ����	����

To my knowledge� my implementation of Cole�s algorithm is the only im�
plemented sorting algorithm using O�logn� time with asymptotically optimal
cost �Col�
� Rud�
� Zag�
��� This was reported in my paper �Logarithmic
Time Cost Optimal Parallel Sorting is Not Yet Fast in Practice��� presented
at the SUPERCOMPUTING��
 conference in November 	��
� �Nat�
b��

A lot may be learned from medium�sized test runs

Massively parallel algorithms with polylogarithmic running time are often
complex� One might think that evaluation of such algorithms would require
processing of very large problem instances� So far� this has not been the
case� In studying the relatively complex Cole�s algorithm� some hundreds
of processors and small sized memories have been su�cient to enlighten the
main aspects of the algorithm� In many cases� the need for brute force �i�e��
huge test runs� may be reduced by the following �working rules��

	� The size of the problem instance is used as a parameter to the algorithm
which is made to solve the problem for all possible problem sizes�

�Marcoz Zagha has recently implemented a simpli�ed version of the Reif!Valiant Flash�
sort algorithm
RV��� on the Connection Machine� however he has expressed that the
implementation is far from O�log n� time
Zag���	

	��

�� Elaborate testing is performed on all problem sizes that are within the
limitations of the simulator�

�� A detailed analysis of the algorithm is performed� The possibility of
making such an analysis with a reasonable e�ort depends strongly on
the fact that the algorithm is deterministic and synchronous�

�� The analysis is con�rmed with measurements from the test cases�

Together� this will often make it possible to use the analytical performance
model by extrapolation for problem sizes beyond the limitations of the sim�
ulator�

����� The CREW PRAM Simulator

About the prototype

Several critical design choices were made to reduce the work needed to
provide high�level parallel programming and the CREW PRAM simula�
tor� The PIL language was de�ned to be a simple extension of SIMULA
�BDMN��� Poo���� and it was decided to implement the simulator by using
the DEMOS simulation package �Bir���� A program in PIL is translated to
�pure� SIMULA which is included in the description of a processor object
in the DEMOS model of the simulator� Before execution� the simulator
program including the translated PIL program is compiled by the SIMULA
compiler �see Section A�	����

This is not an e�cient solution� but it has several advantages� The trans�
lation from PIL to SIMULA is easy� and all the nice features of SIMULA are
automatically available in PIL� Perhaps most important� executing the PIL
programs as SIMULA programs together with the simulator code makes it
possible to use the standard SIMULA source code level debugger �HT��� on
the parallel programs and their interaction with the simulator�

Simplicity was given higher priority than e�cient execution of the PIL
programs� In retrospect� this was a right choice� The bottleneck in inves�
tigating Cole�s algorithm was the program development time� not the time
used to run the program on the simulator� �See the previous section about
medium�sized test runs�� In addition� the use of the simulator prototype
has given us a lot of ideas about how a more e�cient and elegant simulator
system should be designed�

	��

Synchronous MIMD programming

The simplicity of the CREW PRAM model combined with the very nice
properties of synchronous computations make the development� analysis and
debugging of parallel algorithms to a relatively easy task�

Synchronous MIMD programming implies redundant operations� such
as compile time padding� However� I believe it is more important to make
parallel programming easy� than to utilise every clock period of every proces�
sor� Indirectly� easy programming may also imply more e�cient programs�
because the programmer may get a better overview of all aspects of a com�
plex software system� including performance�

Synchronous MIMD programming� which has been claimed to be easy�
should be considered as a by�product of this work� However� it may be one of
the most interesting parts for future research� In this context� it was very en�
couraging to hear the keynote address at the SUPERCOMPUTING��
 con�
ference held by Danny Hillis �Hil�
�� Hillis argued that the computer indus�
try producing massively parallel computers is searching for a programming
paradigm that combines the advantages of SIMD and MIMD programming��

�Similar thoughts have been expressed by Guy Steele �Ste�
���

According to Hillis� it is at present unknown what such a MIMD#SIMD
combination would look like� The synchronous MIMD programming style
used in the work reported in this thesis is such a combination� To conclude�
synchronous MIMD programming is a very promising paradigm for parallel
programming that should be further investigated�

Use in education

The CREW PRAM simulator system has been used in the courses �Highly
Concurrent Algorithms� and �Parallel Algorithms� which are given by the
Division of Computer Systems and Telematics �IDT�� at the Norwegian In�
stitute of Technology �NTH�� It has been used for experimenting with vari�
ous parallel algorithms� as well as for modelling of systolic arrays and neural
networks�

�The main advantage of the SIMD paradigm is that the synchronous operation of the
processors implies easier programming	 MIMD has the advantage of more �exibility and
better handling of conditionals	

	��

��� Further Work

�How far can hard� and software developments proceed indepen�
dently! When should they be combined! Parallelism seems to
bring these matters to the surface with particular urgency��

Karen Frenkel in �Fre��b��

�What is the right division of labour between programmer� com�
piler and on�line resource manager! What is the right interface
between the system components! One should not assume that
the division that proved useful on multiprogrammed uniproces�
sors is the right one for parallel processing��

Marc Snir in Parallel Computation Models � Some Useful Ques�
tions �Sni����

It is my hope to continue working with many of the topics discussed in this
thesis� Below I present a short list of natural continuations of the work�

� Continuing the study of parallel algorithms from theoretical computer
science� to learn more about their practical value� A very large number
of candidate problems and algorithms exist�

� Extend the study on parallel sorting algorithms� Two important al�
ternatives are the Reif#Valiant �ashsort algorithm �RV��� and the
adaptive bitonic sorting algorithm described by Bilardi and Nicolau
�Bil���� The ashsort algorithm is a so�called probabilistic algorithm�
which sorts in O�logn� time with high probability� It has a rather high
descriptional complexity� but is expected to be very fast �Col�
��

� Improving the simulator prototype and the PIL language� Studying
what kind of tools and language features would make synchronous
parallel programming easier�

� Extending the simulator to the EREW and CRCW variants of the
PRAM model� Implementing the possibility of charging a higher cost
for accesses to the global memory�

� De�ning a more complete language for synchronous MIMD program�
ming� and implementing a proper compiler with compile time padding�

	��

� Leslie Valiant�s recent proposal of the BSP model as a bridging model
for parallel computation was presented in Section ��	����� The use of
this model raises many questions� Is a PRAM language ideal! How
should PRAM programs be mapped to the BSP model! How much
of the mapping should be done at compile time� and what should be
left to run�time! How is the BSP model best implemented! Much
interesting research remains before we know the conditional answers
to these questions�

	��

	��

Appendix A

The CREW PRAM

Simulator Prototype

�While a PRAM language would be ideal� other styles may be appro�
priate also��

Leslie Valiant in A Bridging Model for Parallel Computation �Val����

The mainmotivation for developing the CREWPRAM simulatorwas to provide
a vehicle for evaluation of synchronous CREW PRAM algorithms� It was made for
making it possible to implement algorithms in a high level language with convenient
methods for expressing parallelism� and for interacting with the simulator to obtain
measurement data and statistics�

The most important features for algorithm implementation and evaluation� and
the realisation of the simulator prototype� are brie�y outlined in Section A��� A
much more detailed description may be found in the User�s Guide in Section A�	�

The appendix ends with a description of how systolic arrays and similar syn�
chronous computing structures may be modelled by using the simulator�

A�� Main Features and System Overview

A���� Program Development

Wyllie �Wyl��� proposed a high level pseudo code notation called parallel pidgin
algol for expressing algorithms for the PRAM model� Inspired by this work� a
notation called PIL has been de
ned� The PIL notation �Parallel Intermediate
Language
 is based on SIMULA �BDMN��� Poo���� with a small set of extensions

�SIMULA is a high�level object�oriented programming language developed in Norway	
It was made available in ����� but is still modern$

	��

which is necessary for making it into a language well suited for expressing syn�
chronous MIMD parallel programs� Nearly all features found in SIMULA may be
used in a PIL program�

The main features for program development are�

� Processor allocation� A PIL program may contain statements for allocating a
given number of processors and binding these to a processor set� A processor
set is a variable used to �hold� these processors� and may be used in processor
activations�

� Processor activation� A processor activation speci
es that all processors in a
given processor set are to execute a speci
c part of the PIL program�

� Using global memory� The simulator contains procedures for allocating and
accessing global memory� The procedures ensures true CREW PRAM par�
allelism and detection of write con�icts�

� Program tracing� A set of procedures for producing program tracing in a
compact manner is provided�

� SYNC and CHECK� This is two built�in procedures which have shown to be very
helpful during the top�down implementation of complicated algorithms� SYNC
causes the calling processors to synchronise so that they all leave the state�
ment simultaneously� SYNC has been implemented as a �binary tree compu�
tation� using only O�logn
 time �see Section ��	����
� CHECK checks whether
the processors are synchronous at the place of the call in the program� i�e�
that the processors are doing the same call to CHECK simultaneously�

� File inclusion� conditional compilation and macros� This is implemented by
preprocessing the PIL program by the standard C preprocessor cpp�

Perhaps the greatest advantage of de
ning the PIL notation as an extension of
SIMULA is that it implies the availability of the SIMULA debugger simdeb �HT����
This is a very powerful and �exible debugger that operates on the source code level�
It is easy to use for debugging of parallel PIL programs� As an example� consider
the following command�

at ��� if p � � AND Time � ���� THEN stop

This command speci
es that the control should be given to the debugger when
source line number ��� is executed by processor number � if the simulated time has
exceeded 	����

A���� Measuring

The simulator provides the following features for producing data necessary for doing
algorithm evaluation�

	�

� Global clock� The synchronous operation of the CREW PRAM implies that
one global time concept is valid for all the processors� The global clock may
be read and reset� The default output from the simulator gives information
about the exact time for all events which produce any form of output�

� Specifying time consumption� In the current version of the simulator� the time
used on local computations inside each processor must be explicitly given in
the PIL program by the user� This makes it possible for the user to choose an
appropriate level of �granularity� for the time modelling� It also implies the
advantage that the programmer is free to assume any particular instruction
set or other way of representing time consumption� However� future versions
of the CREW PRAM simulator system should ideally contain the possibility
of automatic modelling of the time consumption� performed by the compiler�

� Processor and global memory requirement� The number of processors used
in the algorithm is explicitly given in the PIL program� and may therefore
easily be reported together with other performance data� The amount of
global memory used may be obtained by reading the user stack pointer�

� Global memory access statistics� The simulator counts and reports the num�
ber of reads and the number of writes to the global memory� Later versions
may contain more advanced statistics�

� DEMOS� data collection facilities� The general and �exible data collection
facilities provided in DEMOS are available� COUNT may be used to record
events� TALLY may be used to record time independent variables�with vari�
ous statistics �mean� estimated standard deviation etc�
 maintained over the
samples� and HISTOGRAM provides a convenient way of displaying measure�
ment data�

Figure A�� shows the general format of a main program �PIL
 for testing an al�
gorithm on a series of problem instances� When generating problem instances�
the random drawing facilities in DEMOS which sample from di erent statistical
distributions may be very useful�

Functions such as processor allocation and processor resynchronisation are re�
alised in the simulator by simulating real CREW PRAM algorithms for these
tasks�to obtain realistic modelling of the time consumption�

A���� A Brief System Overview

When developing the CREW PRAM simulator prototype it was a major goal to
make a small but useful� and easily extensible system� This had to be done within
a few man months�so it would be impossible to do all from scratch�

�DEMOS is a nice and powerful package for discrete event simulation written in SIM�
ULA
Bir���	

	�	

...
PROCESSOR_SET ProcessorSet;
INTEGER n;
ADDRESS addr;
...
FOR n := 2 TO 512 DO
BEGIN
 addr := GenerateProblemInstance(n);
 ... the problem instance is now placed in global memory
 ClockReset;
 ... Start of evaluated algorithm
 ... initial sequential part of algorithm
 ASSIGN n PROCESSORS TO ProcessorSet;

 FOR_EACH PROCESSOR IN ProcessorSet;
 ... PIL statements executed in parallel by
 all the processors in ProcessorSet
 END_FOR_EACH PROCESSOR;
 ... End of evaluated algorithm

 TimeUsed := ClockRead;
 ... sequential code for checking and/or reporting the
 results obtained by running the algorithm
 ... sequential code for gathering and reporting performance
 data from the last test run
END_FOR loop doing several test runs;

... sequential code for reporting statistics about all the test runs

Figure A��� General format of PIL program for running a parallel algorithm on
several problem instances� In this case the algorithm is assumed to use one set of
n processors where n is the size of the problem instance�

� ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������������������������
�����������

�������������������������
�������
������

����������
����������
����������
�������������������� ���������� ���������� ���������� ���������� ���������� ���������� ���������� ����������������

����
�������
���
�������
���
�������
���

PIL�program

proc�sim

PIL��compiler�

UNIX�SUN

DEMOS

SIMULA

Simulator

CREW PRAM

Figure A�	� CREW PRAM Simulator � implementation overview�

	��

The main implementation principle used in the simulator is outlined in Figure
A�	� The CREW PRAM simulator is written in SIMULA �BDMN���� �Poo����
�DH��� using the excellent DEMOS discrete event simulation package �Bir���� The
PIL program is �compiled�� to SIMULA�DEMOS and included in the
le proc�sim
which is part of the simulator source code� proc�sim describes the behaviour of
each CREW PRAM processor� Thus� during algorithm simulation� each processor
object �in the SIMULA sense
 executes its own copy of the PIL program�

A great advantage implied by this implementation strategy is that all the pow�
erful features of the SIMULA programming language and the DEMOS package are
available in the PIL program� Further the source level SIMULA debugger simdeb
�HT��� may be used for studying and interacting with the parallel PIL program
under execution�

This is certainly a resource demanding implementation� However� experience
have shown� as was described in Section ����	� that the prototype is able to simulate
large enough problem instances to unveil most interesting aspects of the evaluated
algorithm�

During the development of the CREW PRAM implementation of Cole�s al�
gorithm� all� except one� errors were found by testing the program on problem
instances consisting of only �� numbers� The last error was found by testing the
implementation on �	 number� however� the same error was also visible when sort�
ing only � numbers�

Executing Cole�s algorithm on �� numbers requires �� CREW PRAM proces�
sors and takes about �� CPU seconds on a SUN ��	��� ��� CREW PRAM pro�
cessors are needed to sort 	�� numbers� and require about � CPU hours� Bitonic
sorting is simpler and requires fewer processors� which make the simulations faster�
�� numbers are sorted in � CPU seconds� and ���� numbers �corresponding to 	���
CREW PRAM processors
 are sorted in about � CPU hours �SUN ��	��
�

Implementing the simulator in SIMULA�DEMOS implies an open�ended easily
extensible system� The CREW PRAM simulator may easily be modi
ed to an
EREW PRAM simulator�

A�� User�s Guide

This section describes how to use the CREW PRAM simulator as it currently is in�
stalled at the Division of Computer Systems and Telematics �IDT
� The Norwegian
Institute of Technology �NTH
�

A���� Introduction

The CREW PRAM simulator includes a simple programming environment that
makes it convenient to develop and experiment with synchronous MIMD parallel

�This is a simple transformation done by a pipeline of �lters written in �gawk� �GNU
awk�	

	��

algorithms� Parallel algorithms are in general more di�cult to develop� under�
stand� and test than sequential algorithms� However� the property of synchronous
operation combined with features in the simulator removes a lot of these di�culties�

The parallel algorithms may be written in a high�level SIMULA like language�
A powerful symbolic debugger may be used on the parallel programs�

A������ Parallel Algorithms� CREW PRAM� PPP and PIL

When studying parallel algorithms it is desirable to use a machine model that
is simple and general�so that one may concentrate on the algorithms and not
the details of a speci
c machine architecture� The CREW PRAM satis
es this
requirement�

Further� when expressing algorithms it has become practice to use so called
pseudo code� In Section ��	�	 a notation called PPP �Parallel Pseudo Pascal
 was
presented�

Just as other kinds of pseudo code� PPP may not yet be compiled into exe�
cutable code� It is therefore needed a notation at a lower level� The motivation
behind the work that has resulted in the CREW PRAM simulator is a study of a
special kind of parallel algorithms�not to write a compiler� Therefore� the pro�
gramming notation which has been adopted is a compromise between the following
two requirements� �
 It should be as similar to PPP as possible� 	
 It must be easy
to transform into a format that may be executed with the simulator� The notation
is called PIL� which is short for Parallel Intermediate Language� It is described in
Section A�	�����

A������ System Requirements and Installation

The CREW PRAM simulator may be used on most of IDT�s SUN computers run�
ning the UNIX� operating system�Note that the run command very well may be
executed locally on a SUN workstation�this reduces your chance of becoming un�
popular among the other users�

We assume that you are using the UNIX command interpreter which is called
csh� First� you must add the following line at the end of your �cshrc
le in your
login directory�

set path � ����cmd �path�

Then make sure that your current directory is your login directory� and type

source �cshrc

to make the change active�
Use cd to move to a directory where you want to install the version ��� of the

CREW PRAM simulator� Type the following two commands� which will install the
software in a new directory called ver����

�UNIX is a trademark of AT%T	

	��

ASSIGN � PROCESSORS TO ProcSetA�

FOR�EACH PROCESSOR IN ProcSetA

Use����

T�TO�	Hello World
	��

END�FOR�EACH PROCESSOR�

���

���� TIME �
�������

�Hello World

�Hello World

���� TIME �
�������

���

Figure A��� Part of simple demo program �left
� and part of produced output
�right
�

mkdir ver���

�sigyn�home�lasse�dring�releases�version����cmd�install��� ver���

A���� Getting Started

Without going into details� this section shows how a very simple example program
may be compiled and executed with the simulator�

The current installation of the CREW PRAM simulator has a directory called
pil which contains a collection of PIL programs which illustrates various aspects
of the CREW PRAM simulator and parallel algorithms� Consider the very simple
parallel algorithm on the
le demo��pil� The main part of this program and its
output is shown in Figure A���

Be sure that your current directory is src� To compile the PIL program stored in
the
le called demo��pil under the pil directory� give the command�

pilc demo�

After compiling� you must use the link command� Just type link� Now� you are
ready to execute the program� type run�

A���� Carrying On

In this section we describe most of the features in the CREW PRAM simulator�
the related tools� and the PIL language�

As an example we will use a simple PIL program� Odd�Even Transposition
Sort is one of the simplest parallel algorithms for sorting� Descriptions of the
algorithmmay be found in �Akl��� pp� ����� or �Qui��� pp� ������ A PIL program
that implements this algorithm may be found on the
le oes��pil under the pil
directory�

Make a copy of oes��pil to another
lename so you do not destroy the original
version� In the following� we assume that your copy was named oddeven�pil�

	��

A������ The PIL Language�Background

The PIL �Parallel Intermediate Language
 notation is based on SIMULA with a
small set of extensions which is necessary for making it into a language well suited
for expressing synchronous MIMD parallel programs�

Consequently� nearly all features found in SIMULA may be used in a PIL
program� The main exceptions to this are mentioned in this appendix� The CREW
PRAM simulator is implemented by good help of the simulation package DEMOS�
DEMOS o ers a lot of powerful features which all are made available through the
PIL language� In the context of analysing and measuring parallel algorithms�a
large set of procedures for gathering and reporting statistics may be very helpful�

A recent book on SIMULA is An Introduction to Programming in SIMULA by
R� J� Pooley �Poo���� an older one is SIMULA BEGIN written by GrahamBirtwistle
and the three Norwegians Ole�Johan Dahl� Bj!rn Myhrhaug and Kristen Nygaard
who invented SIMULA �BDMN����

DEMOS is written in SIMULA� and is described in the book DEMOS�A Sys�
tem for Discrete Event Modelling on Simula written by Graham Birtwistle �Bir����
This book also gives a small introduction to SIMULA� su�cient for making the
reader able to utilise all the powerful features in DEMOS�

The current implementation of the CREW PRAM simulator is based on the
SIMULA system o ered by Lund Software House AB� Sweden� Speci
c details of
this version of the SIMULA language may be found in �DH��� HT����

A������ Including Files� Macros and Conditional Compiling

Three useful features are made available by letting the PIL compiler run the stan�
dard UNIX C preprocessor on the input
le� They are explained in the following�

Further documentation of these features may be found in �KR���� or just type
man cpp on any UNIX terminal� Note that it is not possible to pass parameters to
the cpp command in this version of pilc�

include
The reader which is familiar with the C programming language will recognise the
syntax used for including
les� oddeven�pil includes three
les�sorting� oes�var
and oes�proc� It is good practice to split your algorithm in several logical units�
When the PIL compiler pilc encounters the line

�include�sorting�

it will look for a
le named sorting in the pil directory� If it is found� the contents
are copied into the program at the place of the �include statement�

define
oddeven�pil contains one macro named SHOWodd which is de
ned by the �define

	��

command� This macro is simply used to make a shorter name on the �more precise

procedure call Let�ShowArray��Odd phase done�����

Macros may be used to make programs more readable�however complicated
macros and especially macros with parameters should be used with care� Macros
are in general dangerous�

A few names� ADDRESS� CONSTANT and INFTY have been de
ned as macros in a

le� called pil�h which is included by the PIL compiler� These names are nothing
more that syntactic sugar�

ifdef�
else�
endif etc�
It is often desirable to operate with several versions of a program� but with only
slight changes between two or more versions� Two versions may be stored as two
�very similar

les� However� it is normally much better to let the di erence be
visible inside one copy of the program� Conditional compiling makes this possible�

Study the lines beginning with a � around SHOWodd and SHOWeven in our sample

le� Insert � and one space in the front of the line �define VERBOSE� recompile�
link and run�and see what happens� �SIMULA lines beginning with � followed by
a space are interpreted as comments by the SIMULA compiler
�

Excessive use of this feature may make the programs unreadable�

A������ Program Structure� Procedures and
Variable Declarations

When you start the CREW PRAM simulator� one CREW PRAM processor will
automatically start execution at top of the CREW PRAM program� This processor
is sometimes called the master processor� even though it is equal to all the other
CREW PRAM processors� If you do not allocate and activate processors �discussed
in the following two subsections
� the program will be executed as a sequential
program by this single processor�

Procedures
As for sequential programs� it is important to structure your program by use of
procedures� Procedures may be nested� Top down development and a hierarchy of
procedures is warmly recommended since PIL programs are not easier to develop
than traditional sequential programs�

Procedures in PIL have the same format as in SIMULA with the following ex�
ception� In the current version� all procedures� must begin with a BEGIN statement
and end with a statement of the form�

END PROCEDURE ProcedureName�

�This procedure is de�ned in the �le oes�proc	 More on procedures in Section A	�	�	�	

�In standard SIMULA procedures may consist of a single statement not enclosed by
the SIMULA keywords BEGIN and END	 This is not allowed in PIL	

	��

ProcedureName may be any text� but it is recommended to use the name of the
procedure�

Variables�make them as local as possible
Declaration of processor local variables follow the SIMULA syntax� All variables
which are declared at the outermost level in the PIL program will be local to
each processor� To illustrate this� consider a program that consists of two logically
di erent parts� A and B� Part A is executed by processor set A and part B is
executed by the B processors� Part A does only use variable var�A and B uses only
var�B� In the current version� all the processors in processor set A and B will have
its own copy of both var�A and var�B� even though the processors in B do not use
var�A and vice versa��

This is not an ideal situation� If the programmer in the code executed by the
A processors erroneously uses var�B no error message will occur�as one should
expect from a proper compiler� The A processors will use its own local copy which
will contain the value zero� at least the
rst time it is �erroneously
 used�

In large programs� with several kinds of processors and many variables� this
oddity makes the program less readable with respect to variable usage�	 In the
current implementation� it also makes the data part of each processor object un�
necessary large�which in turn slows down the simulation�

However� this problem may to a large extent be alleviated by making variables
local where it is possible� Remember that variables in SIMULA �and therefore also
in PIL
 may be declared as local for an arbitrary block� in addition to local inside
a procedure�

As an example� compare oes��pil with the
le oesNew��pil shown in Figure
��	� at page ��� In the latter program� both procedures and variables have been
moved inside the parallel part �FOR EACH PROCESSOR ���
 of the program� This
programming style is generally recommended�

Variables in the global memory
Global variables� i�e� variables placed in the CREW PRAM global memory are
rather restricted in the current version of PIL� Section A�	���� explains how integer
locations in the global memory are allocated and accessed by using the PIL READ

and WRITE statements� These statements require the speci
cation of a global mem�
ory address� Variables used to hold such addresses should be declared as of type
ADDRESS�

�The reason for this odd feature is that the implementation of the simulator is strongly
based on letting each processor �as a SIMULA object� execute its own copy of the whole
PIL program	

	In a way� it gives the same problems as traditionally encountered in large sequential
programs with a lot of global variables�it is di�cult to read from the code which variables
are used or may be used in various parts of the code	

	��

A������ Processor Allocation

All parallel PIL programs must contain at least one statement for processor alloca�
tion� The format is

ASSIGN Number PROCESSORS TO ProcSet�

This statement allocates Number new processors in a processor group or set which is
given the name ProcSet� The term processor set is used to denote such a collection
of processors� The master processor mentioned above is a processor set containing
only one processor� and is automatically allocated when starting the simulator�
Number may be any expression resulting in an integer� Note however that in the
current version this expression must be written as one text�string without any
whitespace
 characters� ProcSet is the name of a variable which must be declared
as type PROCESSOR SET� See the declaration of the variable ProcSet� in the
le
oes�var included from oddeven�pil�

Request for processor allocation can only be issued by the single processor �mas�
ter processor
 which executes the outermost level of the main program� However�
the allocation is done by the allocated processors in cooperation in a binary tree
fashion� As a result� allocating n processors takes O�logn
 time units� �See Section
��	�����

Any number of processors may be allocated to a processor set� and any number
of processor sets may be allocated and used in a program�

A�����	 Processor Activation

When a set of processors has been allocated� they may be speci
ed to execute
code in parallel by use of so called processor activation� Processor activations
must be placed at the outermost level of the main program�with the exception that
they may be done inside �eventually
 nested FOR and�or WHILE loops� Currently�
processor activation may not be placed inside a �general
 BEGIN � � �END block� For
further details� study the
le LoopTest�pil in the pil directory� The format is

FOR EACH PROCESSOR IN ProcSet
AnyCode

END FOR EACH PROCESSOR�

AnyCode will be executed by all the processors in ProcSet in parallel�and it is
important to remember that each of these processors will operate on its own set of
variables� The processors in ProcSet are numbered �� 	� �� � � �� and each processor
knows its own number through the local variable p� This variable should not be
changed by the processor �PIL program
�

The single processor �master
 which is dedicated for executing the outermost
level of the main program will �wait outside� while AnyCode is executed�

�Whitespace is common UNIX terminology for space �blank�� tab� and newline	

	��

AnyCode may contain variable and procedure declarations if it is written as a
SIMULA block �BEGIN � � �END
� If it does not contain declarations� it may be written
as a list of statements without the enclosing BEGIN � � �END� The END FOR EACH

PROCESSOR statement checks that the processors are synchronous when they leave
AnyCode� If not� a warning �SYNCHRONY LOST� is given� see page ����

Nesting of processor activations is not allowed� Currently� only one processor
set may be active at the same time�

A������ Using the Global Memory

All processors in a CREW PRAM are connected to a global memory� This memory
must be used for all kinds of communication between the processors� The global
memory is simply a large array of integers� On the simulator� the global memory
has �xed size and may be regarded as consisting of two parts�the user stack and the
system stack� The system stack is used to store the processor set data structures�
The user stack is used to store global variables allocated dynamically in the PIL
program� It grows towards higher addresses�

The number of locations read�written from�to the global memory is measured
by the simulator and reported at end of a PIL program execution�

Allocating memory
Global memory must be allocated explicitly before it can be used� see the procedure
Mem�UserMalloc in Section A�	����� In our sample program� memory is allocated
in the procedure GenerateSortingInstance in the
le sorting�

Local memory should not be allocated explicitly in a PIL program� Just declare
your variables� and the �SIMULA
 system does the remaining work�

Accessing global memory
Any processor may read from any location in the global memory at any time� The
format is�

READ VarName FROM AddressExpression�

The contents of the location in the global memory given by AddressExpression is
read and placed in the integer variable called VarName� AddressExpression may
be an arbitrary integer expression� In the current version� AddressExpression and
VarName must not contain any whitespace characters� The PIL keyword READ

must be the
rst text symbol on the line� and the whole statement must be written
on a single line �but it may exceed �� characters
� In the current version� a READ

statement takes one time unit regardless of the complexity of AddressExpression�
Any processor may write any value to any location in the global memory at

any time� But� if two or more processors at the same time unit writes to the same
global memory location� a write con�ict will occur� This is an illegal operation on
a CREW PRAM� and the CREW PRAM simulator will give an appropriate error
message� and stop� The format for writing to the global memory is�

	�

WRITE Value TO AddressExpression�

Value may be any integer expression� Note that for every time unit� all writes
to global memory occur after all reads from the memory� �See CREW PRAM
property 	 at page ���
 In the current version� a WRITE statement takes one time
unit regardless of the complexity of AddressExpression� The syntax of the WRITE
statement is similar to the READ statement as described above�

Just as standard SIMULA statements� these statements must not end with a �

if they are placed just before the SIMULA keyword ELSE�

A������ FOR and WHILE Loops

A FOR loop should be written according to the following format�

FOR LoopVar �� FirstVal TO LastVal DO
BEGIN

AnyCode
END FOR�

The keyword TO is used instead of the corresponding STEP � UNTIL of SIMULA to
make PIL closer to the PPP syntax� The whole FOR � � �DO must be contained in a
single line� In the current version� LoopVar� FirstVal and LastVal must be written
as one text�string without any whitespace characters� and the assignment operator
�� must be enclosed by spaces�

WHILE loops have a very similar form�

WHILE LoopCondition DO

BEGIN

AnyCode
END WHILE�

The LoopCondition may contain whitespace characters� however the whole
WHILE � � �DO statement must be contained in a single line� and DO must be the
last symbol on that line�

A������ Built�In Procedures and Variables

The CREW PRAM simulator o ers various built�in procedures and variables which
will be used in most PIL programs�

Interaction with the simulator

	�	

� Use�TimeUnits��
This procedure is used to represent time used by the calling processor� Time�
Units is an arbitrary integer expression�

� Wait�TimeUnits��
Does exactly the same as Use� but should be used to make it possible to
distinguish idle time from active work�

� IntegerVar �� ClockRead�

ClockRead returns the current time as an integer value� Remember that the
synchronous property of a CREW PRAM implies that this clock may be
perceived as one global clock which always is correct for all the processors�

� ClockReset�

This call sets the clock to zero� It is typically called after having done un�
interesting initialisation work etc�� and just before the computation which
should be measured starts�

� SYNC�

This procedure makes all the processors in the active processor set to syn�
chronise so that they all will return from the call to SYNC simultaneously�
This explicit resynchronisation is implemented as a �binary tree computa�
tion� with O�logn
 time consumption as outlined in Section ��	����� Its use
together with the CHECK procedure in a recommended top down approach for
CREW PRAM programming is discussed in Section ��� In the current ver�
sion of the simulator� it is assumed that SYNC is called by all the processors
in the active processor set�

� CHECK�

Checks whether all the processors in the active processor set are synchronous
at the place in the program where CHECK is called� See also the description
of procedure SYNC above�

� Warning�Text��
Prints ����� WARNING ����� followed by Text� The program execution con�
tinues�

� Error�Text��
Prints ����� ERROR ����� followed by Text and stops the program execu�
tion�

Using the global memory
See also Section A�	�����

� AddressVar �� Mem�UserMalloc�IntegerExpr��
Allocates IntegerExpr number of consecutive memory locations on top of the
user stack in the global memory� The address of the
rst location is returned�

	��

� Mem�UserFree�IntegerExpr��
Frees IntegerExpr number of consecutive memory locations from top of the
user stack in the global memory�

� ArrayPrint�StartAddressExpression� Size��
Prints Size consecutive locations in global memory starting at� and including
StartAddressExpression�

� PUSH�IntegerExpr��
Allocates a new location on top of the user stack and writes the value of
IntegerExpr in that location�

� IntegerVar �� POP�

POP returns the value stored in the location on top of the user stack and frees
the location�

� UserStackPtr

This is a globally accessible variable of type INTEGER which points to the
next free location on the user stack�

� Mem�N Reads and Mem�N Writes

These are DEMOS objects of type COUNT which measures the number of READ
operations and WRITE operations to the global memory� The READ count
may be reset by inserting Mem�N Reads�RESET� in your PIL program� and
its current value may be reported by Mem�N Writes�REPORT�� Similarly for
WRITE operations�

The procedures PUSH and POP may be used together with the UserStackPtr

to pass values from a single processor to a large number of processors in a very
e�cient way� See the
le test��pil for a small example of how this may be done
to implement �parallel parameter passing�� or study the main program and the
procedure SetUp in the
le systolicdemo��pil �explained in Section A���	
 for a
more realistic example�

Generating random data and collecting statistics
A set of global variables has been included in the CREW PRAM simulator to make
it easy to use the DEMOS random number genarators and the DEMOS facilities
for collecting statistical data� These global variables make it possible to create
the speci
c DEMOS objects when they are needed �probably done by the master
processor
� and to use them by any processor without interfering with the simulator
time or other quantities that are measured by the simulator�

These variables are of �SIMULA
 type REF�DemosClassName� and are named
GlobalDemosClassName�IndexVal�� DemosClassNamemay be one of COUNT� TALLY
or HISTOGRAM with IndexVal in the range ������ or one of CONSTANT� NORMAL� NEGEXP�
UNIFORM� ERLANG� EMPIRICAL� RANDINT� POISSON or DRAWwith IndexVal in the range
����� An extensive example is found in the
le sync��pil in the pil directory� Con�
sult also the DEMOS book �Bir����

	��

Tracing and output
Some programmers have the opinion that making code for producing output in
SIMULA requires a lot of typing� Also� when debugging programs it is convenient
to be able to trace out values of variables during the program execution� Such
program tracing should be possible to turn o without the need for removing the
code which produces the tracing� It may be useful to keep it also after you believe
you have done your last change to the program� If a later modi
cation introduces
a new bug� you will probably have good use for the �old� tracing code�

The CREW PRAM simulator contains a set of simple procedures which may
be a good help in making this kind of tracing� The routines may also very well be
used for �normal� output from the program� All these procedures starts with T �

� T Off�

Turns tracing o � Tracing procedures called after this procedure will do
nothing�

� T On�

Turns tracing on� T On and T Off operate on a global �ag �BOOLEAN T Flag

which controls tracing for all processors�

� T ThisIs�

Prints out the variable name of the processor set and the processor number
for the processor performing this procedure� This is very useful if you have
lost control over your processors�

� T Time�

Reports the current simulation time�

� T TITITO�Text�� IntegerExpr�� Text�� IntegerExpr�� Text	��
This is the most complicated of a set of similar procedures used to trace out
values from the program in a compact manner�

� T TITIO� T TITI� T TITO� T TIO� T TBO� T TI� T TO� T T

These procedures are all similar to T TITITO� The part of the name following
the underscore character is intended to be a short way to specify the param�
eters which must be given to the procedure� T is short for Text� I for Integer�
and B for Boolean� A procedure with name ending with O calls OUTIMAGE��

before it returns�

All lines in the simulator output produced by the �T � procedures� start with
a � in the
rst column� making them easy to
lter away from the other output�

Miscellaneous

� IsOdd�IntegerExpr�
Returns TRUE if IntegerExpr evaluates to an odd number�

�
I!O in SIMULA is bu�ered� OUTIMAGE empties the output bu�er	

	��

� IsEven�IntegerExpr�
Returns TRUE if IntegerExpr evaluates to an even number�

� log��IntegerExpr�
Returns the value of log

�
�IntegerExpr
�

� power��IntegerExpr�
Returns the value of 	IntegerExpr�

A���� The Development Cycle

It is now time to give some more details of the edit�compile� link�run cycle�

A������ pilc

The PIL compiler pilc consists of two main phases� The
rst phase produces
a SIMULA
le� and the second phase compiles this
le together with the source
code for the simulator� The
rst phase is implemented as a UNIX pipeline� whose
most important parts are the C preprocessor cpp and a
lter called PILfix���
These interior details are mentioned here to describe why error messages from the
pilc command may come from at least three main sources� This will now be
demonstrated by introducing some small errors in our sample
le oddeven�pil

cpp errors
Insert a space before the s in sorting in the �include statement at the beginning
of the
le� and try to compile the
le with pilc� The output will then contain a
line looking like�

tmp�ppl� ��� Can�t find include file sorting

tmp�ppl is a temporary
le used by pilc� �� is the line number�� in that
le� Few
�early� error messages like this come alone� In our example we also get an error
message from the SIMULA compiler� In general� it is seldom worthwhile to invest
to much e ort in understanding the subsequent error messages�

When encountering error messages from cpp remember that man cpp is avail�
able on your terminal�

Before you proceed� remove the error introduced above�

��PILfix does the main work of translating PIL speci�c features into SIMULA code	
PILfix itself is a pipeline of three simple �lters�all written in the pattern scanning and
processing language gawk �GNU awk�	

��This� and all line numbers in later examples are very dependent on the actual version
of the simulator and the example �le you are using	 Please do not expect them to match
with what you get on your screen	

	��

PILfix errors
During the progress of the compilation PILfix produces an indented listing of the
procedures found in the program� This is valuable information when looking for
errors in the block structure of the program�

In the current version� not all syntax errors that may occur in PIL programs
are found and reported by PILfix� However� most errors are detected in the next
phase�the SIMULA compiler�

Insert a space after the n in the ASSIGN statement of oddeven�pil� and compile�
We get the following error message�

PILfix� ERROR �at
internal
 line no ���

PIL line was� ASSIGN n � PROCESSORS TO ProcSet��

Error message� ASSIGN statement improper syntax

Other errors found by PILfix are demonstrated by test��pil and
test���pil in the pil directory�

simula errors
simula is the name of the SIMULA compiler �DH���� It is run on the simulator
source
les �in the src directory
� which includes the
le PILalg�sim which is
produced by the �sub�
phases discussed above� It is seldom necessary for the PIL
programmer to look at PILalg�sim�

Most error messages from simula are self�explanatory and will not be discussed
here� However� there is one kind of error which often occurs in SIMULA and PIL
programs that may produce a frightening amount of error messages� This type of
error is often called error in block structure� First� let us demonstrate how such an
error unwillingly may be introduced in your program�

The traditional format for comments in SIMULA is the keyword COMMENT fol�
lowed by any amount of lines until the comment is ended with a ���� If you forget
to terminate the comment by � the comment will �del
eat all code up till the next
�� This may cause an error message� but may also result in a faulty program where
important parts are silently omitted�

In our sample
le� remove the � at the end of the comment just before the
statement END FOR� This will produce a lot of error messages referring to names in
other
les than your program �PILalg�sim
�

 Error in file� util�sim �at the beginning of the listing�

���

Error ���� Too few �end�s extra end inserted �at the end�

The
le name util�sim refers to one of the CREW PRAM simulator source
les�

��The SIMULA version used by the CREW PRAM simulator allows
 instead of
COMMENT	

	��

Whenever this kind of error message occur the reason is probably an error in
the block structure in the SIMULA �PIL
 program� In this case the last part of the
error listing tells the reason� This does not generally happen���

The following habit is warmly recommended �for all block oriented languages

to avoid this kind of errors� When typing a comment of the form COMMENT � � �� or

 � � ��� or when typing a BEGIN � � �END structure�always type the �termination
part� of the syntax before you type the insides�

How to map line numbers given by the SIMULA system to line numbers in your
PIL algorithm is discussed under the run command below�

A������ link

Since the current version of the CREW PRAM simulator compiles the PIL program
together with the simulator as one source
le there is very seldom that you get errors
from the link command that have not been reported by the compiler�

A������ run

SIMULA has a powerful run time system� The PIL programmer takes advantage
of this� Together with a run time error message� the source line number where the
fail occurred will be printed�

Line numbers
The line numbers in error messages from the SIMULA compiler or run time system
will not match the line numbers in the PIL program� The reason is that the
PIL program is translated to a larger SIMULA program which is included in the
simulator code�

However� it is still easy to
nd the PIL line corresponding to a SIMULA line�
The
le pram�lis in the src directory contains the listing produced by pilc and
corresponding to the code executed by run� Find the line number�� in this
le where
the error has occurred� In most cases you will by inspection of pram�lis understand
where the corresponding line in the PIL program is� For large programs� it may be
practical to use an editor with two bu ers�one containing your PIL program and
one containing pram�lis� Then the editor will probably do the pattern matching
faster and more reliable�

Error messages from the simulator
We will now shortly explain run time error messages from the simulator�

��A �brute force� method for locating such errors is a systematic and repeated exclusion
of parts of the program followed by recompilation	 The �include statement may be helpful
in doing this	

��There are in fact two columns with line numbers in this listing� the one to the right
is the right one for this purpose	

	��

� WRITE CONFLICT

This occurs if two or more processors perform a write operation on the same
location �address
 in the global memory� The CREW PRAM simulator will
stop the program at the end of the time unit when the con�ict occurred� See
the example
le test���pil�

� SYNCHRONY LOST

This is given as a warning from the simulator when the CHECK procedure
detects that not all processors in the active processor set are synchronous�
The SIMULA source line number where CHECK was called is included in the
message� An example is given in test���pil� Note that the CHECK procedure
is called as part of the END FOR EACH PROCESSOR statement�

� insufficient memory

The CREW PRAM simulator implementation is based on allocating mem�
ory dynamically as storage is needed during the execution� When running
PIL programs using a large number of processors the following message may
appear�

Runtime Error at line� ��� Block at line� ���

No storage freed by garbage collector

The lower limit for the number of processors giving this run time error mes�
sage may be made larger by using the m option for the SIMULA compiler�
Consult �DH��� and make your own version of the pilc command �but do
not forget that you are using a multi�user system"
�

A���� Debugging PIL Programs Using simdeb

Perhaps the greatest advantage of executing the PIL program as a SIMULA pro�
gram is that it implies the availability of the SIMULA debugger simdeb �HT����
Notice that the debugger operates at the SIMULA source code level�

To help the PIL programmer getting started with using the debugger� we will
now give some examples of commands that have proven useful� The various com�
mands may be combined as shown in some of the examples�

The SIMULA debugger is started on your last compiled and linked PIL program
by issuing the command debug�

�� help

This command produces a listing of the available debugger commands�

	� help output

This is the format for obtaining more information about a speci
c command�
in this case the output command�

�� proceed

Starts execution of the program�

	��

�� at LineNo stop

The at command is used to de
ne that some debugger actions should take
place when the program executes the speci
ed source line number LineNo� In
this case we want the program to stop at LineNo� i�e� the command de
nes
a breakpoint� LineNo should be a line number in pram�lis as discussed in
section A�	�����

�� output VarName
Prints the value of the speci
ed variable�

�� output ObjectRef�Attribute
Prints value of speci
ed attribute�

�� output ObjectRef �all
Prints all attributes in the object pointed to by ObjectRef�

�� at LineNo if p � � then stop

De
nes a breakpoint exclusively for processor no � �in the current processor
set
�

�� at LineNo if IntTime � ��� then chain� proceed

Displays the call chain at LineNo when the simulator time has passed 	���
and proceeds the execution�

��� at LineNo if p � � then output �all� proceed

Prints the value of all variables in the current block for processor no � and
proceeds�

��� trace on FirstLine�LastLine
Makes the debugger print each �SIMULA
 source line executed in the range
given by the two line numbers�

Note that most of the commands may be abbreviated �ou � output� pro � proceed
etc�
� Though this debugger is very powerful� nothing can replace the value of fresh
air� systematic work� a lot of time� and a cup of co ee�

A�� Modelling Systolic Arrays and other Syn

chronous Computing Structures

�I know of only one compute�bound problem that arises naturally in
practice for which no systolic solution is known� and I cannot prove
that a systolic solution is impossible��

H� T� Kung in Why Systolic Arrays
 �Kun�	��

This section gives some hints on how systolic arrays and similar systems may be
simulated by help of the CREW PRAM simulator� The text explains how various

