
A Multilevel Simulation Study Linking Parallel Applications to
Executable and Realisable Hardware Models

Lasse Natvig* and Pauline C. Haddow

Group for Computer Architecture and Design
Department of Computer and Information Systems (IDI)

Norwegian University of Science and Technology (NTNU)
 N-7034, Trondheim, Norway, E-mail: {lasse,pauline}�idi.ntnu.no

Abstract: To improve performance in parallel computers, a major challenge is to reduce the
communication bottleneck by decreasing latency and increasing throughput. However, these
performance goals must also be traded of against cost which is not, in general, included in
traditional performance models. In addition it is important to consider the type of applications
that will be run on such a computer by including realistic traffic characteristics in such
models.

In this work we present three models of parallel computers, each of which meets a subset of
the above goals. We discuss the advantages and disadvantages of each of these along with an
analysis of the effect of a combination of all three. The first, BSPlab is a simulation
environment created to study parallel applications, written in the Bulk Synchronous Parallel
programming style, on a variety of parallel computers. The second is a behavioural simulation
of a specific parallel architecture at the system-level, providing performance results for a
variety of traffic patterns. The third approach is a generalised model of the hardware level in a
parallel computer’s communication system. It’s aim is to provide performance and cost results
at the gate-level.

Keywords: Performance modelling, simulation, executable hardware models, HW/SW
codesign, Verilog, VHDL, PDL.

1. Introduction and Motivation

The art of both software and hardware modelling over the years has led to the development of more and
more complex or detailed models. However the question is, is a complex model a better model? In
architectural terms, the level of complexity of a model is said to increase as we move from system-level
to gate-level. A model may represent a complete system or just part of it, in such a way as to meet the
goals of the model. Hardware Description Languages (HDLs) provide us with the freedom to model
systems at various levels of detail.

Simulators may be written in HDLs to model large complex designs at the system-level. Computer
simulation of simplified models and prototypes of these complex systems is an established technique to
unveil design errors at an early stage, as well as improving the co-operation with the end user during
development. HDLs such as VHDL and Verilog, provide simulation as an integrated part of the language.

The most common use of HDLs is the development of hardware designs described at the RTL level
(Register Transfer Level). The description may be structural — an interconnection of a set of
components, or behavioral — an algorithmic style description. Both of these descriptions are technology

* This work was partly supported by the Norwegian Research Council, and was done while the author was at Nordic VLSI, Trondheim.

independant. If a hardware implementation i sought, the code is restricted to the subset of the language
implemented in the logic synthesis tool chosen. The process of logic synthesis maps the code level
description into hardware patterns within the technology chosen for synthesis. The following steps in the
design process can often be completed with the aid of CAD tools which adheres to the design rules of the
chosen technology. The architecture chosen for our study is the Torus Routing Chip (TRC), a
multicomputer router, designed by Dally and Seitz [DS86]. A multicomputer router offers a sufficiently
complex architecture providing a reasonable case study for our modelling techniques. The asynchronous
nature of this architecture also gives an interesting element to this work.

This paper presents two modelling approaches using HDLs — the first using the simulation features of
HDL to provide system-level modelling and the second focusing on logic synthesis to provide gate-level
modelling. Both approaches model the same architecture, a multicomputer router. The first can be said to
be an algorithmic or behavioural approach to modelling the functionality of the router chips and the
overall performance of the interconnection network at the system level. The second is a structural
approach based on a collection of modular building blocks. It models the same functionality, but is closer
to the actual hardware, and hence gives more accurate figures for latency.

We also present BSPlab which is a simulation environment created to study parallel applications on a
variety of parallel architectures — following the Bulk Synchronous Parallel programming style [DU97].
This is followed by a discussion of how these three simulations may be linked together, and how they
may benefit from each other. The paper ends by discussing the strengths and weaknesses of the
individual and combined models.

2. The Torus Routing Chip (TRC)

Traditionally, parallel computers have been categorised into either non-shared distributed memory
computers based on message passing or those based on shared memory. Nowadays, shared memory
machines are more and more often distributed and use some form of message passing, a crucial
component regarding performance. It is quite common to use a dedicated processor or a dedicated routing
chip e.g. the TRC, that reduces the load on the local processor and thus improves performance.

The TRC provides routing of packets along two dimensions called x and y in this paper. Every TRC is
connected to a processor. The processors are connected through the TRCs in an arbi trary k-ary n-cube
(torus) interconnection network [Hwa93]. In this work we concentrate on a 2-ary n-cube i.e. a two
dimensional mesh structure with n by n nodes and wrap-around connections. Simulations have been
undertaken for a 4 x 4 system with 16 processors and thus 16 TRC chips. The simulation at the system
level is parametrised allowing for variation in network size.

A TRC receives outgoing packets from and forwards packets to its local processor. In addition, it will
transfer incoming packets destined for other nodes to neighbouring nodes. A packet is a sequence of
bytes containing the relative address followed by a sequence of non-zero data bytes and is terminated by
a tail-byte (zero). In this paper, we often use the term flit (flow control digit) to denote a byte in a packet.
In general, a flit need not to be the same as one byte [Hwa93].

The relative address is adjusted in each TRC a packet traverses on its way to the destination. In a two-
dimensional mesh, the TRCs are given a unique (x, y) address. A TRC sends a packet along the x-
dimension to the neighbouring TRC with a higher x-address. The nodes with the highest x-addresses are
connected to the TRCs with the same y-address but zero x-address, i.e. wrap around connections. The y-
dimension has a similar strcuture. This structure is shown in Figure 1. The x and y connections are 12

bits wide. Each consists of an eight bit channel and two pairs of request (REQ) / acknowledge (ACK)
lines used to control the two virtual channels. To simplify the figure, only the data-transport direction is
shown. The ACK lines oppose the data direction.

There are two uni-directional connections to the processor, one for each direction. These are 10 bits
wide, 8 bits of data and one pair of REQ/ACK control lines. The structure is regular and may easily be
changed to other 2-ary n-cubes. It is also possible to vary the number of TRCs in the x dimension with
respect to those in the y-direction. The maximum size of the structure is limited by the fact that the
relative x and y-addresses are stored in a byte. Thus we may have up to 256 x 256 processors connected
in a TRC network.

The TRC uses the wormhole routing switching technique where, as long as the transmission route is free,
flits are forwarded towards their destination in a pipelined or "flit-train" fashion. The main benefit over
store and forward routing is reduced latency as a flit may be transferred to the next node as soon as the
channel is available rather than having to wait until all flits have arrived at the present node. A
deterministic routing scheme based on the relative x and y address, termed x-y routing, is used. As long
as the relative x-address is non-zero, it is decremented and the packet is forwarded to the next TRC-chip
along the x-dimension. When the relative-x-address is zero the packet is routed similarly along the y-
connections (if it has not reached its final destination) . Typically many packets will coexist in the
structure. If a TRC discovers that a required channel is being used by another packet, it blocks the in-
coming packet until the channel is free.

Blocking of packets, combined with a simple deterministic x-y-routing scheme could give rise to dead-
lock caused by a channel dependency cycle (circular wait situation). The TRC uses virtual channels to
avoid this problem. Each physical channel provides two virtual channels (VCs), referred to as VC0 and
VC1 in this paper. The VCs prevent deadlock by converting possible channel dependency cycles into
spirals [DS86]. For a single physical channel, both the virtual channels may transmit data concurrently
multiplexed on a flit basis.

Figure 1 shows a 4 by 4 mesh of TRC modules connected along the x and y dimensions. The connection
between a TRC and its local processor is not shown. It should be noted that the connections, termed
channels, are unidirectional.

3. A multilevel modelling approach; simulations at three different levels

There is much disagreement in the HDL community as to the choice between VHDL and Verilog. A
comparison of these languages and C may be found in a paper by Douglas Smith [Smi95]. However,
what is important for this work is that HDL languages contain the features required to meet the models’
requirements. Therefore we chose to implement each model in the language currently available in the
organisations of the two developers — Verilog for the behavioural model (Section 3.1) and VHDL for
the synthesisable structural model (Section 3.2). The BSPlab (Section 3.3) environment was implemented
in Visual C++.

3.1 Architecture simulation of the TRC
A system level Verilog simulation model of the interconnection network of TRCs and their associated
processors has been developed. The model and the experience gained with using Verilog at the system
level was reported at the 6'th International Verilog HDL Conference [Nat97].

The Verilog model provides an environment to test the functionality and performance of the TRC
interconnection network. The top level module, system, defines the TRCs, processors and channels (or
wires) of the system. Both control and data lines are defined at this level. The processors contain tasks
for sending and receiving packets. It is also an ideal place for locating test programs that provide data
stimulus (traffic) to the mesh of TRCs and for system performance data gathering. A detailed model of
the processor connected to each TRC-chip is not included as the interconnection network and the TRC
itself is the focus of the model.

