
A brief note on FPTAS and strong NP-hardness

Magnus Lie Hetland

March 30, 2012

It can be shown formally that very few NP-hard problems admit an FPTAS,
relating the concept to the class of strongly NP-hard problems.1 An algorithm
is pseudopolynomial if its running time is polynomial when all numbers in the
problem instances are written in unary. A problem is strongly NP-hard problem
if every problem in NP can be reduced to it in polynomial time so that the
numbers in the reduced instances are written in unary. This means that all
numbers used must be bounded polynomially, and so the problem cannot have
a pseudopolynomial algorithm, unless P=NP. It turns out that most problems
commonly studied wrt. approximation algorithms are strongly NP-hard. Also,
with only some weak restrictions, a problem with an FPTAS has a pseudopoly-
nomial solution! In other words, unless P=NP, no strongly NP-hard problem
has an FPTAS.

The extra requirements are that (i) the objective function is integer-valued
on instances of the problem, and (ii) the optimum is polynomial as a function
of unary problem size (that is, the size of the instance where every number is
written in unary). In this case, if the problem has an FPTAS, it also has a
pseudopolynomial solution.

The argument is quite simple. Let’s say the optimum value C∗ is less than
p(nu), where p is some polynomial, and nu is the unary problem size. Let the
running time of the FPTAS be q(n, 1/ε), where q is some other polynomial. We
set ε = 1/p(nu). The result of the FPTAS will (assuming maximization) have
a value C less than or equal to

(1 + ε) · C∗ < C∗ + ε · p(nu) = C∗ + 1 .

In other words, the FPTAS has been forced to produce the optimum! The
running time is q(n, p(nu)), which is polynomial in nu, i.e., pseudopolynomial.
Furthermore, if C∗ < p(n), we have a polynomial algorithm. This, however, is
less applicable (that is, it holds for fewer problems).

1See also § 8.3 in Approximation Algorithms by V. Vazirani.

1


