
�����������	�
�������	������	���	����	����������������	����	�����������	��������������������� ��������������������������������	

High-level Architectural Simulation of the Torus Routing Chip

Lasse Natvig*

Department of Computer and Information Systems (IDI)
Norwegian University of Science and Technology (NTNU)

 N-7034, Trondheim, Norway, E-mail: Lasse.Natvig�idi.ntnu.no

* This work was partly supported by the Norwegian Research

Council, and was done while the author was at Nordic VLSI,
Trondheim.

Abstract
This paper presents a simulation model of the Torus

Routing Chip (TRC) written in Verilog. The model repre-
sents the functional behaviour of the routing chip down to
the flit (byte) level. The TRCs are self-timed and intercon-
nected in a 4 by 4 torus (mesh with wrap-around) having
unidirectional channels along the x and y-dimension. To
avoid deadlock situations, the TRC implements two virtual
channels on every physical channel. The model is presented
in a top down manner with emphasis on the modelling of the
packet routing algorithm, asynchronous channels, control-
led access to shared resources and the increased complexity
caused by virtual channels. The testing of the model as well
as experience from using Verilog to develop a high-level
architectural simulation is discussed.
Keywords: Torus Routing Chip (TRC), verilog, architec-
tural simulation
.

1. Introduction

It is becoming increasingly difficult to master the
complexity involved in the design of increasingly more
complex computer systems. On the hardware side, Hard-
ware Description Languages (HDLs) have become im-
portant tools to cope with this challenge. The use of HDLs
has to a large extent replaced schematics. The transition is
in many ways similar to the replacement of assembly code
by high-level languages. Computer simulation of simplified
models and prototypes of these complex systems are
established techniques to unveil design errors at an early
stage. It may also lead to an improved co-operation with
end-users during system development. HDLs, such as
VHDL and Verilog, provide simulation as an integrated part
of the language.

The main motivation for the work reported in this
paper, is to learn about the usefulness of Verilog as a tool

for developing high-level simulations of computer systems.
This type of simulation is often written in standard
programming languages or specialised general purpose
simulation languages. A benefit of using HDLs in this
context, is that subsequent integration with or transition to a
model at a more detailed level should become easier if both
models are expressed in the same language.

Verilog is lacking several "high-level" features which
are said to make VHDL better suited for implementing
(large) high-level models [5]. The simulation model
described herein is at the behavioural, also referred to as
algorithmic level. The aim is to achieve correct behavioural
representation and provide a testbed to try out algorithms or
strategies that are crucial for correct behaviour. The
possibility of mapping the model into hardware at a later
stage should be given a balanced amount of thought. Too
much thought on HW-realisation may make it too difficult
to master the complexity at the current phase of the design
process. Too little thought may result in a model not
realisable in HW or with only modest performance.

With the term architectural simulation, as used in the
title of this paper, we mean a behavioural level approach
with an added goal of representing the most significant parts
of the system architecture that the TRC component is used
in. As a case for our study we have chosen the Torus routing
chip (TRC) described by William Dally and Charles Seitz in
[1]. This self-timed VLSI chip provides efficient message
passing in a multiprocessor. To provide testing in a realistic
environment, we simulate 16 processors interacting through
16 TRCs.

Section 2 of the article introduces the TRC routing
chip. In Section 3 we present central parts of the Verilog
model in a top-down manner. Section 4 presents some of
our experience and the planned continuation of the project.

��������	
���
����. Published in the Proceedings of IVC’97, March 31, 1997 in Santa Clara, California, USA. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and
Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

�����������	�
�������	������	���	����	����������������	����	�����������	��������������������� ���������������������������
����	

2. The Torus Routing Chip (TRC)

 We have traditionally had two main categories of
multiprocessors, those based on message passing, and those
based on shared memory. Nowadays, the shared memory
machines are more and more often based on message
passing, which becomes a crucial component regarding per-
formance. It is quite common to use a dedicated processor
or to have a dedicated routing chip that increases the mes-
sage passing performance and reduces the load on the main
processor of each node. The TRC is such a chip.