The central part of the TRC chip model is three concurrent processes, each listening on one of the three
input channels x-in, y-in and proc-in. Each process describes the functionality within the TRC which
handles both the receipt of data, routing decisions and forwarding of the data either to the local processor
or towards the destination i.e. transmission to the relevant neighbouring node. The pseudocode in Figure
2 on the next page describes the processing of flits arriving at the x-input channel (task process_xin). It
should be noted that the value of the relative x-address denotes the number of hops remaining in the x-
dimension and similarly for the relative y-address. When a packet is sent from a processor, both the
relative x and y addresses are included in the packet even if one or both of them are zero. The processing
of incoming flits on the y-input is similar, except that the relative x-address has been stripped away so
that the packet starts with the relative y-address. The relative x and y-addresses of a packet are calculated
by the sending processor. As such, a packet arriving at the processor input of a TRC can be handled in
the same way as a packet arriving on the x-input.

The model also handles the self-timed control signals, blocking and resuming of transmission and
implementation of the virtual channels. More details can be found in [Nat97].

Figure 1: 4 x 4 mesh of TRC modules with (y,x)
numbering

TRC
(0,0)

TRC
(0,1)

TRC
(0,2)

TRC
(0,3)

TRC
(1,0)

TRC
(1,1)

TRC
(1,2)

TRC
(1,3)

TRC
(2,0)

TRC
(2,1)

TRC
(2,2)

TRC
(2,3)

TRC
(3,0)

TRC
(3,1)

TRC
(3,2)

TRC
(3,3)

3.2 Modelling a TRC using synthesised HDL building blocks
A generalised hierarchical framework for modelling a variety of router chips and their interconnection
networks is under development. Within this framework it is chosen to represent a router as an
interconnection of a set of modules. To limit the number of modules required, a module is not necessarily
a single router component but may be made up of a number of components. As such, the hierarchy
consists of the interconnection level, router level and the router modules themselves.

To provide flexibility in the model, many router features — referred to as decision issues, are provided as
parameters to the model. Static parameters provide information regarding design choices made and
dynamic parameters allow traffic patterns to be fed into the model.

Each module provides a frame into which a gate-level design is included. The frame includes a list of
those parameters which effect the design of the particular module and mathematical expressions which,
when executed, provide performance data from the module to the next higher level in the hierarchy.

Performance analysis equations consist of
expressions for the three key performance
features: latency, throughput and cost.
Mathematical expressions to support these
features depend on a number of
parameters given to the model and as
such, a selection of expressions are
available to support different router
issues. Technology data, expressing
technology features, also provides the
model with the ability to conduct cost
analysis.

A modular representation of the TRC is
described in the Performance Description
Language (PDL) developed by Vemuri
et.al. at the University of Cincinatti
[VMM96]. This describes both the
modules required and their
interconnection. Each module is described
in VHDL and synthesised to a gate level
design. The resulting net-list is then
simulated to test for correct behaviour. To
enable the program to understand the
structure and behaviour of the module the
net-list is converted into PDL net-list by a
perl program.

To be able to develop a general framework, a survey of a number of router designs has been undertaken
to build up the set of router modules. These routers were chosen to represent both deterministic and
adaptive, synchronous and asynchronous designs. It is assumed, that only point-to-point communication
takes place in the network and therefore all multi-cast and broadcast features of these routers are ignored,

wait for new flit on x_input
read relative_x_address from x_input

if relative_x_address is zero then
 strip it // i.e. do not pass it
 wait for relative_y_address on x_input

 if relative_y_address is zero then
 strip it // i.e. do not pass it

 wait for and read flit-data from x-input
 send flit_data to own processor

 while (flit_data <> zero) do
 wait for and read flit_data from x-input
 send flit_data to own processor

 else // relative_y_address is not zero
 decrement relative_y_address
 send relative_y_address along y_dimension

 pass all flit_data in the packet arriving
 on x-input along the y-dimension until
 the tail byte has been sent

else // relative_x_address is not zero
 decrement relative _x_address
 send relative_x_address along x-dimension

 wait for relative y-address (may be zero) on
 the x-input and pass it along the x-dimension

 pass all flit_data in the packet arriving at
 the x-input along the x-dimension until
 the tail byte has been sent

Figure 2: Pseudocode for task process_xin

at present. The resulting set of 19 modules, as well as further description of the PDL modelling, is
described in [Had97a]. The router modules required to describe the TRC router are as follows:

AC The address comparator module represents either a zero checker, as in this case where relative
addressing is implemented or an address checker in the case of absolute addressing. It is often placed at
the input of a router where it checks if the incoming message is destined for the local processor or not.
The complexity of an AC depends on the length of the word to be compared. In this case, it is the length
of an address byte or in other words the flit size.