	��

kinds of systolic arrays may be modelled� It is hoped that the reader will under�
stand how these ideas may be adopted for simulation of other synchronous �globally
clocked
 computing structures�

A���� Systolic Arrays� Channels� Phases and Stages

The CREW PRAM simulator was originallymade for the sole purpose of simulating
synchronous CREW PRAM algorithms� However� a few small extensions to the
simulator� a PIL �package�� and two examples have been made for demonstrating
how the simulator can be used for modelling systolic arrays� The adopted solutions
are rather ad hoc� More elegant solutions are possible by doing more elaborate
redesigns of the simulator�

The
le systool�pil in the pil directory contains PIL code that provides some
help in simulating systolic arrays� Its use will be documented by two very simple
examples� First it is necessary to explain some central concepts�

Systolic arrays
An important paper on systolic arrays is H� T� Kung�s Why Systolic Architectures

�Kun�	�� It is a comprehensive� compact and readable introduction to the topic�

A systolic array �or system
 is a collection of synchronous processors �often
called processing elements or cells
 connected in a regular pattern� Information in
a systolic system �ows between cells in a pipelined fashion� Each cell is designed to
perform some specialised operation� When implementing systolic systems in VLSI
or similar technologies� it is important to have simple and �repeated� cells� which
are interconnected in a regular pattern with mostly short �local
 communication
paths�

Such modularity and regularity is not a necessity when simulatingon the CREW
PRAM simulator� Nevertheless� it may be to help in mastering the complexity
involved in designing parallel systems�

Channels
Systolic arrays pass data between processing elements on channels� These are nor�
mally uni�directional with one source cell and one destination cell� When simulating
a systolic array on the CREW PRAM model� it is natural to let each channel cor�
respond to a speci
c location in the global memory� This memory area must be
allocated before use��� Further� each processing element must know the address
of every channel it does use during the computation� The channels o ered by the
simulator may be used in both directions� and they may have multiple readers and
multiple writers� If two or more cells write �send
 data to the same channel in the
same stage� the result will be unpredictable�

��This is only true for integer channels	 When using channels for passing real numbers�
the current version of the simulator provides a set of preallocated channels	

	�

Three phases in a stage
A systolic system performs a number of computational steps�here called stages�
One stage consists of every processing element doing the following three phases�

�� ReadPhase� Each cell reads data from its input lines �channels
�

	� ComputePhase� Each cell performs some computation� This is often a simple
operation or just a delayed copying �transmitting
 of data�

�� WritePhase� Each cell writes new data values �computed in the previous
phase of this stage
 into its output lines �channels
�

All cells will
nish stage i before they proceed to stage i � �� In other words�
we have synchronous operation�

These three phases should be considered as logical phases� In an implementation
it is irrelevant whether phase � of stage i is overlapped with phase � of stage i � �
as long as the data availability rule given below is not violated� Further phase �
and 	 may be implemented as overlapping or as one phase�

�Data availability rule
�
The data written in phase 	 of stage i cannot be read �in phase �� earlier than in
the following stage i� �� and later stages�

A���� Example �� Unit Time Delay

In most �all�
 systolic arrays the new values computed from the inputs at the start
of stage i are written on the output lines at the end of the same stage�and are
available in the next stage� We say that all the cells operate with unit time delay�
and one time unit is the same as the duration of one stage�

The example
le systolicdemo��pil models a simple linear array working in
this manner� The structure is outlined in Figure A��� The array does nothing
more than copying the received data from left to right in a pipelined fashion� The
regularity of this example makes it relatively easy to let n� the number of cells in
the linear array� be a parameter to the model� In the simulation program� each
kind of cell is described as a procedure� see Figure A���

This arti
cial example has one special processing element for producing input
to the array �InputProducer
 and one for receiving the output from the last cell
in the array �OutputConsumer
� They are not a part of the systolic array� but a
convenient way of modelling its environments�

The channels which are used for communication between the cells should be
used by the following procedures�

� SEND�ChannelAddressExpression� IntegerExpression��

� IntegerVariable �� RECEIVE�ChannelAddressExpression��

	�	

� ��
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�

���������� ���������� ���������� ���������� ���������� ���������� ���������� ��������������������
����������
����������
����������
����������
���

���
������
����
�������
���
�������
���
�������
���

���������� ���������� ���������� ���������� ���������� ���������� ���������� ��������������������
����������
����������
����������
����������
���

���
������
����
�������
���
�������
���
�������
���

��������������������������
�������
�����

��������������������������
������������

��������������������������
������������

��������������������������
������������

��������������������������
������������

Linear array

Consumer
Output�

Producer
Input�

Linear�
Cell��

Linear�
Cell��

Linear�
Cell�n

� � �

Figure A��� Linear array simulated in the
le systolicdemo��pil�

� IntegerVariable �� RECEIVE ZEROFY�ChannelAddressExpression��
The value stored at the channel is set to zero after it has been passed to the
caller of this procedure�

It is also possible to use READ and WRITE on the channels �see Section A�	�����
but it is not recommended�

Measuring the length of the phases
As described above� each stage consists of three phases� To achieve proper syn�
chronisation of the array� the user must specify how the operation performed in
each stage is distributed on the three phases� This must be done by inserting
the procedure call StartComputePhase� at the end of the read phase� and the
call StartWritePhase� at the end of the computation phase�see the procedure
LinearCell in Figure A���

This makes it possible for the package systool�pil to measure the length
of the three phases� At the end of the computation� a call to the procedure
ReportSystolic will produce a listing of the longest and shortest read� compute
and write phase performed� and also the processor number�s
 of the processing el�
ement�s
 which performed those phases� This information may be used to localise
bottlenecks in the system� Remember that the processing elements should operate
in synchrony� The length of a stage must be the same for all cells�simple or com�
plicated� The structure may be made faster by moving work from the most time
consuming cells to under�utilised cells���

In this context� time is measured in number of CREW PRAM simulator time

��It is probably the length of the compute phase that is most interesting	 Receiving
and sending of data are often done in parallel	

	��

��������������������������
������������

��������������������������
������������

Cell�i
Linear�

inp out

PROCEDURE LinearCell�
BEGIN
INTEGER val�
val �� RECEIVE�inp��

StartComputePhase�

 This element has nothing to compute�

StartWritePhase�
SEND�out� val��

END�PROCEDURE LinearCell�

Figure A��� Simple cell in a linear systolic array �left
� and its description �right
�

units� and is speci
ed by the user by calls to the Use procedure� The time used
by the procedures for accessing the channels �described above
 are de
ned by the
constants t SEND etc� at the start of the
le systool�pil� At the same place you
may
nd constants that specify the maximum lengths that are tolerated for each of
the three phases� If your system exceeds one of these limits� an appropriate error
message will be given� The limits may be changed by the user�

The modelling of time consumed in the phases may be done at various degrees
of detail� and it may be omitted� However� the calls to StartComputePhase and
StartWritePhase may not be omitted�

Describing the processing elements �cells�
The procedure LinearCell describes the operation of each cell in the linear array
which is performed in each stage� Therefore� variables declared in the procedure are
�new� �initialised to zero
 at the start of each stage� Data items that must �live�
during the whole computation must be declared outside the procedures and before
the keyword BEGIN PIL ALG� These variables are local to each processing element�
�See for example the variable CellNo in the
le systolicdemo��pil which stores
the number of each cell in the linear array�

The variables inp and out are also of this kind�they store the address of
the input channel and output channel of every cell in the linear array� The ini�
tialisation of these variables for each processing element corresponds to �building
the hardware
� This is done by the procedure called SetUp� which is called by all
processing elements�

SetUp may require knowledge of global variables such as the size of the linear
array� n� This may be done by passing the value on the UserStack� see the calls to
PUSH in the main program and the
rst part of the SetUp procedure�

General program structure
Figure A�� outlines the main parts of a general systolic array simulation program
using systool�pil� It is hoped to be self�explanatory� The reader should note that

	��

the IF tests in the main loop �FOR Stage �� ���
 must be disjunctive� These tests
are used to select what kind of cell a processor should simulate during the stage�
One processor may only act as one cell type during a stage�

Figure A�� outlines only one of several possible ways of structuring a PIL pro�
gram for simulating systolic arrays� You should not do changes to the structure
shown in Figure A�� unless you really need to do it� and only after having studied
the details in systool�pil��	

Please run the example �systolicdemo��pil
 and study the output� Impor�
tant parts of the output are the lines showing the start of each stage� and the
contents on the communication channels� The latter is produced by the procedure
TraceChannels� This procedure should be tailored to the actual structure being
simulated� The CREW PRAM simulator time information ����� TIME ���
 is of
less value�
 since we have de
ned a new time unit �stage
 at one level higher�

A���� Example �� Delayed Output and Real Numbers

In the previous example� every cell used exactly one stage to produce new outputs
from the inputs� There are cases where this restricts the degree of abstraction that
may be used in a model�

Delayed output
Consider the linear array of the previous example� For n � � this structure delivers
an element as output � stages after it was received as input� If this is the sole
function of what we want to model� it should be possible to represent by a single
processing element with delay � � stages instead of a linear array consisting of �
unit delay cells�

This may be achieved by o ering an additional parameter delay in the SEND

procedure� The procedure call SEND�addr� val� delay� will do the same as SEND

described above in Section A���	� but the data element will be available on the
channel at the start of stage i � delay and as long as it is not overwritten �by
another SEND call
 or set to zero by a RECEIVE ZEROFY call�

Once we have this possibility� we may use a single processor to represent a
composite structure which makes several computations of varying complexity� and
delivers output with di ering delays� This possibility may be helpful in top down
development of systolic arrays and similar structures�

If you insert

�define DELAYS!USED

�	Especially� be very careful when changing the value of the variable Stage� and
the placement of StartSystolic� EndSystolic or StartReadPhase	 Do not forget
StartComputePhase or StartWritePhase� and do not change their order	

��This information may be removed by using the �lter removeTIME on the output pro�
duced by the run command�just type run � removeTIME	

	��

#include<systool.pil>

PROCESSOR_SET ProcSetName;
... declaration of variables for the cells

PROCEDURE SetUp;
BEGIN
 ... read eventual parameters from the UserStack
 ... initialize variables and channel-addresses for the
 various cell types
END_PROCEDURE SetUp;

PROCEDURE CellDescription-1; ... one for each cell type
BEGIN
 ... declaration of variables used during one stage
 ... actions in read phase (i.e. calls to RECEIVE)

 StartComputePhase;
 ... actions in compute phase

 StartWritePhase;
 ... actions in write phase (i.e. calls to SEND)
END_PROCEDURE CellDescription;
... more cell descriptions

BEGIN_PIL_ALG
 ... assign processors to ProcSetName;
 ... allocate (integer) channels
 ... PUSH eventual parameters on UserStack;

 FOR_EACH PROCESSOR IN ProcSetName
 SetUp;
 CHECK;
 StartSystolic;

 FOR Stage := 1 STEP 1 UNTIL ... DO
 BEGIN
 StartReadPhase;
 IF p = 1 THEN T_TIO("****** Start of stage no", Stage);

 IF p = ... THEN CellDescription-1;
 IF p = ... THEN CellDescription-2;
 ...
 END_FOR;

 EndSystolic; ReportSystolic;
 END_FOR_EACH PROCESSOR;

END_PIL_ALG

Figure A��� General format of program for simulation of systolic arrays using
systool�pil�

	��

before the place where systool�pil is included� you will get access to a version of
the SEND procedure that requires a delay given as parameter�

� SEND�ChannelAddressExpression� IntegerExpression�
DelayExpression��
DelayExpression must evaluate to an integer � �� The value � corresponds
to unit time delay as discussed in the previous example�

� The procedures for receiving data are as before�

It is also possible to use READ and WRITE on the channels� but it is not recom�
mended���

Using real numbers
The CREW PRAM simulator was originally made for handling integers only� Upon
request a simple and ad hoc extension has been made for making it possible to
operate on real numbers�

A
xed number of preallocated channels for passing real numbers are provided
by the simulator� In the current version 	�� channels are provided with addresses
� to 	��� The only di erence from the ordinary integer channels is that the real
channels cannot be allocated or operated upon by READ and WRITE�

In the current version� real numbers may only be used together with delays� If
you insert

�define REALS!USED

before the place where systool�pil is included� you will get access to the following
procedures for passing real numbers between the processing elements�

� SEND REAL�ChannelAddressExpression� RealExpression�
DelayExpression��
The delay must be � ��

� RealVariable �� RECEIVE REAL�ChannelAddressExpression��

� RealVariable �� RECEIVE REAL ZEROFY�ChannelAddress�
Expression��

In addition to�

� T TR�Text�RealExpression��
Prints the text followed by the value of RealExpression�

� RealArrayPrint�ChannelStartAddressExpression� Size��
Prints the contents of Size consecutive real channels starting at and including
ChannelStartAddressExpression�

�
WRITE corresponds to SEND with delay
 �	

	��

Both delayed output� channels passing real numbers� and zerofying are demon�
strated on the example
le systolicdemo��pil� This arti
cial example is an ex�
tension of the previous example� We have introduced one real channel going down
from each of the n cells in the linear array� Further we have introduced a new cell
type RealCell used in two instances� See the �ASCII�
gure� at the start of the

le systolicdemo��pil�

RealCell is used to illustrate receiving with and without zerofying� LinearCell
has been extended to compute a real number which is sent downwards��� The
instances of LinearCell demonstrate various delays�

��Note how time �Stage�� state �val� and sender �CellNo� may be encoded in a number	

	��

Appendix B

Cole�s Parallel Merge Sort

in PIL

This is a complete listing of Cole�s parallel merge sort algorithm implemented in
PIL for execution on the CREW PRAM simulator�

B�� The Main Program

� Cole�pil
� ���
� Cole�s Parallel Merge Sort algorithm�
� Complete implementation in PIL on CREW PRAM simulator with detailed
� time modelling�
� ���
� Author� Lasse Natvig �E�mail� lasse�idt�unit�no�
� Started� 	
�	��
� Finished �No known errors�� 	

���
� Last changed �improvements��
�����
� Copyright �C�
�������� Lasse Natvig� IDT�NTH� �����Trondheim� Norway
� ���
� Note that in general� UP is short for Up array� SUP is short for
� SampleUp array� and NUP is short for NewUp array�
�
�include�Sorting�
�include�Cole
�var�
�include�Cole
�mem� � specifies memory usage �
�include�Cole
�proc�
�include�Cole��proc�

BEGIN�PIL�ALG

� Loop for testing the algorithm on several problem instances �
FOR mm �� � TO � DO
BEGIN

nn �� power��mm��
addr �� GenerateSortingInstance�nn� RANDOM��

ClockReset�
READ nn FROM UserStackPtr�
�
UPprocs �� UPsize�nn�� � See Cole
�proc �
SUPprocs �� SUPsize�nn�� � See Cole
�proc �

	��

Use�t�LOAD � t�ADD � t�ADD � t�STORE��
NoOfProcessors �� UPprocs � SUPprocs � SUPprocs�

Use����t�Malloc�t�STORE� � �t�LOAD�t�SHIFT�t�SUB� � ���t�Malloc�t�STORE���
UPstart �� Mem�UserMalloc�NoOfProcessors�� � storage for Arrays �
addr �� Mem�UserMalloc�NoOfProcessors�� � storage for ExchangeArea �
addr
 �� Mem�UserMalloc���nn �
�� � storage for NodeAddressTable �
addr� �� Mem�UserMalloc���nn �
�� � storage for NodeSizeTable �

� Push variables on the user stack as parameters to the SetUp procedure �
Use�� � t�PUSH��
PUSH�addr�� PUSH�addr
�� PUSH�addr���
PUSH�UPprocs�� PUSH�SUPprocs�� PUSH�UPstart��

ASSIGN NoOfProcessors PROCESSORS TO ProcSet
�
FOR�EACH PROCESSOR IN ProcSet

SetUp� � Read pushed variables and initialize local variables�

Use�t�FOR��
FOR Stage ��
 TO LastStage DO
BEGIN

� Since �nothing is done� in Stage
 and ��
If not convinced� study an example �

Use�t�IF��
IF Stage � � THEN
ComputeWhoIsWho�

Use�t�IF � t�SUB � t�JNEG��
� There is no new NUP array to copy in stage
���� or ��
If not convinced� study an example �

IF �Stage � �� OR �Stage � �� THEN
CopyNUPtoUP�

���� phase
 of current stage� �
� There is no need to make samples in stage in Stage
�� or ��
If not convinced� study an example �

Use�t�IF � t�SUB � t�JNEG��
IF �Stage � �� OR �Stage � �� THEN
MakeSamples�

���� phase � of current stage� �

MergeWithHelp�

� Store the addresses of the NUP�arrays made in this stage� �
� This is used by CopyNUPtoUP at the beginning of the next stage��
StoreArrayAddresses�NUP��

Use�t�FOR��
END�FOR�

IF ProcessorType � NUP AND active AND node �
 AND index �
 THEN
ArrayPrint�ThisAddr� size��

END�FOR�EACH PROCESSOR�

T�TITITO��R �Cole�pil sorted�� nn�� integers in�� ClockRead� � ticks����
T�TIO��NoOfProcessors ��� NoOfProcessors��

END�FOR�
END�PIL�ALG

	��

B�� Variables and Memory Usage

B���� Cole��var

� Cole
�var
� ���������

������� Variables used only by �master� �
PROCESSOR�SET ProcSet
�
INTEGER mm�
INTEGER nn�
ADDRESS addr� addr
� addr��

������� Variables used by all processors �
INTEGER m� � number of levels in complete binary tree �
INTEGER n� � number of integers which is to be sorted �problem size� �
INTEGER LastStage� � no of last stage in algorithm �

INTEGER ProcessorType� � �� UP� SUP� or NUP� �
INTEGER CONSTANT UP �
� SUP � �� NUP � ��

INTEGER UPprocs� SUPprocs�� number of UP and SUP �NUP� processors �
INTEGER NoOfProcessors�
BOOLEAN InsideNode� � TRUE if this processor is allocated to inside node �
ADDRESS UPstart� � address of the first element of the UP array�s��
ADDRESS ThisAddr� � address of element in UP�SUP�NUP permanently allocated �

� to this processor� �

ADDRESS ExchangeAreaStart� � Start of table in global memory used to �
� exchange locally stored values between processors�

ADDRESS NodeAddressTableStart� � start of table used to store the �
� address of the UP� SUP� or NUP array for each �
� node during the current stage �

ADDRESS NodeSizeTableStart� � start of table used to store the �
� size of the UP� SUP� or NUP array for each �
� node during the current stage �
� pr� 	
�
�� only used for SUP array �

���� variables which are updated in each stage� �

INTEGER Stage� � current stage no in algorithm �
��LastStage ��
INTEGER HAL� � Highest Active Level in current Stage�
INTEGER LAL� � Lowest Active Level in current Stage �
INTEGER ExternalState� � ��
������ the number of stages this level have been �

� external including the current stage �

INTEGER node� � no of node �in complete binary tree� which this processor �
� currently is allocated to �

INTEGER level� � level containing that node �
� NB node and level may contain wrong values during stages �
� when the processor not is active� i�e� the variable active �
� �see below� is false� �

INTEGER above� � the placement of the node �corresponding to this processor� �
� measured in no of levels above the external level �

INTEGER ProcNoAtLevel� � no of this processor among the processors of this �
� kind �UP� SUP or NUP� at this level �
��n��

INTEGER size� � size of �UP�SUP� or NUP� array for nodes of this kind at �
� this level �

INTEGER index� � the no of the element served by this processor in the �
� UP� SUP or NUP array associated with this node� �
� element no in array for this node served by the processor�

BOOLEAN active� � TRUE if this processor is active in the current stage �

INTEGER RankInLeftSUP�
INTEGER RankInRightSUP�

�

B���� Cole��mem

� Cole
�mem
� ���������
COMMENT

GLOBAL MEMORY USAGE in Cole
�pil

location i �
!st number ��
location i�
 � �!nd number "
location i�� � �!rd number � � n numbers to be sorted
��� � ��� �
location i�n�
 � n!th number ��
location i�n � n � problem size� n
location i�n�
 � ��� ��
��� � ��� "
��� � ��� � � UP� SUP and NUP arrays�
��� � ��� � contains NoOfProcessors elements�
��� � ��� �� one for each processor
��� � ��� ��
��� � ��� " ExchangeArea� contains one element
��� � ��� � � for each processor� �MUST be placed
��� � ��� � just after the UP�SUP�NUP�arrays�
��� � ��� ��
��� � ��� ��
��� � ��� � � NodeAddressTable
��� � ��� ��
��� � ��� ��
��� � ��� � � NodeSizeTable
��� � ��� ��

� addr ��
� addr
 "
� addr� � � parameters to SetUp
� UPprocs �
� SUPprocs �
� UPstart ��

UserStackPtr�� � next free location

end of COMMENT�

�
	

B�� Basic Procedures

B���� Cole��proc

� Cole
�proc
� ����������

INTEGER PROCEDURE LowestNodeNo�level�� INTEGER level�
BEGIN
LowestNodeNo �� power��level��

END�PROCEDURE LowestNodeNo�
INTEGER CONSTANT t�LowestNodeNo � t�LOAD � t�power��
� The time used is modelled at the caller place �

INTEGER PROCEDURE HighestNodeNo�level�� INTEGER level�
BEGIN
HighestNodeNo �� power��level �
� �
�

END�PROCEDURE HighestNodeNo�
INTEGER CONSTANT t�HighestNodeNo � t�LOAD � t�ADD � t�power� � t�SUB�
� The time used is modelled at the caller place �

INTEGER PROCEDURE NoOfNodes�level�� INTEGER level�
BEGIN
NoOfNodes �� power��level��

END�PROCEDURE NoOfNodes�
INTEGER CONSTANT t�NoOfNodes � t�LOAD � t�power��
� The time used is modelled at the caller place �

PROCEDURE StoreArrayAddresses� type �� INTEGER type�
BEGIN
Use�t�StoreArray � t�WRITE��
IF ProcessorType � type AND active AND index �
 THEN