The TRC provides routing of packets along two dimen-
sions called x and y. Every TRC is connected to a processor.
The processors are connected through the TRCs in an arbi-
trary k-ary n-cube interconnection network [3]. Structures
with more than two dimensions can be constructed using
cascaded TRCs as shown in [1]. In this paper we concen-
trate on a 2-ary 4-cube i.e. a two dimensional mesh
structure with 4 by 4 nodes and wrap-around connections. A
single TRC receives outgoing packets from its connected
processor, and pass incoming packets to the same processor.
In addition it will transfer packets that are passing on its
way to another node.

 A packet is a sequence of bytes containing the relative
address followed by a sequence of non-zero data bytes and
is terminated by a tail-byte (zero). In this paper, we often

use the term flit (flow control digit) to denote a byte in a
packet. In general, a flit need not to be the same as one byte
[3].

The relative address is adjusted in each TRC a packet
goes through on its way to the destination. In a two-dimen-
sional mesh, the TRCs are given a unique (y, x) address. A
TRC sends a packet along the x-dimension to the neighbour
TRC with higher x-address. The node with the highest x-
address is connected to the TRC with the same y-address
and with x-address zero, i.e. wrap around. Similar for the y-
dimension. The structure is shown in Figure 1.

The TRC uses the wormhole routing principle where,
as long as the transmission route is free, flits are forwarded
towards their destination in a pipelined or "flit-train"
fashion. The main benefit compared to store and forward
routing is reduced latency since we do not have to wait for
the end of the packet before transmitting flits to the next
node.

The TRC uses a deterministic routing scheme based on
the relative x and y address. As long as the relative x-ad-
dress is non-zero it is decremented and the packet is for-
warded to the next TRC-chip along the x-dimension. When
the relative-x-address is zero the packet is routed similarly
along the y-connections (if it has not reached its final
destination). Typically many packets will coexist in the
mesh-structure. Therefore, if a TRC finds that a required

Figure 1: 4 x 4 mesh of TRC modules with (y,x) numbering

TRC
(0,0)

TRC
(0,1)

TRC
(0,2)

TRC
(0,3)

TRC
(1,0)

TRC
(1,1)

TRC
(1,2)

TRC
(1,3)

TRC
(2,0)

TRC
(2,1)

TRC
(2,2)

TRC
(2,3)

TRC
(3,0)

TRC
(3,1)

TRC
(3,2)

TRC
(3,3)

x001

x323x312

x212

x301

x201 x230

x130

x330

x223

x123x112x101

y010

x012

y301

y231

y121

y011

x023

y300

y230

y120

x030

y123

y303

y233

y013

y302

y232

y122

y012

�����������	�
�������	������	���	����	����������������	����	�����������	��������������������� ��������������������������������	

channel is being used by another packet it blocks the in-
coming packet until the channel is free.

The blocking of packets combined with the simple
deterministic x-y-routing scheme could give rise to dead-
locks caused by channel dependency cycles (circular wait).
The TRC uses virtual channels to avoid this problem. Each
physical channel provides two virtual channels, referred to
as VC0 and VC1 in this paper. For a single physical
channel, both the virtual channels may transmit data
concurrently in a time-multiplexed manner. The VCs
prevent deadlock by converting possible channel
dependency cycles into spirals [1].

Figure 1 shows a 4 by 4 mesh of TRC modules con-
nected along the x and y dimensions as described above.
The connection between a TRC and its connected processor
is not shown. Note that the connections, also called
channels, are unidirectional. The x and y connections are 12
bits wide. Each consists of an eight bit channel and two
pairs of request (REQ) / acknowledge (ACK) lines used to
control the two virtual channels. To simplify the figure, only
the data-transport direction is shown, and the ACK lines
which must go in the opposite direction are not shown. The
connection to the processor is 10 bits wide, 8 bits of data
and one pair of REQ/ACK control lines. It is modelled as
two uni-directional lines. The structure is regular and may
easily be changed to other 2-ary n-cubes. It is also possible
to have a number of TRCs along the x dimension which
differs from that in the y-direction. (The maximum size of
the structure is limited by the fact that the relative x and y-
addresses are stored in a byte. Thus we may have up to 256
x 256 processors connected by the TRCs).

3. Modelling the TRC in Verilog

A Verilog model of the TRC has been implemented
and tested. This section presents those parts we believe are
of most interest. To simplify, the first four subsections
describe the system without virtual channels. In subsection
3.5 virtual channels are introduced. The modifications
caused by the virtual channels on the parts of the model that
already have been presented are outlined. Section 3 contains
some design solutions that were rejected. These are
included to enlighten limitations of Verilog and how you
may walk around some of them.

3.1 The system module

The top level module, system, is declared as shown
in the following extract. "..." denotes that code has been

removed to save space. Non-verilog statements (pseudo
code) are shown in italics.

// system.v
// 4x4 mesh of TRCs, numbered (y,x): (0,0)...(3,3)
��������� MAX_x = 3, MAX_y = 3;
...
���� [‘TRC_DP_WIDTH-1:0] x001, x012, x023, x030,
 x101, x112, x123, x130,
 x201, x212, x223, x230,
 x301, x312, x323, x330;
���� [1:0] x001_ack, x012_ack, ...
����	[‘TRC_DP_WIDTH-1:0] y010, y011, ...
����	[1:0] y010_ack, y011_ack, ...
���� [‘PROC_DP_WIDTH-1:0] toP0, toP1, ... toP15;
���� [‘PROC_DP_WIDTH-1:0] fromP0, ... fromP15;

PROC #(0) p0 (toP0, fromP0);
...
PROC #(15) p15 (toP15, fromP15);

TRC #(0,0) t0(x030,x030_ack,y300,y300_ack, fromP0,
 x001,x001_ack,y010,y010_ack, toP0);
...
TRC #(3, 3) t15(x323,x323_ack, ... y303_ack, toP15);

The size of the mesh structure is specified by the
parameters MAX_x and MAX_y. The declarations of the
wires and module instantiations follow the naming scheme
illustrated in Figure 1. The numbering of the x-channels
follows the pattern <from-y><from-x><to-x>, and y-
channels <from-y><to-y><to-x>. An automatic way of
generating these declarations for a given pair of values of
MAX_x and MAX_y is currently not available. We will
make a simple script in perl to generate this automatically.
The script will be very useful when testing different mesh-
configurations of TRCs. To simplify the declarations, we
have included the 8 data-lines and the two REQ lines of a
channel as one declaration. The ACK lines are, however,
declared separately due to their opposing direction.

To test the model of the TRC chip properly we have
modelled a structure of 16 processors, one connected to
each of the TRCs. PROC is a simple Verilog behavioural
model that contains tasks for sending and receiving packets.
Every processor is given its own processor number as a
parameter on instantiation. The processor model is a natural
and practical place to include the various system-test
programs. Every instance of the TRC chip knows its unique
pair of x and y-address. This is useful during debugging and
testing, see Section 4.

3.2 TRC main structure and the routing algorithm

The main structure of the Verilog code modelling the
TRC chip is shown below. Since toggling of the REQ lines
is used to tell a TRC that new data has arrived on an input
channel, it is necessary to reset these to a fixed value or safe
state, before transmission of data begins. In the initial block

�����������	�
�������	������	���	����	����������������	����	�����������	��������������������� ��������������������������������	

labelled boot_trc every TRC resets its own outgoing
control lines. When all its incoming control lines have been
reset it knows that all its control lines are set to a proper
state, and it is safe to start processing of packets. (We
assume that control lines are undefined (x) initially, and
they are reset by setting them to zero.) The variable ready
is used to signal this condition from boot_trc to the tasks
that process packets as shown.

�
��� TRC(xin, xin_ack, yin, yin_ack, proc_in,
 xout, xout_ack, yout, yout_ack, proc_out);
 ��������� y_addr = 0; // (0,0) as default for (y,x)
 ��������� x_addr = 0; // these are overridden when
 // making instances of the module
 ����� [‘TRC_DP_WIDTH-1:0] xin;

����� [1:0] xin_ack;
 ...
 ��� ready; //True if TRC is ready to receive packets
 ���� sendx ... // send one flit on x-output
 ���� sendy ...
 ���� sendp ... // to own processor
 initial begin : boot_trc
 ready = ‘FALSE;
��������������������	���
�����������
���
�������	�����
������
��
��������������������
��������������
 ready = ‘TRUE;
 ��� // boot_trc

 ���� process_xin; // x-dimension input
 ������������
�����	������ ���
��
���������������!�������	����
 ������� / process_xin ...
 ���� process_yin ... // y-dimension input
 ���� process_pin ... // input from own processor

 ������	�
����� process_xin;
 ������	�
����� process_yin;
 ������	�
����� process_pin;
����
��� // TRC

This boot-process is not fault-tolerant, i.e. a failing
TRC will cause neighbour TRCs to hang. However, it has
not been a goal in this work to model the possibility of
failing TRCs.

The central part of the TRC chip is three concurrent
processes, each listening on one of the three input channels
x-in, y-in and proc-in. This is modelled using three infinite
loops (initial forever). The following pseudocode shows the
processing of flits arriving at the x-input channel (task
process_xin). Note that the value of the relative x-
address denotes the number of hops remaining to be taken
in the x-dimension and similarly for the relative y-address.
Both the relative x and y addresses are included in the
packet even if some of them are zero.

The processing of incoming flits on the y-input is
similar, except that the relative x-address has been stripped
away so that the packet starts with the relative y-address.
The relative x and y-addresses of a packet are calculated by

the sending processor. Consequently, a packet arriving at
the processor input of a TRC can be handled in the same
way as a packet arriving on the x-input.

""������
�
��	�
�	����	��
��������

�����	�������	�������#$��!��
�������������$#$��������	����#$��!��

�����������$#$��������������������
������!����""��%�%��������!������
�������	�����������$ $�����������#$��!��

�������������$ $��������������������
��������!����""��%�%��������!������

���������	������������	���������	����#���!��
���������	���$������������!��������

�����������	���$�����&'�������	

�����������	������������	���$�����	����#���!��
�����������	���$������������!��������

�������""���������$ $�������������������
����������������������$ $�������
�����������������$ $������������� $���������

����!��������	���$���������
��!��(����������
���������#���!���������
�� ����������������
�������
�������� ���
������������

�����""���������$#$�������������������
���������������������$#$�������
���������������$#$�������������#����������

�������	������������ ������������ ������������
�����
��#���!�������!�������������
��#����������

��!��������	���$���������
��!��(�������������
�����
��#���!���������
��#����������������
�����
�������� ���
������������

3.3 Self-timed TRC, asynchronous data channels

The addressing range of the TRC enables multiproces-
sors with as many as 64k processors interconnected in a
mesh. To avoid the problem of distributing a global clock in
such a large system, the TRC is self-timed. Each data
channel uses a two-cycle signalling convention based on a
pair of REQ and ACK-lines. When REQ = ACK the re-
ceiver is ready for the next flit. The sender waits for this
condition before attempting to send data. It then writes the
flit and toggles the REQ-line. (As we will see in Section
3.6, the sender must reserve the data lines before they are
written to, and release them after having toggled the REQ-
line.) The receiver waits for the REQ-line to be toggled, it
reads the data and toggles the ACK-line when it is ready to
receive more data. The protocol is easily modelled in
Verilog.

�����������	�
�������	������	���	����	����������������	����	�����������	��������������������� �������������������������������	

3.4 Suspending and resuming blocked packets

Since we have three parallel main processes in a TRC,
one for each of the input channels, we may easily get
conflicts in the use of the outgoing channels. As an
example, consider a packet being transmitted from x-input
to x-output concurrently with a packet arriving on the
processor-input that should be forwarded on the x-output.

When one of the three possible users (input channels)
has reserved an outgoing channel, it holds the channel until
the whole packet has been transmitted on it. For each byte
transmitted we must ensure that the byte is part of the
packet which currently has access. If not, the packet must be
blocked. Consider the output channel along the x-
dimension. Control of access to the output channel was
implemented in the task sendx. This contains a parameter
(requester) which tells whether it is asked to send a byte
(data_flit) on the x-output on behalf of a packet arriving
on either x-, y- or processor-input. Our first attempt was to
use a 2-bit register called xout_used_by declared in
every TRC-instance. Waiting for safe access was
implemented as:

����((xout_used_by == requester) ||
 (xout_used_by == ‘NONE));
// has got access, or free
�� (xout_used_by == ‘NONE)
 xout_used_by = requester; // reserve for access

Freeing of the channel is simply requester =

‘NONE� placed in process_xin when it knows that the
tail-byte has been sent and received. This will not work
correctly. It demonstrates an important side of the task
concept in Verilog, which may be surprising for people with
experience from stack-oriented programming languages:
Each invocation of a task uses the same storage! [4].
Assume that x-input currently has reserved (allocated) the
channel and sendx with p-input as requester has to wait
since the condition in the first line evaluates to false. When
a following call to sendx with x-input as requester is made
to send the next flit in the package, the call will change the
one shared value of requester and also the call to sendx
on behalf of p-input will proceed. Consequently, the sendx
call on behalf of p-input will not wait long enough. This
will most likely spoil both packets.

This problem was attempted to solve by declaring an
event associated with the freeing of the xout channel. If
sendx finds that the output channel is occupied by another
packet, it starts to wait on that event. When the TRC knows
that the last byte in a packet has successfully been received,
it triggers the event signalling that the channel has been
freed. Waiting calls to sendx must then do a retry for
requesting the channel. However, the fact that the input
argument requester is shared by all calls to sendx done
by the same TRC still caused problems. When a call to

sendx resumes from waiting it is possible that the value of
requester has been overwritten by another call during its
waiting time. Consequently, we may get situations where
the retry loop allocates the channel with wrong value of
requester. An attempt to solve this was to use two
separate variables (registers) called xWaitingReq1 and
xWaitingReq2 to store a maximum of two waiting
requests. As the mix of Verilog and pseudo code below
shows, these are used for storing the value of the parameter
requester before starting to wait on the xout_freed event,
and to restore the correct value of the parameter when the
call to sendx resumes after this waiting.
���	[1:0] xout_used_by, xWaitingReq1, xWaitingReq2;
����� xout_freed;
...
���� sendx;
 ����� [1:0] requester;
 ����� ‘BYTE in;
 �����
 ���� (!(xout_used_by == requester))
 ����� // request loop
 �� (xout_used_by == ‘NONE)
 xout_used_by = requester;
 // you won the channel
 ���
 �����
 ������������������	���)�������������
����	
����������#*�������)+����#*�������),�������	��
��
���������������
�����
��������-./.�����
�����
 @(xout_freed);
 �������������
���������	���)�������	���������	
����������#*�������)+����#*�������),�
����������
������������		������	����-./.�0������������
�
�����������
�����#*�������)�������������-./.�
 ���
 ��� // of while
 // OK to proceed now, i.e send a flit
 ...
������� // sendx

Note that the correct operation of this method is based
on the observation that code-sequences such as those before
and after the @(xout_freed) statement in the while loop
are executed without preemption for one TRC instance at
the time. This will be the case if the sequences are without
calls to wait and other constructs that imply that the
simulation time is advanced. The access to the y-output
channel and the processor-output to the processor is being
controlled similarly.

3.5 Virtual channels

As described in Section 2 the TRC uses virtual
channels to avoid the deadlock problem. Two virtual
channels, called VC0 and VC1, share each physical channel.
A packet is sent on VC1 until it eventually reaches the node
with address zero along the current routing dimension. At
this node it starts using VC0 for the remaining hops along

�����������	�
�������	������	���	����	����������������	����	�����������	��������������������� ��������������������������������	

this dimension. This strategy is used for both the x and y-
dimension.

When a packet that has been shifted over to VC0 goes
from routing along the x-dimension to the y-dimension it
starts by using VC1, but may shift to VC0 by the same
criteria that is used along the x-dimension. One might
intuitively think that it is correct to continue on VC0 as long
as a packet has shifted from VC1 over to VC0. However, it
is possible to get a circular wait situation solely along the y-
channels in one column of TRCs, just as it is possible along
the x-channels in one row. Therefore, we can not allow
some packets to start along the VC0 channel, but must have
the possibility to switch from VC1 to VC0 for all packets
being routed along the y-dimension.

The main motivation for the virtual channels is that a
blocked packet being transmitted on one channel should not
block the other virtual channel. Thus, the control signals
REQ and ACK used to control the transmission of data on
the channel must be duplicated to give one pair of signals
for each of the virtual channels. This makes it possible to
transmit data concurrently on both VC0 and VC1 in an
interleaved fashion [1].

A simple way to extend the TRC Verilog model to
process packets that arrive on two different virtual channels
was chosen. This is to split the TRC task process_xin
into two very similar tasks, one for each of the virtual
channels.

Consider VC0 and VC1 on the x-input-channel. How
far the TRC has reached in the processing of a packet on
one of the VCs will most often be different from the state of
progress regarding an eventual packet on the other VC.
Having one task process_VC0_xin for the VC0 channel
and another (process_VC1_xin) for the VC1 channel
solves the problem of maintaining the state of progress at
each channel. The need is similar along the y-dimension,
but we do not have more than one (logical) channel for data
from the processor. Consequently we get 5 main tasks of
this kind in the TRC model.

There are some small differences between the two
tasks handling input on the same physical channel. E.g., the
VC1 task must decide whether to forward the data on VC0
or VC1, whether the VC0 task knows that further hops must
be on VC0.

Similarly, the task sendx was split into two tasks
(sendxVC0 and sendxVC1), one for each of the two VCs.
As an example, consider a TRC chip with x-address = 0 (at
the left border of the torus). Its task for processing incoming
flits on VC1 should forward these along the VC0 channel on
x-output if they have not reached their destination x-
address. The task that is processing flits arriving from the
processor connected to the same TRC will send flits along
the VC1 of the x-output.

Packets that should be forwarded along one virtual
channel should not be blocked by traffic on the other virtual
channel. If we reconsider the way of controlling access to
the channel presented in section 3.4 we see that sendxVC0
should use one set of xWaitingReq variables while
sendxVC1 uses another set.

The introduction of Virtual Channels violates the as-
sumption made in section 3.4. that a maximum of two
requesters may wait on the same (now virtual) channel.
Consider the following example situation where a TRC-chip
is handling a long package from its own processor by
sending flits on its y-output VC1. Simultaneously the same
TRC may receive flits on both VC0 and VC1 of the x-input,
and both these packets may have reached their column
along the x-dimension so that they should start travelling
along the VC1 of y-output. In addition, it may arrive a
packet on VC1 of y-input that should continue on VC1 on y-
output.

It was then considered to extend the Verilog code for
this access control even further by allowing up to four
waiting requests. While unhappily thinking of extending the
complexity of the model in this way, another problem in
the model was found. Again it was caused by Verilog tasks
being very different from procedures in stack oriented
languages.

When the waiting for access is implemented in the way
described in section 3.4, different requesters may call the
same task for sending a byte on a virtual channel, e.g.
sendxVC0. When the virtual channel is freed, these calls
are resumed from their waiting state. There are two prob-
lems that may arise when such suspended tasks are "back in
business".

The first problem is (as we have seen before) that the
input parameter (in this case in, which is the flit to send)
may have been overwritten by another call to the same task.
This may be solved by storing the input parameter in an
array indexed by the requester. When the task is resumed
after waiting, it checks the xWaitingReq variables, picks
one of the waiting requests, and sends the value of in stored
by the requester that gets the virtual channel. This technique
complicates further, but seems to work at first sight.

The second problem is caused by the fact that we
cannot (and perhaps should not) control which call to the
sendxVC0 task that is resumed first. An arbitrary of the
waiting calls will according to our algorithm pick a re-
quester and send a byte on behalf of it. As an example, a
call to sendxVC0 done by process_pin may be resumed
and may send a byte on behalf of a packet arriving on the x-
VC1-input (process_VC1_xin). After having sent the
byte, the send-call returns and task process_pin believes
that it may proceed to send the next byte, which is wrong.
Also, the task process_VC1_xin does not proceed even
though one of its byte have just been sent. This bug was

�����������	�
�������	������	���	����	����������������	����	�����������	��������������������� ��������������������������������	

hard to find! If a task could get access to information about
the identity of its caller it would again be possible to
proceed with this solution at the price of increased
complexity. As far as I know, this is not possible in Verilog.
The introduction of the xWaitingReq variables turned out
to be a "dead end".

The need for a call to sendxVC0 to know the identity
of its caller can be circumvented by letting each caller-task
(process_VCO_xin, process_VC1_xin, etc.) have its
own variant of sendxVC0 (called X0sendxVC0,
X1sendxVC1, etc.). When the sendx-task is resumed after
waiting it knows the identity of its caller through its own
identity!. Moreover, this solution removes the need for the
xWaitingReq variables and the storing of input parameters
since there will be only one call to each of the sendx-tasks
at the same time. This simplifies a lot, but the drawback of
the solution is that we need a lot of tasks like X0sendxVCO
that are very similar but not completely equal. (There are
many combinations, however not all are needed.).

3.6 Controlling access to the datalines

When the TRC starts operation we do not generally
know which of the two VCs that first will be used on a
given x- or y-output line. Both must be initialised with REQ
= ACK, i.e. ready for transmission. If for instance VC1 uses
the data-lines first and the packet is blocked we will have
REQ1 != ACK1 until the packet is unblocked. In the
meantime it must be possible to use VC0. Therefore, the
data lines must be freed for other use even if the receiver is
not ready for receiving more data on the other virtual
channel. But, we must also assure that the two virtual
channels do not use the data-lines at the same time.

We assume that the receiver is always able to read one
byte on the currently used virtual channel during the data
transmission time. This is possible since the receiver will
only toggle the ACK line when it is ready for more data.
The access to the data lines during the transmission time is
controlled in sendx_VC0 as shown below. The register xdu
(x data lines used) is used to ensure mutual exclusion of the
two users. (sendxVC1 is similar).

����(REQ0 == ACK0);
// ready to send data, must get data-lines alone
���� (xdu) // while datalines are in use
 #1; // wait a small amount of time
xdu = ‘TRUE; // reserve it for use
������������������
��������
�������������
�������������
����
����������
��!�������
���������
������
xdu = ‘FALSE; // release for use by others

The variable xdu is local to each TRC. The correct
operation of this method is based on the same observation

about non-preemption of code-sequences as was mentioned
at end of Section 3.4.

To summarise, the solutions presented in this and the
two preceding subsections implement controlled resource
sharing at two different levels. Sections 3.4 and 3.5 explain
how virtual channels are reserved at the packet level using
Verilog events. This subsection explained how mutual
exclusion concerning the physical data lines was
implemented at the flit level by a lock-variable and busy
waiting.

4. Testing, experience and future work

4.1 Testing

The structure of 16 TRCs serving 16 independent
processors in a 2D mesh has been tested by several small
Verilog test programs. They are typically written as a
separate task that is included in the Verilog model of the
processors. The same task is thus executed by all proces-
sors. However, the test programs typically use conditional
statements and the unique processor number known by
every processor instance to control which processor(s)
should send the given packet(s) at the given time. This
corresponds to the SPMD (Single Program Multiple Data)
programming style that currently is the most popular
parallel programming style.

Each TRC has three input channels and three output
channels being handled concurrently, with two virtual
channels on each of the x- and y-channels. The processors
may send and receive packets concurrently. With 16
processors and TRCs we have close to 200 parallel activities
in the system being debugged. In such a system it is
important to start the debugging with simple tests to avoid
being drowned in debugging information. The first set of
tests typically transmitted a single packet between a given
pair of TRCs. The next step was to send a single packet to a
random destination, and let the receiver forward the
message to another random destination. This "random walk
test" of a single packet for a large number of iterations gave
a good test of the routing algorithm. (Correct routing was
checked automatically by the destination by including the
destination-address in the packet being sent.)

To test how the virtual channels solve the deadlock
problem in a proper way it was necessary to let all the
processors send and receive packets concurrently in a ran-
dom manner. Before the virtual channels were properly
implemented, such tests relatively fast gave a deadlock
situation. The current version of the model has been tested
by letting each of the 16 processors send 1000 packets of

�����������	�
�������	������	���	����	����������������	����	�����������	��������������������� ���������������������������	����	

random length concurrently at random times, and all arrive
correctly.

4.2 Experience

Every instance of the TRC and the PROC modules in
the Verilog model has a local one bit register debug
initialised to false. The code is instrumented with debug
statements of the form if (debug) $display("%m

...."). The use of hierarchical naming makes it very easy
to switch on and off the debugging information for a given
set of TRC or PROC instances at given values of the
simulation time. This was particularly useful in late phases
of the debugging, to avoid being drowned in debug
information. Often, we were only interested in what was
happening on one or two of the links in the 4 by 4 torus. In a
system with many modules, the "%m" giving the
hierarchical name of the current instance saves a lot of
typing in such debug statements.

When tracking down errors in the code for virtual
channels that gave deadlock situations it was very useful to
have a simple diagnostic module outside the main parts of
the system. This module was invoked at the end of the
simulation and displayed the x/y/p_used_by variables in a
convenient format. Again hierarchical naming showed to be
very practical, since it allows the designer to probe exactly
those values that are of interest.

The difference between a programming language and a
hardware description language is visualised by the task
concept in Verilog. In the context of the TRC hardware we
have been modelling, we cannot assume a stack for pushing
and popping of parameters and local variables. But, even
with shared storage, the task concept is very useful for
making structured and more readable code. However, with
"to much" experience with procedural abstractions in high
level programming languages it is easy to make errors as
those described in section 3.

Our experience from the development of the TRC
simulation model in verilog can be summarized in one
sentence; "Verilog is a practical language for developing
architectural simulations, but remember that tasks are not
procedures!".

4.3 Future work

The current model has only a very crude representation
of the time consumed in the various parts of the TRC
behaviour. We believe this has been sufficient for testing
the functionality of the model. A more detailed time
modelling will be developed to make the model more ac-
curate regarding performance.

We also want to make one or several models of the
same TRC chip but at a more detailed level. A model at the
RTL level following the HW structure described by Dally
and Seitz [1] is being developed by Pauline Haddow [2] and
will give more precise performance figures that will be used
to improve the existing model. The next step would be to
modify it into a RTL model than can be synthesised. A
comparison of readability, size and performance accuracy
of such TRC models at different levels would be very
interesting.

Further tests will be developed to do performance
studies at the architectural level. We will use message traces
to represent more realistic load on the system than what is
done by the synthetic load from our test programs.

Acknowledgements
The author wishes to thank Nordic VLSI for a

stimulating working environment, and Pauline Haddow for
discussions about the TRC routing chip and for comments
on a draft of the paper.

References
[1] Dally, William J. and Seitz, Charles L., The torus routing

chip, Distributed Computing (1986) 1:187-196.
[2] Haddow, Pauline, A Generalisation of Router Chip

Design, In proceedings of 5th Euromicro Workshop on
Parallel and Distributed Processing, London, January
1997.

[3] Hwang, Kai, Advanced Computer Architecture, Paral-
lelism, Scalability, Programmability. McGraw Hill, 1993.

[4] Palnitkar, Samir, Verilog HDL: A Guide to Digital Design
and Synthesis, SunSoft Press, Sun Microsystems Inc.
1996.

[5] Smith, Douglas J, VHDL & Verilog Compared & Con-
trasted - Plus Modelled Example Written in VHDL,
Verilog and C, from 33rd Design Automation Conference.