AD The address decrementer is used in deterministic routers with relative addressing to decrement the
relative address. Implementation of an AD is often achieved by some form of adder. The size of the adder
is dependent on the flit size, where a flit holds the relative address in the current direction. As such, the
design of the decrementer AD is parametrised by the flit size.

AR The purpose of an arbiter is to make a decision about the assignment of a shared resource. This
decision is based on both the arbitration policy or method and the routing algorithm. The arbitration
policy describes the priority of the competing inputs and the routing algorithm limits the choice of
outputs for a given input. The delay through the arbiter is due to both the amount of traffic competing,
the ease of winning (arbitration method) and the choice of outputs (routing algorithm). The complexity of
the implementation is also dependent on whether control of the router is synchronous or asynchronous.

CB A crossbar unit handles part or all of the switching functionality of a router with the aid of an
arbiter. In general, for an n x n crossbar where there are n inputs and n outputs, 2n buses are required for
the input and output data and n2 crossing points for switching between these buses. Therefore,
implementation is dependent on the number of inputs to the crossbar, equivalent to the number of data
paths traversing it and the size of the arbiter itself.

RD The routing decision module
includes a routing table which
implements the routing algorithm.
For deterministic routing, generation
of the output channel is based on
information regarding the input
channel and the destination address.
The complexity is determined by the
routing algorithm and the number of
outputs, or in other words the
network degree.

SC The signal converter handles
conversion between two different
signalling conventions. In the case
of the TRC, 2-phase signalling is
used between neighbouring routers
and 4-phase signalling within the
router. The complexity of the module is therefore dependent on the number of signal lines to be
converted and the technology of implementation.

 SC

Figure 3: Router-level description of a path
through the TRC using generic router modules.

 SM

 B AC AD CB VC OP

 SC

RD AR

Control Data Select

SM The signal manager controls the flow of data between two neighbouring routers by request/
acknowledgement lines or control codes. A sender must have control of the channel, the receiver must
be ready to receive and in the case of virtual channels, a virtual channel must have won use of the
channel before a request can be raised and data sent. In this case req/ack signalling is implemented.

VC The Virtual channel controller includes both queuing for and multiplexing between the virtual
channels of a physical channel. In the case of virtual channels it is more common to use output buffering
than input buffering so that data destined for a particular virtual channel is not blocked behind data for
other virtual channels on the same or different physical channels. The parameters to this component are
therefore the number of virtual channels per physical channel, the amount of output buffering provided
and the arbitration method to arbitrate between the virtual channel queues.

Figure 3 illustrates the structural description given in the PDL code to connect these modules in a single
path through the Torus Routing Chip. Similar paths are required for each of the input channels.

3.3 A short introduction to BSPlab

BSPlab is an environment for experimenting with BSP programs on different computer architectures.
Parallel applications are written in Visual C++ using the BSPlib standard [BSP96] for communication
and synchronisation. The BSPlib is the result of the standardisation effort by the BSP World Wide
organisation (http://www.bsp-worldwide.org/). An introduction to the BSP model of computing by
Bill McColl can be found in [McC95].

In BSPlab, the user may select among various predefined computer architectures. Currently, these are
multiprocessors with shared memory or distributed shared memory, network of workstations, and
multicomputers with message passing organised in various network topologies. The user may also define
her own architectures. The BSP programs are then debugged and executed in BSPlab to achieve
(simulated) performance measures and hopefully a better understanding of the interplay between the
selected BSP-architecture and the executed BSP-program. BSPlab is primarily an environment for
studying BSP computations focusing on the impact of algorithms and architectures on BSP program
performance. However, it can also be used as a programming environment for BSP applications
developed for real parallel computers running BSPlib.

BSPlab was developed as the diploma work of Haakon Dybdahl and Ivan Uthus from August 1996 to
February 1997. A web-site, "http://www.idi.ntnu.no/bsplab", is currently being developed to offer
the BSPlab to interested researchers.

One of the architectures available in BSPlab is a multicomputer where the nodes are interconnected in a
2-dimensional torus. Several alternative strategies for message passing are supported. This makes it
possible to run different parallel BSP applications on a parallel architecture with processor nodes that are
interconnected with routers such as the Torus Routing Chip. Such applications will be used to provide
the lower level simulation models with realistic message traffic patterns.

4. Linking the simulations together, advantages and status

4.1 Advantages
There is a classical trade-off between model complexity and performance accuracy. In general, the
performance models used in BSPlab rely heavily on abstraction to avoid becoming too complex and thus

the accuracy of the performance data is reduced. However, we believe that the lower level models, such
as those described in Section 3.1 and 3.2 may be used to calibrate the abstract performance models used
in BSPlab. On the other hand, we believe that these models will (directly or indirectly) benefit from
using realistic traffic patterns from traces generated by BSPlab. Thus, an integrated use of the three
simulation models should give rise to improved performance results by providing more realistic load
(top-down) and by providing performance measures from models closer to the actual hardware (bottom
up). This is summarised in Figure 4.

4.2 Status

4.2.1 BSPlab
The BSPlab is up and running.
We have collected several
parallel applications, e.g.
sorting and numerical linear
algebra [Bis96], that have
been tested on various BSP
architectures. A lot of
performance data is, by
default, logged by BSPlab but
the selection of data to be
logged can easily be modified
by the user. What remains to
be implemented to integrate
BSPlab with the other
simulation models is to decide
upon a simple format for
outputting the message traces
that later can be read by the architectural simulation. This is a straightforward task, estimated to take only
a few working days.

4.2.2 The Verilog-model
The architectural model of the TRC written in behavioural Verilog simulates the behaviour of each
individual TRC within the structure of the network. Tests have been made for correct behaviour, that is
that the router responds to incoming messages in the manner described in the specification of the router.
The tests are typically written as a separate task (somewhat similar to a procedure) that is included in the
Verilog model of the processors. The same task is thus executed by all processors. However, the test
programs typically use conditional statements and the unique processor number known by every
processor instance to control which processor(s) should send the given packet(s) at the given time. This
corresponds to the SPMD (Single Program Multiple Data) programming style.

Each TRC has three input channels and three output channels being handled concurrently, with two
virtual channels on each of the x- and y-channels. The processors may also send and receive packets
concurrently. With 16 processors and TRCs we have close to 200 parallel activities in the system being
debugged. In such a system it is important to start the debugging with simple tests to avoid being
drowned in debugging information. The first set of tests typically transmitted a single packet between a
given pair of TRCs. The next step was to send a single packet to a random destination, and let the
receiver forward the message to another random destination. This "random walk test" of a single packet

Parallel programs using BSPlib
executing on BSPlab
[Dybdahl and Uthus 97]
 BSPlib / C++

2D mesh multiprocessor inter-
connected with TRCs [Natvig97]

 verilog

TRC modelled at the RTL level,
synthesisable [Haddow 97]

 PDL and VHDL

“realistic” load (traces)

in
cr

ea
se

d
“r

ea
lis

m
”

(p
er

fo
rm

an
ce

 m
ea

su
re

s)

Figure 4: Advantages of coupling the three simulation models.

for a large number of iterations proved to be a good test of the routing algorithm since it identified many
errors. The correctness of the routing implementation was automatically checked by the inclusion (in the
debug version) of the destination-address in every packet being sent. Correct receipt at a destination is
then easily verified by checking of the addresses received.

To test that the virtual channels prevented deadlock it was necessary to let all the processors send and
receive packets concurrently in a random manner. Before the virtual channels were properly
implemented, such tests produced deadlock situations. The current version of the model has been
successfully tested by letting each of the 16 processors send 1000 packets of random length concurrently
at random times.

A small set of test cases to be used to test the behaviour of a single TRC have been specified. Similar test
cases will be used in the VHDL model such that identical behaviour of the two implementations may be
ascertained. Creation of a Verilog task to be included in the processor model for reading the tracefile
produced by BSPlab has, as yet, not been undertaken.

4.2.3 The VHDL & PDL model
The network module, generic router module and associated generic modules have been implemented in
the Performance Description Language (PDL) [VMM96]. PDL is designed specifically for generic
performance modelling enabling design instances to be compiled and analysed.

The individual modules are being implemented in synthesisable VHDL code. Synthesisable VHDL code
is chosen since the code may be synthesised into more than one technology and may easily be adapted to
reflect simple design changes. Therefore, it provides flexibility in design, a goal of this work. Each net-
list generated from logic synthesis of VHDL code is then converted into a PDL-compatible net-list.
These net-lists will provide a library of component designs available to the PDL model.

The synthesisable VHDL model for each generic router is an example of a virtual component. It is a non-
physical entity (described in HDL), but may be automatically transformed into a physical component by
CAD tools. Synthesis tools support only a subset of the HDL language and it is in general significantly
more time-consuming and challenging to write HDL code when logic synthesis is required. However, the
main advantage is the ability to automatically produce hardware. Synthesisable designs are based on RTL
which is inherently a synchronous design methodology [Rus95]. As such, it does not preclude the logic
synthesis of asynchronous designs but makes the task somewhat more complicated. However, since this
approach first breaks the design into modules for synthesis, both creation and testing of the design is
more manageable.

Efficiency of the RTL-code will of course effect the synthesised results, however in this work, the aim is
to develop and test a useful set of generic virtual components for router design, not an exercise in making
optimised HDL code.

An HDL simulator is used to check correct behaviour of the generic modules. In addition, the flow of
signals through the TRC module itself is tested within PDL.

The aim of this model is not to represent an exact copy of the TRC but a significantly accurate copy such
that cost and performance data at the gate level may be obtained. As such, assumptions have been made
regarding implementation details which are unavailable where those assumptions do not affect the
behavioural characteristics and principle design issues of the TRC.

We are currently working on extending the VHDL model to read trace files produced by either the
BSPlab or Verilog models, network data or single router data respectively. The current implementation is
restricted to unloaded networks. In addition, the Verilog model is being adapted to accept the calibration
figures produced by the VHDL model. Finally at the top level, this will be very useful for calibrating the
architecture specifications of a 2D torus used in BSPlab (Figure 4). The interaction of these three models
will therefore improve the realism at each level of the modelling process.

5. Discussion

Both simulation of parallel applications on the BSPlab and the architectural Verilog model of the system
of 16 TRCs have been extensively tested. The synthesisable VHDL generic router modules have also
been tested, and currently testing of the TRC router module is in progress. The work on the models will
continue, and we expect that experience with the integrated use of the three models will result in
adjustments (calibrating) at all three levels. Although this will give new insight, we feel that it is possible
to give preliminary judgements of weaknesses and strengths of the models. This is summarised in the
table below.

In the table, the short names provided in the headings are used for ease of reference to describe the three
models. Under the heading "combined" we have listed our expectations about the integrated use of the
three models after calibration. The judgement of each single model is before eventual calibrations.

 In this context, it should be noted that the Verilog model and the VHDL/PDL model have different
goals;

The high level model in Verilog: Behavioural simulation enabling system level performance
results to be obtained for different traffic patterns. The key performance goal being throughput.

The low level model in VHDL: Flexible detailed model allowing as near as possible the actual
design to be realised with the opportunity to study the effect of design changes on the
performance. The key performance goals being latency and cost. Currently latency being limited
to an unloaded system.

Throughput may be described as the number of messages that can be transported through the system pr.
time unit. It is a typical system level performance measure that assumes a loaded system i.e. a system
being stressed with (realistic) traffic patterns. Unloaded latency measures the time it takes to transport a
message from source to destination in an unloaded system i.e. a system serving only this message.

Remarks regarding the table:
(a) The latency for a message through one TRC is a typical example of a parameter that would benefit
from calibration using the results of the lower level model.

(b) An important feature of the PDL model and the generic router modules is that they are parametrised.
This implies the possibility of looping through various design alternatives for exploring (parts of) the
space of possible designs in search for an optimal solution. It should be noted that BSPlab also is made
for exploring the design space (of possible BSP computers), but this feature is not used in this work.

(c) The development time for and the size of BSPlab are greater than the others because it is a much
more general system that may be used for other purposes not described in this paper.

(d) Combining the simulation models does not increase complexity as integration is realised by trace files
and simple interfaces.

(e) TRCsim models message blocking, virtual channels and resource sharing down to the flit level, and is
therefore good at measuring system throughput. The trace files will make it possible to study the effect of
various traffic patterns on system throughput.

Model property BSPlab TRCsim PDL Combination
Abstraction level application & system

architecture
system architecture
and TRC
functional
behaviour

TRC architecture,
& design space (b)

application, system, TRC
architecture & design
space

Model language &
size (no of lines)

C++
(≈ 8000)

Verilog
(≈ 2000)

VHDL & PDL
(≈ 3000)

Those to the left plus perl
& shell-programming

Development time ≈ 10 man months (c) ≈ 3 man months ≈ 5 man months (i) ≈ additional 1 MM.

Model complexity medium/high medium medium/high medium (d)

HW-realisability unknown (poor?) medium very good good/medium (g)

Model scalability (h) very good good poor (h) good

Model execution fast fast fast fast

TRC latency,
unloaded system

medium (a) medium very good very good

TRC latency, loaded
system

medium (a)
(unknown)

medium currently
restricted, difficult

very good

TRC throughput in
loaded system

medium/good (f)
(unknown)

good (e) currently
restricted, difficult

good

Representative of
HW cost

poor medium/poor very good medium/good

(f) It is anticipated that BSPlab will provide realistic performance figures for a loaded system. However,
this part of BSPlab has not yet been evaluated.

(g) Although the PDL model is "very good" for realisability in hardware, the combined model is judged
as "good" since it aims at modelling a whole system of TRCs where other parts are not modelled at the
same HW-realisable level.

(h) With model scalability we mean the possibility of using the model for a range of computing systems
of different size in number of processors (and TRCs). The weakness of the PDL model here is due to
limitations in the PDL tools currently available.

(i) Asynchronous control particularly within the router has given rise to increased development time in
the PDL model. It is believed that a synchronous example would have reduced the development time. In
TRCsim the choice of synchronous or asynchronous control does not adversely effect the development
time.

References

 [Bis96] R. H. Bisseling, Basic Techniques for Numerical Linear Algebra on Bulk Synchronous
Parallel Architectures, Preprint 964, Department of Mathematics, Utrecht University, June
1996. To appear in Springer lecture Notes in Computer Science, Vol. 1196.

[BSP96] M. Goudreau, J.M.D. Hill, K. Lang, B. McColl, S.B. Rao, D.C Stefanescu, T. Suel and T.
Tsantilas, A Proposal for the BSP Worldwide Standard Library (preliminary version), July
1996. Available from "http://www.bsp-worldwide.org/"

[DS86] Dally, William J. and Seitz, Charles L., The torus routing chip, Distributed Computing
(1986) 1:187-196.

[DU97] Dybdahl, Haakon and Uthus, Ivan, Simulation of the BSP Model on Different Computer
Architectures, Diploma Thesis, Department of Computer and Information Systems (IDI),
Norwegian University of Science and Technology (NTNU),Trondheim, Norway. February
1997. Partly available from "http://www.idi.ntnu.no/bsplab".

[Had97a] Haddow, Pauline C. , A Generalisation of Router Chip Design, In proceedings of 5th
Euromicro Workshop on Parallel and Distributed Processing, London, January 1997.
Pages 307-313.

[Had97b] Haddow, Pauline, Modelling Communication in Message Passing, MIMD Computers
(preliminary title), Ph.D. thesis, IDI, NTNU. Work in progress.

[Hwa93] Hwang, Kai, Advanced Computer Architecture, Parallelism, Scalability,
Programmability. McGraw Hill, 1993

[McC95] McColl, William F., Bulk Synchronous Parallel Computing, In Abstract Machine Models
for Highly Parallel Computers, Editors J. R. Davy and P. M. Dew, Oxford Science
Publications, pages 41-63, 1995.

[Nat97] Lasse Natvig, High-level Architectural Simulation of the Torus Routing Chip , In
Proceedings of 6’th Int’l Verilog HDL conference (IVC’97) pages 48-55, april 1997, Santa
Clara, California.

[Pal96] Palnitkar, Samir, Verilog HDL: A Guide to Digital Design and Synthesis, SunSoft Press,
Sun Microsystems Inc. 1996.

[Rus95] A. Rushton. VHDL for Logic Synthesis: An Introductory Guide for Achieving Design
Requirements. McGraw Hill 1995.

[Smi95] Smith, Douglas J, VHDL & Verilog Compared & Contrasted - Plus Modelled Example
Written in VHDL, Verilog and C, from 33rd Design Automation Conference, 1995.

[VMM96] Ranga Vemuri, Ram Mandayam and Vijay Meduri, Performance Modeling Using PDL,
IEEE Computer april 1996, pages 44-53. See also
"http://www.ece.uc.edu/~ddel/pdl.html"