WRITE ThisAddr TO NodeAddressTableStart��node�
�
ELSE

Wait�t�WRITE��
END�PROCEDURE StoreArrayAddresses�

PROCEDURE StoreArraySizes� type �� INTEGER type�
BEGIN
Use�t�StoreArray � t�WRITE��
IF ProcessorType � type AND active AND index �
 THEN

WRITE size TO NodeSizeTableStart��node�
�
ELSE

Wait�t�WRITE��
END�PROCEDURE StoreArraySizes�
INTEGER CONSTANT t�StoreArray � �t�IF � �t�LOAD � t�ADD���� �

�t�LOAD � t�SUB � t�ADD� � t�WRITE�

PROCEDURE StoreProcessorValue� val ��
INTEGER val�
BEGIN
Use�t�LOAD � t�ADD��
WRITE val TO ExchangeAreaStart��p�
��

END�PROCEDURE StoreProcessorValue�
INTEGER CONSTANT t�StoreVal � t�LOAD � t�ADD � t�WRITE�

INTEGER PROCEDURE UPsize�n�� INTEGER n�
� Calculates the maximum size �in no of elements� of all the UP arrays �
� � n � n�� � n�
� � ��� � see Cole		 p ���� �
BEGIN
INTEGER size�
Use�t�LOAD � t�STORE � t�SHIFT � t�STORE � t�WHILE��
size �� n�
n �� n���� � may be done by shift operation �
WHILE n � � DO
BEGIN

Use�t�LOAD � t�ADD � t�STORE � t�SHIFT � t�STORE � t�WHILE��
size �� size � n�
n �� n��	� � may be done by shift operation �

END�WHILE�
Use�t�STORE��

�
�

UPsize �� size �
END�PROCEDURE UPsize�

�
�

INTEGER PROCEDURE SUPsize�n�� INTEGER n�
� Calculates the maximum size �in no of elements� of all the SUP arrays �
� � n � n�	 � n��� � ��� � see Cole		 p ���� �
BEGIN
INTEGER size�
Use�t�STORE � t�WHILE��
size �� ��
WHILE n � � DO
BEGIN

Use�t�LOAD � t�ADD � t�STORE � t�SHIFT � t�STORE � t�WHILE��
size �� size � n�
n �� n��	� � may be done by shift operation �

END�WHILE�
Use�t�STORE��
SUPsize �� size �

END�PROCEDURE SUPsize�

PROCEDURE SetUp

PROCEDURE SetUp�
� Initialization of local processor variables which are unchanged during
the computation� �

BEGIN

PROCEDURE InitProcs�
� Initialize processors level by level �
BEGIN

INTEGER ARRAY ProcNo
ofKind�
����
PROCEDURE InitProcKind�type�� INTEGER type�
BEGIN
INTEGER Initiated�
INTEGER HowMany�
INTEGER LevelsAbove�

Use�t�IF � t�STORE��
IF type � NUP THEN � Phase � �done by the NUP processors� is not �
LevelsAbove ��
 � performed at external nodes� thus they are �

ELSE � used one level higher up �see Cole		 p ����� �
LevelsAbove �� ��

Use� �t�LOAD � t�SUB � t�STORE� � �t�LOAD � t�STORE� ��
Initiated �� ProcNo
ofKind�type� �
�
HowMany �� n�

Use�t�WHILE��
WHILE HowMany � � DO
BEGIN
Use�t�IF � t�AND � �t�LOAD � t�ADD � t�IF���
IF �p � Initiated� AND �p �� Initiated � HowMany� THEN
BEGIN � Processor p is of this category �

Use� �t�LOAD�t�STORE� � �t�IF�t�STORE� � �t�LOAD�t�SUB�t�STORE���
above �� LevelsAbove�
InsideNode �� �above � ���
ProcNoAtLevel �� p � Initiated�

END
ELSE

Wait��t�LOAD�t�STORE� � �t�IF�t�STORE� � �t�LOAD�t�SUB�t�STORE���

Use� �t�LOAD � t�ADD � t�STORE��� �
� t�IF � t�IF � t�SHIFT � t�STORE��� ��

Initiated �� Initiated � HowMany�
LevelsAbove �� LevelsAbove �
�
IF type � UP THEN

HowMany �� IF HowMany � n THEN n��� ELSE HowMany��	
ELSE � SUP or NUP �

HowMany �� HowMany��	�

Use�t�WHILE��
END�WHILE�

�
�

END�PROCEDURE InitProcKind�

�
�

Use� t�STORE � �t�LOAD � t�ADD � t�STORE�����
ProcNo
ofKind�
� ��
�
ProcNo
ofKind��� �� UPprocs�
�
ProcNo
ofKind��� �� UPprocs � SUPprocs �
�

InitProcKind�UP��
InitProcKind�SUP��
InitProcKind�NUP��

END�PROCEDURE InitProcs�

���� BODY OF SetUp �

READ UPstart FROM UserStackPtr�
�
READ SUPprocs FROM UserStackPtr���
READ UPprocs FROM UserStackPtr���
READ NodeSizeTableStart FROM UserStackPtr���
READ NodeAddressTableStart FROM UserStackPtr���
READ ExchangeAreaStart FROM UserStackPtr���

Use�t�LOAD � t�ADD � t�ADD � t�STORE��
NoOfProcessors �� UPprocs � SUPprocs � SUPprocs�

� set up the address of the element in UP�SUP�NUP array corresponding �
� to this processor � �

Use�t�LOAD � t�ADD � t�STORE��
ThisAddr �� UPstart � �p�
��
READ n FROM UPstart�
�

Use� �t�log� � t�STORE� � �t�MULT � t�STORE� ��
m �� log��n��
LastStage �� ��m�

Use� t�IF � �t�LOAD�t�ADD�t�IF�t�STORE� � �t�LOAD�t�ADD�t�IF�t�STORE� ��
� Time used in longest path modelled �
IF p �� UPprocs THEN

ProcessorType �� UP
ELSE IF p �� UPprocs � SUPprocs THEN

ProcessorType �� SUP�
IF p � UPprocs � SUPprocs THEN

ProcessorType �� NUP�

� read input and place in own array element �
Use�t�IF��
IF ProcessorType � UP THEN
BEGIN

INTEGER myNumber�
Use�t�LOAD � t�SUB��
READ myNumber FROM ThisAddr�n�
�
WRITE myNumber TO ThisAddr�

END
ELSE

Wait��t�LOAD � t�SUB� � �t�READ � t�WRITE���

InitProcs�
END�PROCEDURE SetUp�

�
�

PROCEDURE ComputeWhoIsWho

PROCEDURE ComputeWhoIsWho�
BEGIN

PROCEDURE ComputeSizeOfArrays�
BEGIN
INTEGER FirstStageAtThisLevel�

Use�t�IF � t�IF��
IF ProcessorType � UP THEN
BEGIN
Use�t�IF �

�t�LOAD � t�SUB � t�MULT � t�ADD � t�STORE� �
�t�IF � �t�LOAD � t�SUB � t�power���� � t�MULT � t�MIN � t�STORE���

IF level � m THEN size ��

ELSE
BEGIN
FirstStageAtThisLevel �� �m � level��� � ��
� maximum UP�array size at this level is power��m�level��
IF Stage �� FirstStageAtThisLevel THEN
size �� MIN�� � power��Stage � FirstStageAtThisLevel��

power��m � level��
ELSE
size �� ��

END�
Wait�t�LOAD � t�AND � t�JNEG��

END
ELSE
IF ProcessorType � SUP THEN
BEGIN
Use��t�IF � t�LOAD � t�AND � t�JNEG� �

�t�LOAD � t�SUB � t�MULT � t�ADD � t�STORE� �
�t�IF � �t�LOAD � t�SUB � t�power���� � t�MULT � t�MIN � t�STORE���

IF �level � m� AND �Stage � � � THEN size ��

ELSE
BEGIN
FirstStageAtThisLevel �� �m � level��� � ��
� maximum SUP�array size at this level is power��m�level�� i�e� the �
� same as the maximum UP array size� �SUP � UP at last active stage��
IF Stage �� FirstStageAtThisLevel THEN
size �� MIN�
 � power��Stage � FirstStageAtThisLevel��

power��m�level��
ELSE
size �� ��

END�
Wait����

END
ELSE
BEGIN � ProcessorType � NUP �
� Knows that above ��
� therefore level must be � m �
Use��t�LOAD � t�SUB � t�MULT � t�ADD � t�STORE� �

�t�IF � �t�LOAD � t�SUB � t�power���� � t�MULT � t�MIN � t�STORE���
FirstStageAtThisLevel �� �m � level��� �
�
� maximum NUP�array size at this level is power��m�level�� i�e� the �
� same as the maximum UP array size� �NUP � UP in the next stage� �
IF Stage �� FirstStageAtThisLevel THEN
size �� MIN�� � power��Stage � FirstStageAtThisLevel��

power��m�level��
ELSE
size �� ��

Wait�t�IF � t�LOAD � t�AND � t�JNEG��
END�

END�PROCEDURE ComputeSizeOfArrays�

INTEGER NoOfActive� � No of active processors of this kind at this level �

�
�

���� start of body in ComputeWhoIsWho �

Use��t�LOAD � t�SUB � t�DIV � t�SUB � t�STORE� �
�t�LOAD � t�SUB � t�SHIFT � t�SUB � t�STORE� �
�t�LOAD � t�DIV � t�STORE� � �t�IF � t�STORE���

LAL �� m � � � Stage�
���� ��
HAL �� m � � � Stage�
���� ��
ExternalState �� REM�Stage� ���
IF ExternalState � � THEN ExternalState �� ��

Use�t�LOAD � t�SUB � t�STORE��
level �� LAL � above�

ComputeSizeOfArrays�

Use�t�IF � t�LOAD � t�NoOfNodes � t�MULT � t�STORE��
IF level �� � THEN

NoOfActive �� NoOfNodes�level� � size
ELSE

NoOfActive �� ��

Use�t�IF �
�t�LOAD � t�LowestNodeNo � t�LOAD � t�SUB � t�DIV � t�ADD � t�STORE� �
�t�LOAD � t�SUB � t�DIV � t�MULT � t�SUB � t�STORE� �
�t�IF � t�STORE���

IF size � � THEN
BEGIN

node �� LowestNodeNo�level� � �ProcNoAtLevel �
���size�
index �� ProcNoAtLevel � � ��ProcNoAtLevel �
���size� � size��
active �� �ProcNoAtlevel �� NoOfActive��

END
ELSE
BEGIN

node �� �� index �� �� active �� FALSE�
END�

END�PROCEDURE ComputeWhoIsWho�

PROCEDURE MakeSamples

PROCEDURE MakeSamples�
BEGIN
PROCEDURE Reduce�rate�� INTEGER rate�
BEGIN

INTEGER UPval� size�
ADDRESS addr� UPeltAddr�

Use�t�LOAD � t�SUB��
READ addr FROM NodeAddressTableStart��node�
��

Use��t�LOAD � t�ADD � t�SUB � t�MULT � t�SUB � t�ADD� � t�IF��
UPeltAddr �� addr � size � rate��size �
 � index��
IF UPeltAddr �� addr THEN
BEGIN
READ UPval FROM UPeltAddr�
WRITE UPval TO ThisAddr�
� i�e� to corresponding SUP�address �

END
ELSE
Error��SUP could!nt fetch UPelement���

END�PROCEDURE Reduce�
INTEGER CONSTANT t�Reduce � �t�LOAD � t�SUB� � t�R �

��t�LOAD � t�ADD � t�SUB � t�MULT � t�SUB � t�ADD� � t�IF� � t�R � t�W�

INTEGER SampleRate�

�
�

StoreArrayAddresses�UP��

Use�t�IF � t�LOAD � t�AND��
IF ProcessorType � SUP AND active THEN
BEGIN
Use�t�CONST � t�STORE � t�IF � t�IF � t�STORE��
SampleRate �� ��
IF NOT InsideNode THEN
BEGIN
IF ExternalState � � THEN SampleRate �� ��
IF ExternalState � � THEN SampleRate ��
�

END�
Reduce�SampleRate��

END
ELSE
Wait��t�CONST � t�STORE � t�IF � t�IF � t�STORE� � t�Reduce��

END�PROCEDURE MakeSamples�

�include�Order
Merge�proc�

PROCEDURE CopyNUPtoUP

PROCEDURE CopyNUPtoUP�
� Copies the NUP array made in the previous stage to the UP array �
� for this stage� Performed by the UPprocessors� �
BEGIN
ADDRESS addr� � For Up array elements� this variable represents the

address of the corresponding NUP array element in the
previous stage �

INTEGER val�
� Observation� Copying of NUP to UP should only be done at inside nodes
except at stage �� ��
����� when it also should be done at external nodes�
because these nodes were inside nodes in the previous stage �

Use�t�IF � t�LOAD � t�AND �
�t�LOAD � t�SUB � t�DIV � t�JZERO � t�LOAD � t�OR���

IF ProcessorType � UP AND active AND �REM�Stage�
����� OR InsideNode� THEN
BEGIN
Use�t�LOAD � t�ADD��
READ addr FROM NodeAddressTableStart�node�
�
Use�t�LOAD � t�ADD � t�SUB � t�STORE��
addr �� addr�index�
�
READ val FROM addr�
WRITE val TO ThisAddr�

END
ELSE
Wait��t�LOAD � t�ADD��� � t�SUB � t�STORE � t�READ � t�READ � t�WRITE��

� At the end of the main loop the array addresses are stored for the
NUP�arrays �in the previous stage�� When CopyNUPtoUP is called �at the
start of this stage� the NodeAddressTable therefore gives
the mapping from node�no to NUP�processor �as the NUP processors was
allocated to the NUP�arrays in the previous stage�� � It is not necces�
sary to use the NodeSizeTable since the UP�array size for a node in stage i
is the same as the size of NUP�array in the same node in stage �i�
���
Thus the information found in the NodeAddressTable is enough for an UP�
processor to find its corresponding NUP�processor from the previous stage�

� Transfer RankInLeftSUP from NUP to UP processors� �
Use�t�IF��
IF ProcessorType � NUP THEN
StoreProcessorValue�RankInLeftSUP� � See Cole��proc �

ELSE
Wait�t�StoreVal��

�
�

Use�t�IF � t�LOAD � t�SUB � t�ADD�� � assumes that the result of the �
� subcondition evaluated above was stored locally� �

IF ProcessorType � UP AND active AND �REM�Stage�
����� OR InsideNode� THEN
READ RankInLeftSUP FROM ExchangeAreaStart��addr�UPstart�

ELSE
Wait�t�READ��

� Transfer RankInRightSUP from NUP to UP processors� �
Use�t�IF��
IF ProcessorType � NUP THEN

StoreProcessorValue�RankInRightSUP�
ELSE

Wait�t�StoreVal��

Use�t�IF � t�LOAD � t�LOAD�� �assumes that results were stored locally above�
IF ProcessorType � UP AND active AND �REM�Stage�
����� OR InsideNode� THEN

READ RankInRightSUP FROM ExchangeAreaStart��addr�UPstart�
ELSE

Wait�t�READ��

END�PROCEDURE CopyNUPtoUP�

B���� Cole��proc

� Cole��proc
�
� procedures used in O�
� merging only
�

INTEGER PROCEDURE RateInNextStage�
BEGIN
INTEGER rate�
INTEGER ExtState�
� InsideNode in this Stage implies InsideNode in next Stage OR �
� first stage as external node in next stage� In both these cases�
� the sample rate is � �
Use�t�IF � �t�LOAD � t�ADD � t�DIV � t�STORE� � ���t�IF � t�STORE���
IF InsideNode THEN

rate �� �
ELSE
BEGIN

�NOT InsideNode in this Stage implies NOT InsideNode in next stage�
ExtState �� REM�Stage�
����
IF ExtState � � THEN rate ��
� � corresponds to ExtState � � �
IF ExtState � � THEN rate �� ��

END�
RateInNextStage �� rate�

END�PROCEDURE RateInNextStage�
INTEGER CONSTANT t�RateInNextStage � �t�IF �

�t�LOAD � t�ADD � t�DIV � t�STORE� � ���t�IF � t�STORE���

INTEGER PROCEDURE RateInNextStageBelow�
� Computes the sample rate that will be used on level below this in next stage�
BEGIN
INTEGER rate�
INTEGER ExtState�
Use��t�IF � t�LOAD � t�SUB� � �t�LOAD � t�ADD � t�DIV � t�STORE� �

���t�IF � t�STORE���
IF �LAL � level� �
 THEN � also the level below must be internal �

rate �� �
ELSE
BEGIN

ExtState �� REM�Stage�
����
IF ExtState � � THEN rate ��
� � corresponds to ExtState � � �
IF ExtState � � THEN rate �� ��

END�
RateInNextStageBelow �� rate�

END�PROCEDURE RateInNextStageBelow�
INTEGER CONSTANT t�RateInNextStageBelow � �t�IF � t�LOAD � t�SUB� �

�t�LOAD � t�ADD � t�DIV � t�STORE� � ���t�IF � t�STORE��

�	

�		

INTEGER PROCEDURE Compare
With��val� val
� val�� val���
INTEGER val� val
� val�� val��
BEGIN
� NOTE� It is ASSUMED that val
 �� val� �� val� �
INTEGER pos�
Use�t�IF � t�IF � t�STORE��
IF val � val� THEN
BEGIN

IF val � val
 THEN
pos �� �

ELSE
pos ��
�

END
ELSE
BEGIN

IF val � val� THEN
pos �� �

ELSE
pos �� ��

END�
Compare
With� �� pos�

END�PROCEDURE Compare
With��
INTEGER CONSTANT t�Compare
With� � t�IF � t�IF � t�STORE�

B�� Merging in Constant Time

B���� Order�Merge�proc

� Order
Merge�proc
� ����������������

PROCEDURE MergeWithHelp�
BEGIN

INTEGER SLrankInParentNUP� � SL is short for StraddleLeft �
INTEGER SRrankInParentNUP� � SR is short for StraddleRight �
� These must be declared here since they are computed �
� in DoMerge and used in MaintainRanks� �

INTEGER CONSTANT t�TryCandidates �
�t�LOAD � t�SUB � t�ADD � t�STORE � t�IF� �
�t�READ � ��t�IF �t�SUB � t�AND� � t�LOAD � t�ADD� � t�WRITE� �
�t�LOAD � t�SUB � t�ADD � t�STORE� �
�t�READ � �t�IF � t�LOAD � t�ADD� � t�WRITE� �
��t�LOAD � t�ADD � t�STORE� � �t�LOAD � t�SUB � t�ADD � t�STORE� � t�IF �
�t�LOAD � t�ADD� � t�WRITE� �
�t�WRITE � ��t�LOAD � t�ADD � t�STORE��� � t�IF � �t�LOAD � t�ADD����

INTEGER CONSTANT t�SubStep
 � �t�IF� �
��t�LOAD � t�SHIFT � t�STORE� � �t�LOAD � t�STORE���� � t�ADD �
� � �t�StoreVal � �t�IF � t�LOAD � t�SUB � t�ADD� � t�R � t�R � �t�IF� �
t�R � �t�LOAD � t�ADD� � t�R � t�TryCandidates��

INTEGER CONSTANT t�find�r�and�t � �t�LOAD � t�SHIFT � t�ADD� � t�R �
��t�LOAD � t�ADD � t�SUB � t�STORE� � �t�LOAD � t�ADD�� �
t�R � �t�LOAD � t�SHIFT � t�ADD� � t�R �
�t�LOAD � t�ADD � t�IF� � �t�LOAD � t�ADD� � t�R�

INTEGER CONSTANT t�ss�case
 � �t�IF � t�StoreVal� �
�t�IF � t�LOAD � t�SHIFT � t�JZERO� � t�find�r�and�t�

INTEGER CONSTANT t�ss�case� � �t�IF � t�StoreVal� �
�t�IF � t�LOAD � t�SHIFT � t�JNEG� � t�find�r�and�t�

INTEGER CONSTANT t�ReadValues � �t�IF � t�ABS� � �t�LOAD � t�SUB � t�ADD��� �
t�R � �t�IF � t�ADD � t�LOAD� � t�R � �t�IF � t�ADD � t�LOAD� � t�R�

�	�

INTEGER CONSTANT t�SubStep� � ��t�IF � t�LOAD � t�ADD� �
t�R � �� t�StoreArray� � t�ss�case
 � t�ss�case� �
t�IF � t�R � t�StoreVal �
�t�IF � t�LOAD � t�SHIFT � t�SUB� � t�ReadValues �
�t�STORE � t�ADD � t�STORE��� � t�Compare
With��

INTEGER CONSTANT t�ComputeCrossRanks � �t�IF � t�LOAD � t�STORE� �
�t�IF � t�LOAD � t�SUB � t�JZERO� � t�SubStep
 � t�SubStep��

�include�DoMerge�proc�
INTEGER CONSTANT t�DoMerge � t�DoMergePart
 � t�DoMergePart��

�include�MaintainRanks�proc�

���� BEGIN BODY of MergeWithHelp �
� Main Assumption� Ranks UP�u� �� SUP�v�� and UP�u� �� SUP�w� are known��
� these are stored in RankInLeftSUP and RankInRightSUP �
BEGIN

StoreArrayAddresses�SUP��
StoreArraySizes�SUP��

� There is no need to perform DoMerge in Stage
�� or �� If not convinced�
study an example �

� Assumes that this test is combined with similar test in Cole�pil �mainprog��
IF �Stage � �� OR �Stage � �� THEN
BEGIN
Use�t�IF � t�LOAD � t�JZERO � t�AND � t�AND��
IF �ProcessorType � UP AND size � � AND active AND InsideNode� OR

�ProcessorType � SUP AND size � � AND active AND node �
� OR
�ProcessorType � NUP AND size � � AND active AND InsideNode� THEN

DoMerge
ELSE
Wait�t�DoMerge��

END�
END�

� There is no need to perform MaintainRanks in Stage
������ and ��
RankInLeft�RightSUP are needed at the first time when the size of UP�u�
is � � and the size of SUP�u�child� � �� This occur first time in
Stage �� �Consider an example� �
Use�t�IF � t�SUB � t�JNEG��
IF �Stage � �� OR �Stage � �� THEN
BEGIN
MaintainRanks�

END�

END�PROCEDURE MergeWithHelp�

B���� DoMerge�proc

� DoMerge�proc

PROCEDURE DoMerge�
BEGIN
� NOTE that StoreArraySizes�SUP� and StoreArrayAddresses�SUP� are done �
� just before the call to DoMerge in MergeWithHelp� �
� This is assumed in SubStep
� �
INTEGER RankInParentNUP� RankInThisSUP� RankInOtherSUP�

INTEGER SLindex� � SL � d and SR � f in fig� � p ��� in Cole		 �
INTEGER SRindex� � These are the indices of the straddling items in the

other SUP array �sibling�� They are computed in
procedure ComputeCrossRanks� �

PROCEDURE ComputeCrossRanks�
BEGIN
INTEGER RankInParentUP�

�	�

PROCEDURE SubStep�
PROCEDURE SubStep
� � performed by active� inside UP�processors �
BEGIN
INTEGER r� s� i
� i��

PROCEDURE TryCandidates�r� addr��
INTEGER r� ADDRESS addr�
BEGIN
INTEGER CandidateVal�
ADDRESS SUPelementAddr� � points to the SUP�array element
�in global memory� whose RankInParentUP should be set to the
index �position of own element� of the executing UP�processor��

� The assigned value is passed indirectly by using the
ExchangeArea� The address of an element in the ExchangeArea
for a processor p is given by the address of its element in the
UP�SUP�NUP array � the value of NoOfProcessors�
See figure "ref#WorkAreas$� �

� item�r� �
Use�t�LOAD � t�SUB � t�ADD � t�STORE � t�IF��
SUPelementAddr �� �addr �
� � r�

IF r � � THEN
BEGIN
READ CandidateVal FROM SUPelementAddr�
Use�t�IF � t�LOAD � t�ADD��
IF CandidateVal � i
 THEN
WRITE index TO SUPelementAddr�NoOfProcessors
ELSE

Wait�t�WRITE��
END
ELSE
Wait�t�READ � �t�IF � t�LOAD � t�ADD� � t�WRITE��

� Note that r and s may be the same position� In that case we must
have that s � i� since r � s� r �� i
 and i
 � i�� Therefore the
element in position r � s has rank � b in UP�u� ��� it is � i
�
This case is handled as item�r� above �

� item�s� �
Use�t�LOAD � t�SUB � t�ADD � t�STORE��
SUPelementAddr �� �addr �
� � s�
READ CandidateVal FROM SUPelementAddr�
Use��t�IF � t�SUB � t�AND� � t�LOAD � t�ADD��
IF �CandidateVal � i�� AND �CandidateVal �� i
� THEN
WRITE index TO SUPelementAddr�NoOfProcessors

ELSE
Wait�t�WRITE��

� item�r�
� �
Use��t�LOAD � t�ADD � t�STORE� �

�t�LOAD � t�SUB � t�ADD � t�STORE� � t�IF � �t�LOAD � t�ADD���
r �� r �
�
SUPelementAddr �� �addr �
� � r�
IF r � s THEN
WRITE index TO SUPelementAddr�NoOfProcessors

ELSE
Wait�t�WRITE��

� item�r��� �
Use��t�LOAD � t�ADD � t�STORE��� � t�IF � �t�LOAD � t�ADD���
r �� r �
�
SUPelementAddr �� SUPelementAddr �
�
IF r � s THEN
WRITE index TO SUPelementAddr�NoOfProcessors

ELSE
Wait�t�WRITE��

END�PROCEDURE TryCandidates�
� t�TryCandidates is defined in Order
Merge�proc �

�	�

� ��� Substep
 starts here �
� for each element e in SUP�v� compute its rank in UP�u� �

� Find interval �i
�i�� induced by this UP�element� Then find the
items in SUP�v� contained in �i
�i��� Assign ranks to these elements�
The interval is given by the values i
 and i�� where i
 is the value
stored at ThisAddr for this UP�array processor� and i� is the value
stored at ThisAddr�
 if not index � size for the same UP�array
processor� If index � size� ThisAddr is the last element for this
UP�array element� i� � INFTY� and s � the position of the last
element in SUP�v��
See "ref#Substep
Descr$ in co�tex �

Use�t�IF��
IF ProcessorType � UP THEN
BEGIN

� See Figure "ref#Substep
$ in co�tex �
ADDRESS addr�
INTEGER LeftChild�

Use��t�LOAD � t�SHIFT � t�STORE� � �t�LOAD � t�STORE���
LeftChild �� ��node�
r �� RankInLeftSUP�
StoreProcessorValue�RankInLeftSUP��

� The NodeSizeTable should now contain the size of the SUP�array
for each node� Similarly� the addresses of the SUP�arrays in the
NodeAddressTable� See the start of the body of MergeWithHelp �

Use�t�IF � t�LOAD � t�SUB � t�ADD��
IF index � size THEN
READ s FROM ExchangeAreaStart��p�
��

ELSE � Right neighbour processor does not exist� lets point to the
last element in SUP�v� �

READ s FROM NodeSizeTableStart��LeftChild�
��

READ i
 FROM ThisAddr�
Use�t�IF��
IF index � size THEN
READ i� FROM ThisAddr�

ELSE
BEGIN
Use�t�READ�� i� �� INFTY�

END�
Use�t�LOAD � t�ADD��
READ addr FROM NodeAddressTableStart��LeftChild�
��
TryCandidates�r� addr��

END of ProcessorType � UP
ELSE
Wait��t�LOAD � t�SHIFT � t�STORE� � �t�LOAD � t�STORE� � t�StoreVal �

�t�IF � t�LOAD � t�SUB � t�ADD� � t�R � t�R � �t�IF� �
t�R � �t�LOAD � t�ADD� � t�R � t�TryCandidates��

� Do the same for each element e in SUP�w�� Note that this �
� computation must be done in two phases �one for SUP�v� and �
� one for SUP�w�� which not can be done in parallel� since the
� work in both phases are done by the UP�u� processors which �
� are common for SUP�v� and SUP�w�� �

� for each element e in SUP�w� compute its rank in UP�u� �
� Assumes that this test is combined with the one above �
IF ProcessorType � UP THEN
BEGIN
ADDRESS addr�
INTEGER RightChild�

Use��t�LOAD � t�SHIFT � t�ADD � t�STORE� � �t�LOAD � t�STORE���
RightChild �� ��node�
�
r �� RankInRightSUP�
StoreProcessorValue�RankInRightSUP��

�	�

� The NodeSizeTable should still contain the size of the �
� SUP�array for each node� Similarly� the addresses of the �
� SUP�arrays in the NodeAddressTable� �

Use�t�IF � t�LOAD � t�SUB � t�ADD��
IF index � size THEN

READ s FROM ExchangeAreaStart��p�
��

ELSE

READ s FROM NodeSizeTableStart��RightChild�
��

READ i
 FROM ThisAddr�
Use�t�IF��
IF index � size THEN

READ i� FROM ThisAddr�

ELSE
BEGIN

Use�t�READ�� i� �� INFTY�
END�

Use�t�LOAD � t�ADD��
READ addr FROM NodeAddressTableStart��RightChild�
��
TryCandidates�r� addr��

END of ProcessorType � UP
ELSE
Wait��t�LOAD�t�SHIFT�t�ADD�t�STORE� � �t�LOAD�t�STORE� � t�StoreVal �

�t�IF � t�LOAD � t�SUB � t�ADD� � t�R � t�R � �t�IF� �
t�R � �t�LOAD � t�ADD� � t�R � t�TryCandidates��

END�PROCEDURE SubStep
�
� t�SubStep
 is defined in DoMerge�proc �

PROCEDURE SubStep�

PROCEDURE SubStep��
BEGIN
� for each element e in SUP�v�w� compute its rank in SUP�w�v� �
� see fig�
� Cole		 p ���� and "ref#Substep�$ in co�tex �

INTEGER r� t�
PROCEDURE find�r�and�t�
BEGIN
INTEGER dProcNo� ParentUPaddr� ParentSize�

� find the processor no which holds d�
Use�t�LOAD � t�SHIFT � t�ADD��
READ ParentUPaddr FROM NodeAddressTableStart��node�����
�
Use��t�LOAD � t�ADD � t�SUB � t�STORE� � �t�LOAD � t�ADD���
dProcNo �� ParentUPaddr � RankInParentUP � UPstart�
� RankIn�Left�Right�SUP is now stored in ExchangeArea �
READ r FROM ExchangeAreaStart�dProcNo�
�

Use�t�LOAD � t�SHIFT � t�ADD��
READ ParentSize FROM NodeSizeTableStart��node�����
�
Use��t�LOAD � t�ADD � t�IF� � �t�LOAD � t�ADD���
IF RankInParentUP �
 � ParentSize THEN
BEGIN

t �� size�
Use�t�READ��

END
ELSE

READ t FROM ExchangeAreaStart�dProcNo�
�
�

END�PROCEDURE find�r�and�t�
� t�find�r�and�t is defined in Order
Merge�proc �

Use�t�IF � t�LOAD � t�ADD��
IF ProcessorType � SUP THEN
READ RankInParentUP FROM ExchangeAreaStart��p�
�

ELSE

�	�

Wait�t�READ��

StoreArrayAddresses�UP��
StoreArraySizes�UP��

���� Case
 ��� e in SUP�v�� find rank in SUP�w� �
� t�ss�case
 starts here �
Use�t�IF��
IF ProcessorType � UP THEN
StoreProcessorValue�RankInRightSUP�

ELSE
Wait�t�StoreVal��

Use�t�IF � t�LOAD � t�SHIFT � t�JZERO��
IF ProcessorType � SUP AND REM�node��� � � THEN
BEGIN
� left node� SUP�v� �
find�r�and�t�

END
ELSE
Wait�t�find�r�and�t��

� t�ss�Case
 ends here�

���� Case � ��� e in SUP�w�� find rank in SUP�v� �
� t�ss�case� starts here �
Use�t�IF��
IF ProcessorType � UP THEN
StoreProcessorValue�RankInLeftSUP�

ELSE
Wait�t�StoreVal��

Use�t�IF � t�LOAD � t�SHIFT � t�JNEG��
IF ProcessorType � SUP AND REM�node��� � � THEN
BEGIN
� right node� SUP�w� �
find�r�and�t�

END
ELSE
Wait�t�find�r�and�t��

� t�ss�Case� ends here�

� The rest of Case
 and Case � is handled in parallel �
Use�t�IF��
IF ProcessorType � SUP THEN
BEGIN
� Remember that node
 has no sibling node �
INTEGER val� val
� val�� val�� LocalOffset�
READ val FROM ThisAddr�
StoreProcessorValue�val��

BEGIN
PROCEDURE ReadValues�size��
INTEGER size�
BEGIN
Use��t�IF � t�ABS� � �t�LOAD � t�SUB � t�ADD � t�ADD���
IF r �� ABS�size� THEN
� for the ABS� see the second call to ReadValues below �
BEGIN
� r�
 corresponds to the value INFTY �
Use�t�READ�� val
 �� INFTY�

END
ELSE
READ val
 FROM ThisAddr�index�size��r�
��

Use��t�IF � t�ADD� � t�LOAD�� � Assumes that the long address
expression was stored locally �in a register� above �

IF r�� �� t THEN
READ val� FROM ThisAddr�index�size��r���

ELSE
BEGIN
val� �� INFTY� Use�t�READ��

END�

�	�

Use��t�IF � t�ADD� � t�LOAD��
IF r�� �� t THEN
READ val� FROM ThisAddr�index�size��r���

ELSE
BEGIN

val� �� INFTY� Use�t�READ��
END�

END�PROCEDURE ReadValues�

Use��t�IF � t�LOAD � t�SHIFT� � t�SUB��
IF REM�node��� � � THEN
ReadValues�size� � this is left child� read from right child �

ELSE
ReadValues��size�� � this is right child� read from left child �

END�
Use� t�STORE � �t�ADD � t�STORE���
LocalOffset �� Compare
With��val� val
� val�� val���
RankInOtherSUP �� r � LocalOffset�

� Store the positions in the other SUP of the two straddling items�
these values are needed in MaintainRanks� �
Use� t�STORE � �t�ADD � t�STORE���
SLindex �� RankInOtherSUP�
SRindex �� RankInOtherSUP �
�

END
ELSE
Wait�t�READ � t�StoreVal � �t�IF � t�LOAD � t�SHIFT � t�SUB� �

t�ReadValues � � t�STORE � �t�ADD � t�STORE���� �
t�Compare
With���

END�PROCEDURE SubStep��

Body of ComputeCrossRanks

���� BEGIN BODY of ComputeCrossRanks �

Use�t�IF � t�LOAD � t�STORE��
IF ProcessorType � SUP THEN
RankInThisSUP �� index�

� Compute rank in other SUP �
� see also the processor selection before the call to DoMerge and �
� ComputeCrossRanks �

Use�t�IF � t�LOAD � t�SUB � t�JZERO��
IF ProcessorType � SUP AND size �
 THEN
BEGIN
� Boundary case� �
� Since the size of the SUP�array in this node �
 there is no �
� UP�array in the parent node to help us in computing the rank �
� in the other SUP �as done by the routines SubStep
 and SubStep�� �
� However� since the SUP�arrays are so small it is easy to compute �
� this rank in constant time by using only one comparison� �
INTEGER ThisVal� OtherVal�
ADDRESS OtherAddr�

Use��t�IF � t�SHIFT� � �t�LOAD � t�ADD���
IF REM�node� �� � � THEN
READ OtherAddr FROM NodeAddressTableStart��node�
��

ELSE
READ OtherAddr FROM NodeAddressTableStart��node�
��
�

READ OtherVal FROM OtherAddr�

READ ThisVal FROM ThisAddr�
Use�t�IF � t�STORE��
IF ThisVal � OtherVal THEN
RankInOtherSUP �� �

ELSE
RankInOtherSUP ��
�

�	�

Use��t�LOAD � t�STORE� � �t�ADD � t�STORE���
SLindex �� RankInOtherSUP�
SRindex �� RankInOtherSUP �
�
� Note the � sign below �
Wait�t�SubStep
 � t�SubStep� � �

� ��t�IF � t�SHIFT� � �t�LOAD � t�ADD�� �
t�R � t�R � t�R � t�IF � t�STORE� �
��t�LOAD � t�STORE� � �t�ADD � t�STORE�����

END of ProcessorType � SUP and size �

ELSE
BEGIN
SubStep
�
SubStep��

END�

END�PROCEDURE ComputeCrossRanks�

Body of DoMerge

����������������������������
���� BEGIN body of DoMerge �
����������������������������
� We want the position of each SUP�element in the NUP�array of its �
� parent node� This position is computed and stored in the variable �
� RankInParentNUP� It is given by the sum of the rank of the element in �
� SUP�v� and SUP�w�� The procedure ComputeCrossRanks computes these �
� values� and they are stored in RankInThisSUP and RankInOtherSUP upon �
� return from the procedure� �

ADDRESS WriteAddress�

� see also the processorselection before the call to DoMerge �

� t�DoMergePart
 starts here �
Use�t�IF��
IF ProcessorType � UP OR ProcessorType � SUP THEN
ComputeCrossRanks

ELSE
Wait�t�ComputeCrossRanks��

Use�t�IF � t�LOAD � t�ADD � t�STORE��
IF ProcessorType � SUP THEN
RankInParentNUP �� RankInThisSUP � RankInOtherSUP�

� The values SLrankInParentNUP and SRrankInParentNUP are only used
in MaintainRanks which �not� is called before Stage �� and �not� in
Stage �� �
Use�t�IF � �t�LOAD � t�SUB � t�JZERO� � �t�LOAD � t�SUB � t�JNEG���

IF ProcessorType � SUP AND �Stage � � OR Stage � � � THEN
BEGIN
� Compute SLrankInParentNUP and SRrankInParentNUP�
Knows SLindex� SRindex� and RankInParentNUP for all SUP�processors��

StoreProcessorValue�RankInParentNUP��
� Note that the padding used here is not robust� be careful if modifying�
Use�t�IF��
IF SLindex �
 THEN
BEGIN
Use�t�STORE��
SLrankInParentNUP �� ��
Wait��t�IF � �t�LOAD�t�SHIFT� � �t�LOAD�t�SUB�t�ADD���t�STORE� � t�R� �

t�STORE��
END
ELSE
BEGIN
INTEGER SLaddr�
� Compute processor no �address� corresponding to SLindex�

�	�

NoOfProcessors is added because we want the address
in the ExchangeArea� �
Use�t�IF � �t�LOAD�t�SHIFT� � �t�LOAD�t�SUB�t�ADD���t�STORE���
IF REM�node��� � � THEN � This is a left child � ��mark���
SLaddr �� �ThisAddr � index � size � SLindex� � NoOfProcessors

ELSE � This is a right child �
SLaddr �� �ThisAddr � index � size � SLindex� � NoOfProcessors�

READ SLrankInParentNUP FROM SLaddr�
END�

Use�t�IF��
IF SRindex � size THEN
BEGIN
Use�t�LOAD � t�SHIFT � t�ADD � t�STORE��
SRrankInParentNUP �� ���size��
�
Wait��t�IF � �t�LOAD�t�SHIFT� � �t�LOAD�t�SUB�t�ADD���t�STORE� � t�R� �

�t�LOAD � t�SHIFT � t�ADD � t�STORE���
END
ELSE
BEGIN
INTEGER SRaddr�
Use�t�IF � �t�LOAD�t�SHIFT� � �t�LOAD�t�SUB�t�ADD���t�STORE���
IF REM�node��� � � THEN
SRaddr �� �ThisAddr � index � size � SRindex� � NoOfProcessors

ELSE
SRaddr �� �ThisAddr � index � size � SRindex� � NoOfProcessors�

READ SRrankInParentNUP FROM SRaddr�
END�

END of ProcessorType � SUP AND Stage ���
ELSE

Wait�t�StoreVal �
��� t�IF � �t�IF � �t�LOAD�t�SHIFT� �

�t�LOAD�t�SUB�t�ADD���t�STORE� � t�R����

���� DO THE MERGE ����
� t�DoMergePart� starts here �
StoreArrayAddresses�NUP��

Use�t�IF��
IF ProcessorType � SUP THEN
BEGIN
ADDRESS ParentNUPaddr�

INTEGER val�
� copy the SUP element to its right position in the NUP array
of its parent node �
READ val FROM ThisAddr�

Use�t�LOAD � t�SHIFT � t�ADD��
READ ParentNUPaddr FROM NodeAddressTableStart���node�����
��

Use�t�LOAD � t�ADD � t�SUB � t�STORE��
WriteAddress �� ParentNUPaddr�RankInParentNUP�
�
� RankInThisSUP �
 for the first element in a set� If RankInOtherSUP � �
we will have RankInParentNUP �
 which is the correct position of the
element because it is in the set� We must subtract
 to get the correct
address above as usual because ParentNUPaddr is the address of element
no
 and not the address of element no � �which do not exist�� �

WRITE val TO WriteAddress�
END
ELSE

Wait�t�READ � ��t�LOAD � t�SHIFT � t�ADD� � t�READ� �
�t�LOAD � t�ADD � t�SUB � t�STORE� � t�WRITE��

� Record the SenderAddress of each NUP�element in the ExchangeArea�
The information is used in MaintainRanks� A negative SenderAddress
indicates that the item is from the left child� a positive address
indicates that it is from the right child� �

� assumed combined with the if test above �
IF ProcessorType � SUP THEN
BEGIN

��

INTEGER SenderAddress�

��	

Use�t�LOAD � t�STORE��
SenderAddress �� index�
� Use the address in the ExchangeArea corresponding to the processor
allocated to the NUP�element just written �

Use� �t�IF � t�SHIFT� � �t�LOAD � t�ADD � t�SUB���
IF REM�node� �� � � THEN � node is left child �

WRITE �SenderAddress TO WriteAddress�NoOfProcessors
ELSE

WRITE �SenderAddress TO WriteAddress�NoOfProcessors�
END of ProcessorType � SUP
ELSE

Wait��t�LOAD � t�STORE� � � t�IF � t�SHIFT � �
�t�LOAD � t�ADD � t�SUB� � t�WRITE��

END�PROCEDURE DoMerge�

INTEGER CONSTANT t�DoMergePart
 � t�IF � �t�IF � t�LOAD � t�ADD � t�STORE� �
�t�IF � �t�LOAD � t�SUB � t�JZERO� � �t�LOAD � t�SUB � t�JNEG�� �
t�ComputeCrossRanks � �t�StoreVal � ���t�IF � �t�IF � �t�LOAD�t�SHIFT� �

�t�LOAD�t�SUB�t�ADD���t�STORE��t�R����

INTEGER CONSTANT t�DoMergePart� � t�StoreArray � t�IF �
�t�READ � �t�LOAD � t�SHIFT � t�ADD� � t�READ� �
�t�LOAD � t�ADD � t�SUB � t�STORE� � t�WRITE �
��t�LOAD�t�STORE� � �t�IF�t�SHIFT� � �t�LOAD�t�ADD�t�SUB� � t�WRITE��

B���� MaintainRanks�proc

� MaintainRanks�proc
� �����������������
PROCEDURE MaintainRanks�
BEGIN

� Computes the ranks UP�u� �� SUP�v� and UP�u� �� SUP�w� for the �next� �
� stage� This is NUP�u� �� NewSUP�v� and NUP�u� �� NewSUP�w� for �this� �
� stage� These ranks are stored in the variables RankInLeftSUP and �
� RankInRightSUP in the NUP processors on return from the procedure� �
� See Cole		 p� ��� �

INTEGER SourceProcNo� � Every NUP�array element corresponds to a �
� SUP�array element� this variable gives the SUP�array processor no �
� The variable is declared here because it is computed in the first �
� of the following two procedures� and used in both of them� �

PROCEDURE RankInNewSUPfromSenderNode
PROCEDURE RankInNewSUPfromSenderNode�Sender��
INTEGER Sender�
BEGIN
INTEGER RankInThisNUP�

� The two cases that the element e came from SUP�v� or SUP�w� �
� are handled in parallel �

� compute UP�v� �� NUP�v� �

Use�t�IF��
IF ProcessorType � UP THEN
� NOTE that active NUP and UP processors at the �same� node occurs at
stage � �when MaintainRanks not is performed� and at stage 	 and all
later stages� BUT� if NUP�node� does not exist �as active processors�
any longer� the reason is that UP�node� has reached its maximum size�
and since NUP�node� � UP�node� there is no need to store more than
UP�node� �and it is possible to compute UP�v���NUP�v� even if NUP�v�
does not exist�� �
BEGIN
Use��t�IF � t�LOAD � t�SUB � t�power�� � �t�LOAD � t�ADD � t�STORE���
IF size � power��m � level� THEN
BEGIN

���

� UP�v� � NUP�v� �
RankInThisNUP �� index�

END
ELSE
BEGIN
RankInThisNUP �� RankInLeftSUP � RankInRightSUP�

END�
StoreProcessorValue�RankInThisNUP�� ��mark�
�

� Store the address of the UP�arrays� needed below �
StoreArrayAddresses�UP��

END of ProcessorType � UP
ELSE
Wait��t�IF � t�LOAD � t�SUB � t�power�� � �t�LOAD � t�ADD � t�STORE� �

t�StoreVal � t�StoreArray��

� t�Part
 ends � t�Part� starts �

� for each element in SUP�v� or SUP�w� find the corresponding �
� element in UP�v� �
� What element in UP is this SUP element a copy of% �

Use�t�IF��
IF ProcessorType � SUP THEN
BEGIN
ADDRESS UPaddr�
INTEGER UPeltIndex�
INTEGER rate�
INTEGER UParraySize�
INTEGER RankInThisNewSUP�

� compute samplerate which was used in making SUP from UP �
Use�t�STORE � t�IF � ���t�IF � t�STORE���
rate �� ��
IF NOT InsideNode THEN
BEGIN
IF ExternalState � � THEN rate �� ��
IF ExternalState � � THEN rate ��
�

END�

� find UP�array of same node �
Use�t�LOAD � t�ADD��
READ UPaddr FROM NodeAddressTableStart��node�
��

� find the position in UP�array corresponding to this SUP�element �
Use�t�LOAD � t�SUB � t�SHIFT � t�ADD � t�STORE��
UPeltIndex ��
 � �index �
��rate�

� The processor no of the UP�array element corresponding to this �
� SUP element is �UPaddr � UPeltIndex � UPstart� �

� The ExchangeArea now contains UP�v� �� NUP�v�� see �mark�
 �
Use�t�LOAD � t�ADD�� � t�SUB��
READ RankInThisNUP FROM ExchangeAreaStart��UPaddr�UPeltIndex�UPstart��
�
� We now have for each SUP�x� element �
� RankInThisNUP � SUP�x���NUP�x� � for x � v or x � w ��

� NewSUP is made from NUP ��under the names SUP from UP�� in the next�
� stage� must compute the sample rate that will be used in that stage�

rate �� RateInNextStage�

� NewSUP�x� is every rate!th element in NUP�x� �
Use�t�IF � �t�LOAD � t�SUB � t�SHIFT � t�ADD � t�STORE���
IF rate � � THEN
RankInThisNewSUP ��
 � �RankInThisNUP �
���rate�

� this is SUP�x� �� NewSUP�x�� save this value and the address �
� of the SUP�arrays to make it possible for the NUP processors �
� to get the correct value below � �
StoreProcessorValue�RankInThisNewSUP��
StoreArrayAddresses�SUP��

END of ProcessorType � SUP

���

ELSE
Wait� �t�STORE � t�IF � ���t�IF � t�STORE�� � �t�LOAD � t�ADD� � t�R �

�t�LOAD � t�SUB � t�SHIFT � t�ADD � t�STORE� �
�t�LOAD � t�ADD�� � t�SUB� � t�R � t�RateInNextStage �
�t�IF � �t�LOAD � t�SUB � t�SHIFT � t�ADD � t�STORE�� �
t�StoreVal � t�StoreArray��

� t�Part� � ends here �

� Let NUP�u� processors get their value of the rank �
� NUP�u� �� NewSUP�v�w� if their NUP�elt came from SUP�v�w� �

Use�t�IF��
IF ProcessorType � NUP THEN
BEGIN
ADDRESS SUPxAddr�
Use�t�IF��
IF Sender � � THEN
BEGIN � from left child �

Use�t�LOAD � t�SHIFT � t�ADD��
READ SUPxAddr FROM NodeAddressTableStart����node��
�
Use��t�LOAD � t�SUB�� � t�STORE� � t�ADD��
SourceProcNo �� SUPxAddr � ��Sender� � UPstart�
READ RankInLeftSUP FROM ExchangeAreaStart��SourceProcNo�
��

END
ELSE
BEGIN

IF Sender � � THEN Error�� sender � ����
� from right child �
Use�t�LOAD � t�SHIFT � t�ADD��
READ SUPxAddr FROM NodeAddressTableStart����node�
��
�
Use��t�LOAD � t�SUB�� � t�STORE� � t�ADD��
SourceProcNo �� SUPxAddr � ��Sender� � UPstart�
READ RankInRightSUP FROM ExchangeAreaStart��SourceProcNo�
��

END�
END
ELSE
Wait�t�IF � �t�LOAD � t�SHIFT � t�ADD� � t�READ �

��t�LOAD � t�SUB�� � t�STORE� � t�ADD� � t�READ��

� Remember that it were the values for the �next� stage of
RankInLeft�RightSUP which were computed above� �

END�PROCEDURE RankInNewSUPfromSenderNode�

INTEGER CONSTANT t�Part
 � t�IF �
�t�IF � t�LOAD � t�SUB � t�power�� � �t�LOAD � t�ADD � t�STORE� �
t�StoreVal � t�StoreArray�

INTEGER CONSTANT t�Part� �
t�IF � �t�STORE � t�IF � ���t�IF � t�STORE�� � �t�LOAD � t�ADD� � t�R �
�t�LOAD � t�SUB � t�SHIFT � t�ADD � t�STORE� �
�t�LOAD � t�ADD�� � t�SUB� � t�R � t�RateInNextStage �
�t�IF� �t�LOAD � t�SUB � t�SHIFT � t�ADD � t�STORE� �
t�StoreVal � t�StoreArray��

INTEGER CONSTANT t�RankInNewSUPfromSenderNode � t�Part
 � t�Part� �
�t�IF � �t�IF � �t�LOAD � t�SHIFT � t�ADD� � t�READ �
��t�LOAD � t�SUB�� � t�STORE� � t�ADD� � t�READ���

PROCEDURE RankInNewSUPfromOtherNode
PROCEDURE RankInNewSUPfromOtherNode�Sender��
INTEGER Sender�
BEGIN
INTEGER r� t �
INTEGER LocalOffset�

PROCEDURE ComputeLocalOffset�OtherNUPaddr� rate��
ADDRESS OtherNUPaddr�
INTEGER rate�
BEGIN
INTEGER OwnVal� val
� val�� val��

���

� Get the maximum � elements in positions r�
� t�
 and t �
� See fig �� Cole		 p ��� �
� This procedure is similar to ReadValues in DoMerge� but the address
calculation is different because we must use !rate! to obtain the
correct mapping between NewSUP�x� and NUP�x�� see �mark�� below �

� Item x is read from position OtherNUPaddr � ��x�
��rate �
Use�t�LOAD � t�SHIFT � t�ADD��
READ val
 FROM OtherNUPaddr��r�rate��

Use��t�ADD � t�IF� � �t�LOAD � t�SHIFT � t�ADD���
IF r�� �� t THEN
BEGIN
READ val� FROM OtherNUPaddr���r�
��rate��

END
ELSE
BEGIN
Use�t�READ�� val� �� INFTY�

END�

Use��t�ADD � t�IF� � �t�LOAD � t�SHIFT � t�ADD���

IF r�� �� t THEN
BEGIN
READ val� FROM OtherNUPaddr���r����rate��

END
ELSE
BEGIN
Use�t�READ�� val� �� INFTY�

END�

READ OwnVal FROM ThisAddr�
LocalOffset �� Compare
With��OwnVal� val
� val�� val���

END�PROCEDURE ComputeLocalOffset�

INTEGER dRank� fRank�
INTEGER NUPvAddr� NUPwAddr�
INTEGER NUPvANDwSize�
� The elements d and f are the two elements from the other SUP�array
which straddle e �e � this element�� See fig � in Cole		 p ����
dRank is the rank of the element d in NUP�u�� similarly for fRank��
� These values are computed in the procedure DoMerge� In that
procedure they are stored in the variables SLrankInParentNUP and
SRrankInParentNUP �

� Pass first dRank� then fRank� from the SUP to the NUP�processors� �
� SourceProcNo was calculated above in RankInNewSUPfromSenderNode�

� t�part��
 starts here �
Use�t�IF��
IF ProcessorType � SUP THEN
StoreProcessorValue�SLrankInParentNUP�

ELSE
Wait�t�StoreVal��

Use�t�IF � t�LOAD � t�ADD��
IF ProcessorType � NUP THEN
READ dRank FROM ExchangeAreaStart��SourceProcNo�
�

ELSE
Wait�t�READ��

Use�t�IF��
IF ProcessorType � SUP THEN
StoreProcessorValue�SRrankInParentNUP�

ELSE
Wait�t�StoreVal��

Use�t�IF � t�LOAD � t�ADD��
IF ProcessorType � NUP THEN
READ fRank FROM ExchangeAreaStart��SourceProcNo�
�

ELSE
Wait�t�READ��

���

� This code is needed because NewSUP�x� does not exist� Instead we
find a given NewSUP�x� item in NUP�x� by considering the sample
rate that will be used in the next stage one level below to make
NewSUP�x� from NUP�x�� �
� In the code below � see �mark�� and �mark�� � every NUP�processor
must know the address of the NUP�arrays �if it exist� of its two
children� If they do not exist� the address of the UP�arrays of the
children must be known�
If there are active NUP processors in node x� there are active NUP
processors in the left and right child of x if the size of the NUP�
array at node x is smaller than �
����MaxNUPsize�x�level���

� Assumes that size and address of NUP procs are stored
in the Size� and Address Table �see �mark�� below��

� t�part��� starts here �
Use�t�IF � t�LOAD � t�SUB � t�power� � t�SHIFT � t�SUB � t�JNEG��
IF ProcessorType � NUP AND size � power��m � level���� THEN
BEGIN
� NUP�array should exist in right and left child �
Use�t�IF � t�LOAD � t�SHIFT � t�ADD ��
IF Sender � � THEN

READ NUPvAddr FROM NodeAddressTableStart��node����

ELSE

READ NUPwAddr FROM NodeAddressTableStart���node����
��
�
Use�t�LOAD�� � Assumes use of offset computed above �
READ NUPvANDwSize FROM NodeSizeTableStart��node����
�

END
ELSE
Wait��t�IF � t�LOAD � t�SHIFT � t�ADD� � t�R � t�LOAD � t�R��

StoreArrayAddresses�UP��
StoreArraySizes�UP��
Use�t�IF�� � Assumed combined with the IF statement above �
IF ProcessorType � NUP AND size �� power��m � level���� THEN
BEGIN
� UP�array should exist in right and left child �
� UP�array is used as NUP array �
Use�t�IF � t�LOAD � t�SHIFT � t�ADD��
IF Sender � � THEN

READ NUPvAddr FROM NodeAddressTableStart��node����

ELSE

READ NUPwAddr FROM NodeAddressTableStart���node����
��
�
Use�t�LOAD��
READ NUPvANDwSize FROM NodeSizeTableStart��node����
�

END
ELSE
Wait��t�IF � t�LOAD � t�SHIFT � t�ADD� � t�R � t�LOAD � t�R��

� t�part��� starts here �
Use�t�IF��
IF ProcessorType � NUP THEN
BEGIN
INTEGER rate�

PROCEDURE find�r�and�t�
BEGIN

� Knows that d is to the left of e� the position of e is index
and that f is to the right of e� d� e� and f are all inside the
same NUP�x� array�
The address of the
st element �with index�
� in this array
for this node is �ExchangeAreaStart � p � index�� Therefore
the address of element no �pos� �numbered
��size� is ��pos� �
�
added to this value� �
Use�t�IF � t�LOAD � t�ADD � t�SUB � t�ADD��
IF dRank � � THEN
READ r FROM �ExchangeAreaStart�p�index���dRank�
�

ELSE
BEGIN
Use�t�READ��
r �� ��

END�

���

Use�t�IF � t�LOAD � t�SUB � t�ADD�� � Assumed combined with above�
IF fRank �� size � size of own NUP�array � THEN
READ t FROM �ExchangeAreaStart�p�index���fRank�
�

ELSE
BEGIN
t �� NUPvANDwSize��rate�
Wait�t�READ�� � Assumed not simpler than the THEN�clause �

END�
END�PROCEDURE find�r�and�t�

� r and t are the ranks of d and f in the NewSUP for the same
node as d and f came from �SUP�� These values have just been
computed in procedure RankInNewSUPfromSenderNode�

� The rate used in the next stage have been computed before
by the SUP�processors in procedure RankInNewSUPfromSenderNode�
However� in this case we need the rate that will be used in the
next stage in the CHILD nodes of this node� �

Use�t�STORE��
rate �� RateInNextStageBelow�

StoreProcessorValue�RankInLeftSUP��
Use�t�IF��
IF Sender � � THEN
BEGIN
� This is from right child SUP�w�� d and f from the left� �
find�r�and�t�

END
ELSE
Wait�t�find��

StoreProcessorValue�RankInRightSUP��
Use�t�IF��
IF Sender � � THEN
BEGIN
� This is from left child SUP�v�� d and f from the right �
find�r�and�t�

END
ELSE
Wait�t�find��

Use�t�IF��
IF Sender � � THEN
BEGIN � �mark�� �
� r and t points to elements in NewSUP�v�� �This is the case
shown in fig� � in Cole		�� Note that NewSUP does �not� exist yet�
However we know that NewSUP�v� will be made by the procedure
MakeSamples from NUP�v� in the next stage� Thus the positions r and t
in NewSUP�v� implicitly gives the positions in NUP�v� for the
elements which must be compared with e�
If the samplerate used to make NewSUP from NUP is rate� the position
of the element corresponding to r in NUP�v� is given by
��r�
��rate�

� NUPvAddr was read above� �mark���
ComputeLocalOffset�NUPvAddr� rate��

END of Sender � �
ELSE
BEGIN
IF Sender � � THEN
BEGIN
� r and t points to elements in NewSUP�w�� �
� see comments for the case Sender � � above �

� NUPwAddr was read above� �mark���
ComputeLocalOffset�NUPwAddr� rate��

END
ELSE
Error�� Should not occur���

END�

���

END of ProcessorType � NUP
ELSE
Wait�t�STORE � t�RateInNextStageBelow �

�t�StoreVal � t�IF � t�find��� � �t�IF � t�ComputeLocalOffset���

� Can be appended to IF�test above �
IF ProcessorType � NUP THEN
BEGIN
Use�t�IF � t�LOAD � t�ADD � t�STORE��
IF Sender � � THEN
BEGIN

� This item is from left� other child is right �
RankInRightSUP �� r � LocalOffset�

END
ELSE
BEGIN

� This item is from right� other child is left �
RankInLeftSUP �� r � LocalOffset�

END�
END
ELSE
Wait�t�IF � t�LOAD � t�ADD � t�STORE��

END�PROCEDURE RankInNewSUPfromOtherNode�

INTEGER CONSTANT t�part��
 � ���t�IF � t�StoreVal � �t�IF�t�LOAD�t�ADD� �
t�READ��

INTEGER CONSTANT t�part��� �
�t�IF � t�LOAD � t�SUB � t�power� � t�SHIFT � t�SUB � t�JNEG� �
�t�IF � t�LOAD � t�SHIFT � t�ADD � t�R � t�LOAD � t�R� �
��t�StoreArray � t�IF �
��t�IF � t�LOAD � t�SHIFT � t�ADD� � t�R � t�LOAD � t�R��

INTEGER CONSTANT t�ComputeLocalOffset � �t�LOAD � t�SHIFT � t�ADD� �
t�R � ��t�ADD � t�IF� � �t�LOAD � t�SHIFT � t�ADD�� �
t�R � ��t�ADD � t�IF� � �t�LOAD � t�SHIFT � t�ADD�� �
t�R � t�R � t�Compare
With��

INTEGER CONSTANT t�find � �t�IF � t�LOAD � t�ADD � t�SUB � t�ADD� �
t�READ � �t�IF � t�LOAD � t�SUB � t�ADD� � t�READ�

INTEGER CONSTANT t�part��� � t�IF �
t�STORE � t�RateInNextStageBelow � �t�StoreVal � t�IF � t�find��� �
�t�IF � t�ComputeLocalOffset� �
�t�IF � t�LOAD � t�ADD � t�STORE��

INTEGER CONSTANT t�RankInNewSUPfromOtherNode � t�part��
 � t�part��� �
t�part����

���

Body of MaintainRanks

������� BODY OF MaintainRanks �
� It is only necessary to perform MaintainRanks for nodes with NUP�array
which is smaller than the maximum size of NUP�arrays at the same level�
i�e� MergeWithHelp must be performed also in the next stage� This maximum
size is given by power��m � level� �

INTEGER SenderAddr�

Use��t�IF � t�AND� � �t�LOAD � t�SUB � t�power� � t�SUB � t�JNEG���
IF ProcessorType � NUP AND active AND size � power��m � level� THEN
BEGIN
� read sender address of this element �
Use�t�LOAD � t�ADD��
READ SenderAddr FROM ExchangeAreaStart��p�
��

END
ELSE
BEGIN
SenderAddr �� �� � this is done for robustness �
Wait�t�LOAD � t�ADD � t�READ��

END�

Use�t�IF � t�AND � t�OR � t�LOAD � t�AND � t�OR��
� Assumed combined with the test above and simplified �
IF �ProcessorType � UP AND active� OR

�ProcessorType � SUP AND active AND size � power��m � level�� OR
�ProcessorType � NUP AND active AND size � power��m � level�� THEN

BEGIN
RankInNewSUPfromSenderNode�SenderAddr��

END
ELSE
Wait�t�RankInNewSUPfromSenderNode��

StoreArrayAddresses�NUP�� ��mark���
StoreArraySizes�NUP��

Use�t�IF�� � Assumes that the result of the same test was stored above�
IF �ProcessorType � UP AND active� OR

�ProcessorType � SUP AND active AND size � power��m � level�� OR
�ProcessorType � NUP AND active AND size � power��m � level�� THEN

BEGIN
RankInNewSUPfromOtherNode�SenderAddr��

END of processor�selection
ELSE
Wait�t�RankInNewSUPfromOtherNode��

� The ranks NUP�u� �� NewSUP�v� are stored in RankInLeftSUP for the
NUP processors and similarly in the RankInRightSUP for NUP�u� �� NewSUP�w�

The addresses of the NUP�arrays are stored at end of this stage �see
the main loop�� and this info is used by the UP�processors to read �copy�
these Ranks in the procedure CopyNUPtoUP at the start of the next stage��

END�PROCEDURE MaintainRanks�

���

Appendix C

Batcher�s Bitonic Sorting in

PIL

This is a complete listing of Batcher�s bitonic sorting algorithm �Bat��� Akl���
implemented in PIL for execution on the CREW PRAM simulator�

C�� The Main Program

� Bito�pil
� ���
� Bitonic sorting with detailed time modelling�
� A bitonic sorting network is emulated by using n�� processors to act
� as the active column of comparators in each pass during each stage�
� ���
� Author� Lasse Natvig �E�mail� lasse�idt�unit�no�
� Last changed �improvements��
����

� Copyright �C�
������
� Lasse Natvig� IDT�NTH� �����Trondheim� Norway
� ���

�include�Sorting�

PROCESSOR�SET ComparatorColumn�
INTEGER n� m�
ADDRESS addr�

BEGIN�PIL�ALG

FOR m �� � TO � DO
BEGIN

n �� power��m��
addr �� GenerateSortingInstance�n� RANDOM��

ClockReset�
Use���t�PUSH��
PUSH�addr��
PUSH�n��

ASSIGN n��� PROCESSORS TO ComparatorColumn�

��

FOR�EACH PROCESSOR IN ComparatorColumn
BEGIN
INTEGER n� m� Stage� Pass�
ADDRESS Addr� UpInAddr� LowInAddr�
INTEGER UpInVal� LowInVal�
INTEGER GlobalNo � � Global Comparator No� ���
����� ���� �
INTEGER sl� � sequence length is always a power of two �

PROCEDURE ComputeInAddresses�
BEGIN
INTEGER sn� � sequence number� ���
���������
ADDRESS sa� � sequence address �
INTEGER LocalNo� � Local Comparator No inside this sequence ���
�������

Use�t�IF � MAX� �t�LOAD � t�power� � t�STORE��
�t�IF � t�LOAD � t�SHIFT � t�STORE����

IF Pass �
 THEN
sl �� power��Stage�

ELSE IF Pass � � THEN
sl �� sl����

Use� �t�LOAD � t�SHIFT � t�SHIFT � t�STORE� �
�t�LOAD � t�SHIFT � t�ADD � t�STORE� �
�t�LOAD � t�SHIFT � t�MOD � t�STORE���

sn �� �GlobalNo�����sl�
sa �� Addr � sn�sl�
LocalNo �� MOD�GlobalNo� �sl������

Use�t�IF � MAX���t�LOAD � t�ADD � t�STORE� �
�t�LOAD � t�SHIFT � t�ADD � t�STORE���
����t�LOAD � t�SHIFT� � t�SUB � t�JNEG � t�STORE� �
�t�IF � MAX� ����t�LOAD�t�SHIFT�t�ADD�t�STORE���

��t�LOAD�t�SHIFT�t�ADD�t�ADD�t�STORE� �
�t�LOAD�t�SHIFT�t�SUB�t�STORE�������

� This way of modelling time used gives easy analysis because every call
to the procedure ComputeInAddresses takes the same amount of time�
Since the variable Pass always will have the same value for all processors�
the case Pass �
 occur for all processors simultaneously� Therefore� a
faster execution might be obtained by placing appropriate Use statements
in the THEN and ELSE part of IF Pass �
 ���
However� for the test IF UpperPart ��� time modelling with
Use� t�IF � MAX�Then�Clause� Else�clause�� is most appropriate� since we
simultaneously have processors in both branches ��� and must wait for
the slowest branch to finish� �

IF Pass �
 THEN
BEGIN
UpInAddr �� sa � LocalNo�
LowInAddr �� UpInAddr � �sl�����

END
ELSE
BEGIN
BOOLEAN UpperPart�
UpperPart �� �LocalNo��� � �sl�����
IF UpperPart THEN
BEGIN
UpInAddr �� sa � �LocalNo����
LowInAddr �� UpInAddr � sl����

END
ELSE
BEGIN
LowInAddr �� sa � �LocalNo��� �
�
UpInAddr �� LowInAddr � sl����

END�
END�

END�PROCEDURE ComputeInAddresses�

��	

PROCEDURE Comparator�
BEGIN
PROCEDURE Swap�a�b��
NAME a� b� INTEGER a� b�
BEGIN

INTEGER Temp�
Temp �� a� a �� b� b �� Temp�

END�PROCEDURE Swap�
INTEGER CONSTANT t�Swap � ���t�LOAD � t�STORE��

INTEGER Type� � See Fig� ��� Selim G Akl!s book on parallel sorting�
BEGIN � Compute type �

INTEGER Interval�

Use� �t�LOAD � t�SUB � t�power� � t�STORE� �
�t�IF � t�LOAD � t�SHIFT � t�STORE���

Interval �� power��Stage �
�� � this is from Akl	�� book�
IF IsEven�GlobalNo��Interval� THEN
Type �� �

ELSE
Type ��
�

END�

Use�t�IF � �t�IF � t�Swap���
IF Type � � THEN
BEGIN

IF LowInVal � UpInVal THEN
Swap�LowInVal� UpInVal��

END
ELSE
BEGIN

IF LowInVal � UpInVal THEN
Swap�LowInVal� UpInVal��

END�

Use�t�LOAD � t�SHIFT � t�ADD��
WRITE UpInVal TO Addr��GlobalNo����
WRITE LowInVal TO Addr��GlobalNo����
�

END�PROCEDURE Comparator�

���

�������������� MAIN PROGRAM �������������������
� SetUp� �

Use�t�LOAD��
READ n FROM UserStackPtr�
�
Use�t�SUB��
READ Addr FROM UserStackPtr���
Use��t�LOAD � t�log� � t�STORE� � �t�LOAD � t�SUB � t�STORE���
m �� log��n��
GlobalNo �� p �
�

���� MAIN LOOP� �

Use�t�STORE ���� set to
 ���� � t�IF��

FOR Stage ��
 TO m DO
BEGIN

Use�t�STORE � t�IF��
FOR Pass ��
 TO Stage DO
BEGIN
ComputeInAddresses�
READ UpInVal FROM UpInAddr�
READ LowInVal FROM LowInAddr�

Comparator�
Use�t�LOAD � t�ADD � t�STORE � t�IF��

END�FOR�

Use�t�LOAD � t�ADD � t�STORE � t�IF��
END�FOR�

END�
END�FOR�EACH PROCESSOR�

T�TITIO��P bitonic�� n� � �� ClockRead��
T�TI��P bitonicCost�� n�� OUTTEXT�� ���
OUTINT��n�����ClockRead�
��� OUTIMAGE�
T�TO�� ���

FreeProcs�ComparatorColumn��
BEGIN
INTEGER dummy� � to avoid warning �
dummy �� POP�
dummy �� POP�

END�

END�FOR�
END�PIL�ALG

���

���

Bibliography

�AAN��� Kjell #ystein Arisland� Anne Cathrine Aasb!� and Are Nundal� VLSI
parallel shift sort algorithm and design� INTEGRATION� the VLSI
journal� pages �������� �����

�AC��� Loyce M� Adams and Thomas W� Crockett� Modeling Algorithm Exe�
cution Time on Processor Arrays� IEEE Computer� pages ������ July
�����

�ACG��� Sudhir Ahuja� Nicholas Carriero� and David Gelernter� Linda and
Friends� IEEE Computer� ����
�	����� August �����

�AG��� George S� Almasi and Allan Gottlieb� Highly Parallel Computing� The
Benjamin�Cummings Publishing Company� Inc�� �����

�Agg��� Alok Aggarwal� A Critique of the PRAM Model of Computation� In
Proceedings of the NSF � ARC Workshop on Opportunities and Con�
straints of Parallel Computing ��San��a��� pages ���� �����

�AHMP��� H� Alt� T� Hagerup� K� Mehlhorn� and F� P� Preparata� Deterministic
Simulation of Idealized Parallel Computers on More Realistic Ones�
In Mathematical Foundations of Computer Science ����� Bratislava�
Czechoslovakia� Lecture Notes in Computer Science no �		�� pages ����
	��� �����

�AHU��� A� Aho� J� Hopchroft� and J� Ullman� The Design and Analysis of
Computer Algorithms� Addison�Wesley Publishing Company� Reading�
Massachusetts� �����

�AHU�	� Alfred V� Aho� John E� Hopcroft� and Je rey D� Ullman� Data Struc�
tures and Algorithms� Addison�Wesley Publishing Company� Reading�
Massachusetts� ���	�

�Akl��� Selim G� Akl� Parallel Sorting Algorithms� Academic Press� Inc�� Or�
lando� Florida� �����

�Akl��� Selim G� Akl� The Design and Analysis of Parallel Algorithms� Prentice
Hall International� Inc�� Englewood Cli s� New Jersey� �����

���

�AKS��� M� Ajtai� J� Koml$os� and E� Szemer$edi� An O�n logn
 sorting network�
Combinatorica� ���
������ �����

�Amd��� Gene M� Amdahl� Validity of the single processor approach to achieving
large scale computer capabilities� In AFIPS joint computer conference
Proceedings� volume ��� pages �������� �����

�And��� Richard Anderson� The Complexity of Parallel Algorithms� PhD thesis�
Stanford� �����

�Bas��� A� Basu� Parallel processing systems� a nomenclature based on their
characteristics� IEE Proceedings� �����
��������� May �����

�Bat��� K� E� Batcher� Sorting networks and their applications� In Proc� AFIPS
Spring Joint Computer Conference� pages �������� �����

�BCK��� R� Bagrodia� K� M� Chandy� and E� Kwan� UC� A Language for the
Connection Machine� In Proceedings of SUPERCOMPUTING���� New
York� November ������ pages �	������ �����

�BDHM��� Dina Bitton� David J� DeWitt� David K� Hsiao� and Jaishankar Menon�
A Taxonomy of Parallel Sorting� Computing Surveys� ����
�	�������
September �����

�BDMN��� Graham M� Birtwistle� Ole�Johan Dahl� Bj!rn Myhrhaug� and Kristen
Nygaard� SIMULA BEGIN� second edition� Van Nostrand Reinhold
Company� New York� �����

�Ben��� Jon L� Bentley� Programming Pearls� Addison�Wesley Publishing Com�
pany� Reading� Massachusetts� �����

�BH��� A� Borodin and J� E� Hopcroft� Routing� Merging and Sorting on Paral�
lel Models of Computation� Journal of Computer and System Sciences�
����������� �����

�Bil��� Gianfranco Bilardi� Some Observations on Models of Parallel Compu�
tation� In Proceedings of the NSF � ARC Workshop on Opportunities
and Constraints of Parallel Computing ��San��a��� pages ������ �����

�Bir��� Graham M� Birtwistle� DEMOS � A System for Discrete Event Mod�
elling on Simula� The MacMillan Press Ltd�� London� �����

�Boo��� Grady Booch� Software Engineering With ADA� The Ben�
jamin�Cummings Publishing Company� Inc�� �����

�CF��� David Cann and John Feo� SISAL versus FORTRAN� A Compari�
son Using the Livermore Loops� In Proceedings of SUPERCOMPUT�
ING���� New York� November ������ pages �	������ �����

�CG��� Nicholas Carriero and David Gelernter� Applications experience with
Linda� In Proc� ACM�SIGPLAN Symp� on Parallel Programming�
�����

���

�CM��� K� Mani Chandy and Jayadev Misra� Parallel Program Design� A Foun�
dation� Addison�Wesley Publishing Company� Reading� Massachusetts�
�����

�Col��� Richard Cole� Parallel Merge Sort� In Proceedings of ��th IEEE Sym�
posium on Foundations of Computer Science �FOCS�� pages ��������
�����

�Col��� Richard Cole� Parallel Merge Sort� Technical Report 	��� Computer
Science Department� New York University� March �����

�Col��� Richard Cole� Parallel Merge Sort� SIAM Journal on Computing�
����
��������� August �����

�Col��� Richard Cole� The APRAM� Incorporating Asynchrony into the PRAM
Model� In Proceedings of the NSF � ARC Workshop on Opportunities
and Constraints of Parallel Computing ��San��a��� pages 	��	�� �����

�Col��� Richard Cole� New York University� Private communication� �� March
and 	� April ����� �����

�Coo��� S� A� Cook� An Observation on Time�Storage Tradeo � Journal of
Computer and System Sciences� ���
��������� �����

�Coo��� S� A� Cook� Towards a complexity theory of synchronous parallel com�
putation� L�Enseignement Mathematique� XXVII�����	�� �����

�Coo��� Stephen A� Cook� An Overview of Computational Complexity� Com�
munications of the ACM� 	���
��������� June ����� Turing Award
Lecture�

�Coo��� Stephen A� Cook� The Classi
cation of Problems which have Fast Par�
allel Algorithms� In Foundations of Computation Theory� Proceedings
of the ���	 International FCT�Conference� Borgholm� Sweden� August
���	� Lecture Notes in Computer Science no� ���� pages ������ Berlin�
����� Springer Verlag�

�Coo��� Stephen A� Cook� A Taxonomy of Problems with Fast Parallel Algo�
rithms� Inform� and Control� ���	�		� ����� This is a revised version
of �Coo����

�DeC��� Angel L� DeCegama� The technology of parallel processing� Parallel
processing architectures and VLSI hardware� Volume I� Prentice Hall�
Inc�� Englewood Cli s� New Jersey� �����

�Dem��� Howard B� Demuth� Electronic Data Sorting� IEEE Transactions on
Computers� C�����
�	������� April �����

�DH��� Hans Petter Dahle and Per Holm� SIMULA User�s Guide for UNIX�
Technical report� Lund Software House AB� Lund� Sweden� �����

���

�DKM��� C� Dwork� P� C� Kanellakis� and J� C� Mitchell� On the Sequential
Nature of Uni
cation� Journal of Logic Programming� ���
������� �����

�DLR��� D� Dobkin� R� J� Lipton� and S� Reiss� Linear programming is log�space
hard for P� Information Processing Letters� �������� �����

�Dun��� Ralph Duncan� A Survey of Parallel Computer Architectures� IEEE
Computer� 	��	
������ February �����

�Fei��� Dror G� Feitelson� Optical Computing� A Survey for Computer Scien�
tists� The MIT Press� London� England� �����

�Fis��� David C� Fisher� Your Favorite Parallel Algorithms Might Not Be as
Fast as You Think� IEEE Transactions on Computers� ���	
�	���	���
�����

�Flo�	� R� W� Floyd� Algorithm ��� shortest path� Communications of the
ACM� ������ ���	� The algorithm is based on the theorem in �War�	��

�Fly��� Michael J� Flynn� Very High�Speed Computing Systems� In Proceedings
of the IEEE� volume ��� pages ���������� December �����

�Fre��a� Karen A� Frenkel� Complexity and Parallel Processing� An Interview
With Richard Karp� Communications of the ACM� 	��	
���	�����
February �����

�Fre��b� Karen A� Frenkel� Special Issue on Parallelism� Communications of the
ACM� 	���	
����������� December �����

�FT��� Ian Foster and Stephen Taylor� Strand� New Concepts in Parallel Pro�
gramming� Prentice�Hall Inc�� Englewood Cli s� New Jersey� �����

�FW��� S� Fortune and J� Wyllie� Parallelism in Random Access Machines�
In Proceedings of the ���th ACM Symposium on Theory of Computing
�STOC�� pages �������� ACM� NewYork� May �����

�Gel��� David Gelernter� Domesticating Parallelism� IEEE Computer� pages
�	���� August ����� Guest Editor�s Introduction�

�Gib��� Phillip B� Gibbons� Towards Better Shared Memory Programming
Models� In Proceedings of the NSF � ARC Workshop on Opportuni�
ties and Constraints of Parallel Computing ��San��a��� pages ������
�����

�GJ��� Michael R� Garey and David S� Johnson� COMPUTERS AND IN�
TRACTABILITY� A Guide to the Theory of NP�Completeness� W� H�
Freeman and Co�� New York� ����� If you
nd this book di�cult� you
might try �Wil��� or �RS����

�GMB��� John L� Gustafson� Gary R� Montry� and Robert E� Benner� Develop�
ment of Parallel Methods for a ��	��Processor Hypercube� SIAM Jour�
nal on Scienti�c and Statistical Computing� ���
��������� July �����

���

�Gol��� L� M� Goldschlager� The monotone and planar circuit value problems
are log space complete for P� SIGACT News� ��	
�	��	�� �����

�GR��� Alan Gibbons and Wojciech Rytter� E�cient Parallel Algorithms�
Cambridge University Press� Cambridge� �����

�GS��� Mark Goldberg and Thomas Spencer� A new parallel algorithm for
the maximal independent set problem� SIAM Journal on Computing�
���	
������	�� April �����

�GSS�	� Leslie M� Goldschlager� Ralph A� Shaw� and John Staples� The max�
imum �ow problem is log space complete for P� Theor� Comput� Sci�
	���
��������� October ���	�

�Gup��� Rajiv Gupta� Loop Displacement� An Approach for Transforming and
Scheduling Loops for Parallel Execution� In Proceedings of SUPER�
COMPUTING���� New York� November ������ pages �������� �����

�Gus��� John L� Gustafson� Reevaluating Amdahl�s Law� Communications of
the ACM� ����
���	����� May �����

�Hag��� Marianne Hagaseth� Very fast pram sorting algorithms �preliminary
title
� Master�s thesis� Division of Computer Systems and Telematics�
The Norwegian Institute of Technology� February ����� In preparation�

�Hal��� Robert Halstead� Multilisp� A language for concurrent symbolic com�
putation� ACM Transactions on Programming Languages� October
�����

�Har��� David Harel� ALGORITHMICS� The Spirit of Computing� Addison�
Wesley Publishing Company� Reading� Massachusetts� �����

�HB��� Kai Hwang and Fay$e A� Briggs� Computer Architecture and Parallel
Processing� McGraw�Hill Book Company� New York� �����

�Hil��� W� Daniel Hillis� The Connection Machine� Scienti�c American�
	����
������� June �����

�Hil��� W� Daniel Hillis� The Fastest Computers� Keynote Address at the
SUPERCOMPUTING��� conference� New York� �� November� ������
����� Notes from the presentation�

�HJ��� R� W� Hockney and C� R� Jesshope� Parallel Computers � � architec�
ture� programming and algorithms� �nd edition� Adam Hilger� Bristol�
�����

�HM��� David P� Helmbold and Charles E� McDowell� Modeling Speedup�n

greater than n� In Proceedings of the ���� International Conference on
Parallel Processing� vol� III� pages 	���		�� �����

�Hoa�	� C� A� R� Hoare� Quicksort� Computer Journal� ���
������� ���	�

���

�Hop��� John E� Hopcroft� Computer Science� The Emergence of a Disci�
pline� Communications of the ACM� ����
�����	�	�March ����� Turing
Award Lecture�

�HS��� J� Hartmanis and R� E� Stearns� On the computational complexity of
algorithms� Trans� Amer� Math� Soc�� ����	������� May �����

�HS��� W� Daniel Hillis and Guy L� Jr� Steele� Data parallel algorithms� Com�
munications of the ACM� 	���	
����������� December �����

�HT��� Per Holm and Magnus Taube� SIMDEB User�s Guide for UNIX� Tech�
nical report� Lund Software House AB� Lund� Sweden� �����

�Hud��� Paul Hudak� Para�Functional Programming� IEEE Computer� pages
������ August �����

�HWG��� Michael Heath� Patrick Worley� and John Gustafson� Once Again� Am�
dahl�s Law� and Author�s Response� Communications of the ACM�
�	�	
�	�	�	��� February ����� Technical correspondance from Heath
and Worley with the response from Gustafson�

�JL��� N� Jones and W� Laaser� Complete problems for deterministic polyno�
mial time� Theoretical Computer Science� ���������� �����

�Kan��� Paris C� Kanellakis� Logic Programming and Parallel Complexity� In
Jack Minker� editor� Foundations of Deductive Databases and Logic
Programming� chapter ��� pages �������� Morgan Kaufmann Publish�
ers� Inc�� Los Altos� California� �����

�Kar��� Richard M� Karp� Combinatorics� Complexity and Randomness� Com�
munications of the ACM� 	��	
�������� February ����� Turing Award
Lecture�

�Kar��� Richard M� Karp� A Position Paper on Parallel Computation� In Pro�
ceedings of the NSF � ARC Workshop on Opportunities and Constraints
of Parallel Computing ��San��a��� pages ������ �����

�Kha��� L� G� Khachian� A polynomial time algorithm for linear programming�
Dokl� Akad� Nauk SSSR� 	����
����������� ����� In Russian� Trans�
lated to English in Soviet� Math� Dokl� � vol� 	�� ��������

�KM��� Ken Kennedy and Kathryn S� McKinley� Loop Distribution with Arbi�
trary Control Flow� In Proceedings of SUPERCOMPUTING���� New
York� November ������ pages �������� �����

�Knu��� D� E� Knuth� The Art of Computer Programming� Vol� 	 Sorting
and Searching� Addison�Wesley Publishing Company� Reading� Mas�
sachusetts� �����

�KR��� Brian W� Kernighan and Dennis M� Ritchie� The C Programming Lan�
guage� Prentice�Hall Inc� New Jersey� �����

��

�KR��� Richard M� Karp and Vijaya Ramachandran� A Survey of Parallel
Algorithms for Shared�Memory Machines� Technical Report �������
Computer Science Division� University of California� Berkeley� March
�����

�Kru��� J� B� Kruskal� On the shortest spanning subtree of a graph and the
travelling salesman problem� Proceedings of the American Mathematical
Society� �������� �����

�Kru��� Clyde P� Kruskal� E�cient Parallel Algorithms� Theory and Practice�
In Proceedings of the NSF � ARC Workshop on Opportunities and Con�
straints of Parallel Computing ��San��a��� pages ������ �����

�Kuc��� David J� Kuck� A Survey of Parallel Machine Organization and Pro�
gramming� ACM Computing Surveys� ���
�	����� March �����

�Kun�	� H� T� Kung� Why Systolic Architectures� IEEE Computer� pages
������ January ���	�

�Kun��� H� T� Kung� Computationalmodels for parallel computers� In Scienti�c
applications of multiprocessors� Prentice Hall� Engelwood Cli s� New
Jersey� �����

�Lad��� R� E� Ladner� The circuit value problem is log space complete for P�
SIGACT News� ���
����	�� �����

�Lan��� Asgeir Langen� Parallelle programmeringsspr%ak� Master�s thesis� Divi�
sion of Computer Systems and Telematics� The Norwegian Institute of
Technology� The University of Trondheim� Norway� ����� In Norwegian�

�Law��� Eugene L� Lawler� Combinatorial Optimization� Networks and Ma�
troids� Holt� Rinehart and Winston� New York� �����

�Lei��� Tom Leighton� Tight Bounds on the Complexity of Parallel Sorting� In
Proceedings of the ��th Annual ACM Symposium on Theory Of Com�
puting �May�� pages ������ ACM� New York� �����

�Lei��� Tom Leighton� What is the Right Model for Designing Parallel Algo�
rithms� In Proceedings of the NSF � ARC Workshop on Opportunities
and Constraints of Parallel Computing ��San��a��� pages ����	� �����

�Lub��� Boris D� Lubachevsky� Synchronization barrier and tools for shared
memory parallel programming� In Proceedings of the ���� International
Conference on Parallel Processing� vol� II� pages �������� �����

�Lun��� Stephen F� Lundstrom� The Future of Supercomputing� The Next
Decade and Beyond� Technical Report �	� November �	� ����� PARSA�
����� Documentation from tutorial on SUPERCOMPUTING����

��	

�Mag��� Bruce Maggs� Beyond parallel random�access machines� In Proceed�
ings of the NSF � ARC Workshop on Opportunities and Constraints of
Parallel Computing ��San��a��� pages ������ �����

�Man��� Heikki Manilla� Measures of Presortedness and Optimal Sorting Algo�
rithms� IEEE Transactions on Computers� C�����
� April �����

�MB��� Peter Moller and Kallol Bagchi� A Design Scheme for Complexity Mod�
els of Parallel Algorithms� In Proceedings of the ��th IEEE Annual
Parallel Processing Symposium� California� �����

�McG��� Robert J� McGlinn� A Parallel Version of Cook and Kim�sAlgorithm for
Presorted Lists� software�practice and experience� �����
�����
���� October �����

�MH��� Charles E� McDowell and David P� Helmbold� Debugging Concurrent
Programs� ACM Computing Surveys� 	���
������		� �����

�MK��� J� Miklo&sko and V� E� Kotov� editors� Algorithms� Software and Hard�
ware of Parallel Computers� Springer Verlag� Berlin� �����

�MLK��� G� Miranker� Tang L�� and Wong C� K� A �Zero�Time� VLSI Sorter�
IBM J� Res� Develop�� 	��	
��������� March �����

�Moh��� Joseph Mohan� Experience with Two Parallel Programs Solving the
Traveling Salesman Problem� In Proceedings of the ���	 International
Conference on Parallel Processing� pages �������� IEEE� New York�
�����

�MV��� Kurt Mehlhorn and Uzi Vishkin� Randomized and Deterministic Sim�
ulations of PRAMs by Parallel Machines with Restricted Granularity
of Parallel Memories� Acta Informatica� 	���������� �����

�Nat��� Lasse Natvig� Comparison of Some Highly Parallel Sorting Algo�
rithms With a Simple Sequential Algorithm� In Proceedings of NIK ���
Norsk Informatikk Konferanse �Norwegian Informatics Conference��
Stavanger� November� pages ������ �����

�Nat��a� Lasse Natvig� Investigating the Practical Value of Cole�s O�logn
 Time
CREW PRAM Merge Sort Algorithm� In Proceedings of The Fifth In�
ternational Symposium on Computer and Information Sciences �ISCIS
V�� Cappadocia� Nevsehir� Turkey� October 	� � November �� pages
�	������ �����

�Nat��b� Lasse Natvig� Logarithmic Time Cost Optimal Parallel Sorting is Not
Yet Fast in Practice" In Proceedings of SUPERCOMPUTING���� New
York� November ������ pages �������� �����

�Nat��c� Lasse Natvig� Parallelism Should Make ProgrammingEasier" Presenta�
tion at the Workshop On The Understanding of Parallel Computation�
Edinburgh� July ����	� �����

���

�OC��� Rodney R� Oldehoeft and David C� Cann� Applicative Parallelism on
a Shared�Memory Multiprocessor� IEEE Software� pages �	���� �����

�Par��� D� Parkinson� Parallel e�ciency can be greater than unity� Parallel
Computing� pages 	���	�	� �����

�Par��� Ian Parberry� Parallel Complexity Theory� John Wiley and Sons� Inc��
New York� �����

�Pat��� M� S� Paterson� Improved sorting networks with O�logn
 depth� Tech�
nical report� Dept� of Computer Science� University of Warwick� Eng�
land� ����� Res� Report RR���

�Pip��� N� Pippenger� On simultaneous resource bounds �preliminary version
�
In Proc� ��th IEEE Foundations of Computer Science� pages ��������
�����

�Pol��� Constantine D� Polychronopoulos� PARALLEL PROGRAMMING
AND COMPILERS� Kluwer Academic Publishers� London� �����

�Poo��� R� J� Pooley� An Introduction to Programming in SIMULA� Blackwell
Scienti
c Publications� Oxford� England� �����

�QD��� Michael J� Quinn and Narsingh Deo� Parallel Graph Algorithms� ACM
Computing Surveys� ����
��������� September �����

�Qui��� Michael J� Quinn� Designing E�cient Algorithms for Parallel Comput�
ers� McGraw�Hill Book Company� New York� �����

�RBJ��� Abhiram G� Ranade� Sandeep N� Bhatt� and S� Lennart Johnsson� The
Fluent Abstract Machine� In Proceedings of the Fifth MIT Conference
on Advanced Research in VLSI� pages ������ �����

�Rei��� J� Reif� Depth
rst search is inherently sequential� Information Pro�
cessing Letters� 	���
�		��	��� �����

�Rei��� R'udiger K� Reischuk� Parallel Machines and their Communication The�
oretical Limits� In STACS ��� pages �������� �����

�Ric��� D� Richards� Parallel sorting�a bibliography� ACM SIGACT News�
pages 	����� �����

�RS��� V� J� Rayward�Smith� A First Course in Computability� Blackwell
Scienti
c Publications� Oxford� �����

�RS��� John H� Reif and Sandeep Sen� Randomization in parallel algorithms
and its impact on computational geometry� In LNCS ���� pages ����
�����

�Rud��� Larry Rudolph� Hebrew University� Israel� Private communication� ��
May and �� June ����� �����

���

�RV��� John H� Reif and Leslie G� Valiant� A Logarithmic Time Sort for Linear
Size Networks� Journal of the ACM� ����
������� January �����

�Sab��� Gary W� Sabot� The Paralation Model Architecture�Independent
Parallel Programming� The MIT Press� Cambridge� Massachusetts�
�����

�Sag��� Carl Sagan� Kosmos� Universitetsforlaget� ����� Norwegian edition�

�San��� Sandia National Laboratories� Scientists set speedup record� overcome
barrier in parallel computing� News Release from Sandia National Lab�
oratories� Albuquerque� New Mexico� March �����

�San��a� Jorge L� C� Sanz� editor� Opportunities and Constraints of Parallel
Computing� Springer�Verlag� London� ����� Papers presented at the
NSF � ARC Workshop on Opportunities and Constraints of Parallel
Computing� San Jose� California� December ����� �ARC � IBM Al�
maden Research Center� NSF � National Science Foundation
�

�San��b� Jorge L� C� Sanz� The Tower of Babel in Parallel Computing� In Pro�
ceedings of the NSF � ARC Workshop on Opportunities and Constraints
of Parallel Computing ��San��a��� pages �������� �����

�SG��� Sartaj Sahni and Teo
lo Gonzales� P�Complete Approximation Prob�
lems� Journal of the ACM� 	���
��������� July �����

�Sha��� Ehud Shapiro� Concurrent Prolog� A Progress Report� IEEE Com�
puter� pages ������ August �����

�SIA��� SIAM� Both Gordon Bell Prize Winners Tackle Oil Industry Problems�
May ����� SIAM � The Society for Industrial and Applied Mathemat�
ics�

�SN��� Xian�He Sun and Lionel M� Ni� Another View on Parallel Speedup� In
Proceedings of SUPERCOMPUTING���� New York� November ������
pages �	������ �����

�Sni��� Marc Snir� Parallel Computation Models�Some Useful Questions� In
Proceedings of the NSF � ARC Workshop on Opportunities and Con�
straints of Parallel Computing ��San��a��� pages �������� �����

�Sny��� Lawrence Snyder� A Taxonomy of Synchronous Parallel Machines� In
Proceedings of the ���� International Conference on Parallel Process�
ing� pages 	���	��� �����

�Spi��� Paul Spirakis� The Parallel Complexity of Deadlock Detection� InMath�
ematical Foundations of Computer Science ����� Bratislava� Czechoslo�
vakia� Lecture Notes in Computer Science no� �		� pages ��	����� �����

�Ste��� Guy L� Steele� Making Asynchronous Parallelism Safe for the World�
In Proceedings of POPL���� pages 	���		�� �����

���

�SV��� Yossi Shiloach and Uzi Vishkin� Finding the Maximum� Merging and
Sorting in a Parallel Computation Model� Journal of Algorithms� 	����
��	� �����

�SV��� Larry Stockmeyer and Uzi Vishkin� Simulation of Parallel Random
Access Machines by Circuits� SIAM Journal on Computing� ���	
�����
�		� May �����

�Tar�	� R� E� Tarjan� Depth�
rst search and linear graph algorithms� SIAM
Journal on Computing� ��	
��������� ���	�

�Tha��� Peter Thanisch� Department of Computer Science� University of Edin�
burgh� Private communication� �	 July ����� �����

�Tiw��� Prasoon Tiwari� Lower Bounds on Communication Complexity in Dis�
tributed Computer Networks� Journal of the ACM� ����
��	������ Oc�
tober �����

�Upf��� Eli Upfal� A Probabilistic Relation Between Desirable and Feasible
Models of Parallel Computation� In Proceedings of the ���th ACM
Symposium on Theory of Computation� �STOC�� pages 	���	��� �����

�Val��� L� Valiant� Parallelism in comparison problems� SIAM Journal on
Computing� ���������� �����

�Val��� Leslie G� Valiant� A Bridging Model for Parallel Computation� In
Proceedings of the �th Distributed Memory Computer Conference�
Charleston� California� April� ����� 	� pages�

�Vis��� Uzi Vishkin� PRAM Algorithms� Teach and Preach� In Proceedings of
the NSF � ARC Workshop on Opportunities and Constraints of Parallel
Computing ��San��a��� pages �������� �����

�War�	� Stephen Warshall� A Theorem on Boolean Matrices� Journal of the
ACM� ������	� ���	� This and �Flo�	� are commonly considered as the
source for the famous Floyd�Warshall algorithm�

�Wil��� J� W� J� Williams� Heapsort �algorithm 	�	
� Communications of the
ACM� ���
��������� �����

�Wil��� Herbert S� Wilf� Algorithms and Complexity� Prentice Hall Interna�
tional� Inc�� Englewood Cli s� New Jersey� �����

�Wir��� Niklaus Wirth� Algorithms � Data Structures � Programs� Prentice
Hall� Englewood Cli s� New Jersey� �����

�WW��� K� Wagner and Wechsung� Computational Complexity� D� Reidel Pub�
lishing Company� Dordrecht� Holland� �����

�Wyl��� J� C� Wyllie� The Complexity of Parallel Computations� PhD thesis�
Dept� of Computer Science� Cornell University� �����

���

�Zag��� Marcoz Zagha� Carnegie Mellon University� Private communication�
�� Nov ����� �����

�ZG��� Xiaofeng Zhou and John Gustafson� Bridging the Gap Between Am�
dahl�s Law and Sandia Laboratory�s Result� and Author�s Response�
Communications of the ACM� �	��
����������� August ����� Techni�
cal correspondance from Zhou with the response from Gustafson�

���

Index

��cover�
in Cole�s algorithm� �		

Abstract machine� �
Activation of processors� ��� ���
Active levels�

in Cole�s algorithm� ���
Active nodes�

in Cole�s algorithm� ���
Active processors�

in Cole�s algorithm� ���
ADDRESS� ���
ADDRESS� ���
AKS sorting network� ���
Allocation�

of memory� ���� ��	
of processors� ��� ���

Amdahl reasoning� ��� ��
Amdahl�s law� ��

using it in practice� ��
Analysis� ��

asymptotical� �
ARAM� 	�
ArrayPrint� ���
ASSIGN statement� ���
ASSIGN statement�

placement of� ���
Asymptotic complexity� ��
Asymptotical analysis� �
Average case� ��

Barrier synchronisation� ��
Batcher�s bitonic sorting� ���
Best case� ��
Big�O� ��
Big�Omega� ��
Bitonic sorting� ���� ���

time consumption� ���
Block structure�

error in� ���
Block�

variables local in� ���
Bound�

Bound �continued
�
upper or lower� ��

Bridging model� ��
Brute force techniques� �	
Built�in procedures� ���
Bulk synchronous parallel model� ��

Cell�
description of� ���
in systolic array� ���

Channel�
for integers� ���
for reals� ���� ���
in systolic array� ���
procedures for using it� ����

���
CHECK� ��	
CHECK� ���
CHECK�

checking for synchrony� ��	
Circuit model� ���
Circuit value problem�

CVP� ��
ClockRead� ��	
ClockReset� ��	
Cole�s algorithm�

in PPP� ���
main principles� ���
time consumption� ���

Cole�s merging procedure� ���
Cole�s parallel merge sort algorithm�

���� ���� ���
Cole�s parallel merge sort�

implementation� �	�
Comments�

in PIL� ���
Communication between processors�

���
using channels� ���

Compilation of PIL programs� ����
���

Compile time padding� ��� ��
Complexity class� ��� �	

���

Complexity�
computational� ��� ��	
descriptional� ��� ��	

Complexity function� ��
Complexity theory�

parallel� ��
Computational model� 	�
ComputeCrossRanks�

in Cole�s algorithm� ��	
ComputeWhoIsWho�

in Cole�s algorithm� ���
Computing model� 	�
Computing resources� ��
Conditional compilation� ���
CONSTANT� ���
Cook�s theorem� ��
CopyNewUpToUp�

in Cole�s algorithm� ���
Cost� ��

comparison� ���
Cost optimal algorithm� ��
cpp� ���
cpp error message� ���
CRAM� 	�
CRCW PRAM� 	�

variants� 	�
CREW PRAM� �� �� 	�� �	

clock period� ��
global memory� ��� ���
global memory usage� ���
input and output� ��
instruction set� ��� ��
local memory� ��

CREW PRAM model� �	
CREW PRAM�

processor allocation� ��
processor number� ��
processor set� ��

CREW PRAM processors� ��
CREW PRAM program� ��
CREW PRAM programming� ��� ��
CREW PRAM simulator� ��� ����

���� ���
clock� ��	
installation� ���
interaction with� ���
performance� ���
real numbers� ���
system requirements� ���
time� ���

CREW PRAM�
synchronous operation� ��
time unit� ��

Crossranks�
in Cole�s algorithm� ���

CVP� ��

Data collection facilities�
in DEMOS� ���

debug command� ���
debug command� ���
Debugging� ��
Debugging PIL programs� ���
Declaration�

processor set� ���
�define�

de
nition of macro� ���
Delayed output�

in systolic array� ���
DEMOS� ���� ���
DFSorder problem� ��
DoMerge�

in Cole�s algorithm� ���
DRAM� 	�
Duncan�s taxonomy� 		

E�ciency� ��
E�cient� ��
Encoding scheme� ��
END FOR� ���
END FOR EACH PROCESSOR

statement� ���
END PROCEDURE� ���
EREW PRAM� 	�
Error� ��	
Error in block structure� ���
Error message�

from the SIMULA compiler�
���

from the simulator� ���
from cpp� ���
from PILfix� ���

Events�
ordering of� ��

Execution�
start of� ���

Execution time� ��
Exponential time algorithm� �	

Fast parallel algorithms� ��
File�

inclusion of� ���
versions of� ���

Floyd�s algorithm� ��
Flynn�s taxonomy� 	�
FOR EACH PROCESSOR IN statement�

���

���

FOR loop� ���
Freeing�

of memory� ���

Gap�
between theory and practice� ��

�
GENERABILITY problem� ��
GFLOPS� �
Global events� ��
Global memory� ���� ���� ��	

access count� ���
Global memory access pattern� ���
Global memory access statistics� ���
Global memory�

access to� ���
CREW PRAM� ��
insu�cient� ���
reading from� ���
time used by access� ��
write con�ict� ���� ���
writing to� ���

Global reads�
number of� ���

Global variables� ���
Global writes�

number of� ���
Good sampler� ���

in Cole�s algorithm� ���� �		

Halting problem� ��

�ifdef� ���
�include�

le inclusion� ���
INFTY� ���
Inherently serial problem� �� ��� �	
Input length� ��
Insertion sort� ��� ���

parallel� ��� ���
Instance�

of problem� ��
Instruction set�

CREW PRAM� ��� ��
Insu�cient global memory� ���
Inverted Amdahl reasoning� ��
Inverted Amdahl�s law� ��
IsEven� ���
IsOdd� ���

Length of phase�
in systolic array� ��	

Line numbers� ���
Linear speedup� ��

link command� ���
link command� ���
link command� ���
Local events� ��
Local memory� ���

CREW PRAM� ��
Local variables� ���
log�� ���
Loop�

FOR� ���
WHILE� ���

Lower bound� ��

Macro de
nition� ���
MaintainRanks�

in Cole�s algorithm� ���
MakeSamples�

in Cole�s algorithm� ���
Massively parallel computer� 	
Massively parallelism� 	
Master processor� ���� ���
MCVP� ��
Mem�N Reads� ���
Mem�N Writes� ���
Memory�

allocation� ���� ��	
Memory con�ict� ���
Memory�

freeing� ���
global� ���� ��	
local� ���

Memory usage�
comparison� ���

Mem�UserFree� ���
Mem�UserMalloc� ��	
MergeWithHelp�

in Cole�s algorithm� ���
MIMD� 		
MISD� 		
Model�

bridging� ��
mathematical convenience� ��
of computation� 	�

Model of parallel computation� 	�
Model�

performance representative� 	�
realistic� 	�
tradeo s� 	�

Modelling time consumption� ��
MRAM� 	�

NC� ��
may be misleading� ��

���

NC�algorithm� �� �� ��
practical value� �

NC�reduction� ��
Nick�s Class� �� �� ��

robustness� ��
Nondeterministic algorithm� ��
NoOfProcs�

in Cole�s algorithm� ���
NP� �	
NPC� ��
NP�complete problem� ��� ��
NP�completeness� ��
Number in processor set� p� ���

Odd�even transposition sort� ��� ���
��� ���� ���

Optimal algorithm� ��
Optimal parallel sorting algorithm�

��
ORAM� 	�
Order notation� �� ��

P� �	
p� ���
Padding� ��

for making programs
synchronous� ��

Parallel complexity theory� �� ��
Parallel computation model� 	�
Parallel insertion sort� ��� ��� ���
Parallel programming�

development approach� ��
the PIL language� ���� ���

Parallel Pseudo Pascal� ��� ��� ���
Parallel slackness� ��
Parallel work� ��� ��
Parallelisation� ��
Parameter passing in parallel� ���
Passive processors�

in Cole�s algorithm� ���
PATH problem� ��
P�complete algorithm� �	
P�complete problem� ��
P�completeness� ��� ��

proof� ��
PCVP� ��
Phase�

in systolic array� ���
length of� ��	

PIL� ���
comments� ���� ���

PIL compiler� ���� ���
phases� ���

PIL�
DEMOS features� ���
example programs� ���
line number� ���
linking� ���
output� ���
Parallel Intermediate

Language� ���� ���
preprocessor� ���� ���
procedures� ���

PIL program�
debugging� ���
development approach� ��
executing� ���
parallel� ���
sequential� ���

PIL�
SIMULA features� ���
variables� ���

pilc command� ���
pilc command� ���
pilc command� ���
PILfix� ���
pil�h� ���
Pipelined computer� �
Pipelined merging� ���
Polylogarithmic running time� �
Polynomial time algorithm� �	
Polynomial transformation� ��
POP� ���
power�� ���
PPP� ��
PPP� Parallel Pseudo Pascal� ��� ���

PRAC� 	�
PRAM� �� 	�

CRCW� 	�
CREW� 	�
EREW� 	�

PRAM model� ���
pram�lis� ���
Preprocessor for PIL� ���
Presortedness� ��� ���
Printing memory area� ���
Probe e ect� ��
Problem� ��

inherently serial� ��
Problem instance� ��
Problem parameters� ��
Problem�

representation� ��
Problem scaling� ��
Problem size� ��
Problems�

��

Problems �continued
�
inherently serial� �
NP�complete� ��

Procedure�
local in block� ���

Procedures�
in PIL� ���

Processing element�
description of� ���
in systolic array� ���

Processor activation� ��� ���
in PPP� ��
placement of� ���
restrictions� ���

Processor allocation� ��� ��� ���
in Cole�s algorithm� �	�
in PPP� ��

Processor number�
CREW PRAM� ��
in processor set� ���
printing it� ���

Processor requirement� ��� ��
in Cole�s algorithm�
discussion� ���

PROCESSOR SET� ���
Processor set� ���

CREW PRAM� ��
declaration of� ���
number in� p� ���

Processor�
synchronisation� ��	

Processors�
communication between� ���
CREW PRAM� ��

Program structure� ���
Program�

start of execution� ���
Program structure� ��� ���

using systool�pil� ���
Program tracing� ���
Program�

versions of� ���
Programming�

CREW PRAM� ��
on the simulator� ��

Pseudo code� ��� ���
PUSH� ���
PUSH� ���
Pyramid of processors�

in Cole�s algorithm� ���

RAM model� 	�
Ranks�

Ranks �continued
�
in Cole�s algorithm� ���

Read from global memory� ���
READ statement� ���
READ statement�

operation count� ���
Reading the clock� ��	
Real numbers�

in systolic array� ���
RealArrayprint� ���
RECEIVE� ���
RECEIVE REAL� ���
RECEIVE REAL ZEROFY� ���
RECEIVE ZEROFY� ��	
Receiving from channel� ��	� ���
removeTIME� ���
Resetting the clock� ��	
Resources�

used in computation� ��
Resynchronisation� ��
Resynchronisation of processors� ��	
Robustness of Nick�s Class� ��
run command� ���
run command� ���
run command� ���
Running time� ��

SATISFIABILITY problem� ��
Scaled speedup� ��
SEND� ���
SEND� ���
SEND REAL� ���
Serial work� ��� ��
SIMD� 	�
simdeb� ���
simdeb� ���
SIMULA� ���� ���� ���
SISD� 	�
Size�

of problem� ��
Software crisis� ��
Space� ��
Speedup� ��

linear� ��
scaled� ��
superlinear� ��

Stage�
in systolic array� ���

Straddle�
in Cole�s algorithm� ���

Straight insertion sort� ��� ���
Supercomputer� �
Superlinear speedup� ��
SYNC� ��

��	

SYNC� ��
SYNC� ��	
SYNC�

instead of compile time
padding� ��

SYNC�
removing� ���

SYNC�
replace by CHECK� ���

Synchronisation� �	� ��� ��� ���
Synchronisation barrier� ��
Synchronous computing structure�

���
Synchronous MIMD programming�

��� ��� ��� ���� ���
Synchronous operation� ��� ��
Synchronous programming� ��� ��
Synchronous statements� ��� ��
SYNCHRONY LOST� ���
System stack� ���
Systolic array� ���

data availability� ���
delayed output� ���
example� ���� ���
phase� ���
stage� ���
unit time delay� ���

systool�pil� ���
systool�pil�

program structure� ���

T procedures� ���
T procedures� ���
Taxonomy�

Duncan�s� 		
Flynn�s� 	�

T Flag� ���
Theoretical computer science� �
Theory and practice�

gap� �� �
Time� ��
Time complexity function� ��
Time constants� ���
Time consumption� ��� ��� ���� ��	
Time delay�

in systolic array� ���
Time modelling� ��

exact� ��
rules for making� ��

simpli
ed� ��
Time unit� ��
Time used�

for accessing the global
memory� ��

Time�
waiting� ��	

times�sim� ���
times�sim� ���
T Off� ���
T On� ���
Top down development� ��
Tracing�

of PIL programs� ���
turn o � ���
turn on� ���

T ThisIs� ���
T Time� ���
T TITITO� ���
T TR� ���

Unbounded parallelism� ��
Uni
cation problem� �	
UNIT RESOLUTION problem� ��
Upper bound� ��
Use�

time used� ��
Use� ��	
Use�

used in systolic array� ��	
User stack� ���� ���
UserStackPtr� ���
UserStackPtr� ���

Variable�
local� ���
making it local� ���

Versions�
of a program� ���

Wait� ��
Wait� ���
Wait� ��	
Warning� ��	
Weather forecasting� ��
WHILE loop� ���
Whitespace character� ���
Working areas�

in Cole�s algorithm� ���
Worst case� ��
WRAM� 	�
Write con�ict� ���
WRITE CONFLICT� ���
WRITE statement� ���
WRITE statement�

operation count� ���
Write to global memory� ���

���

