
Proof methods and greedy algorithms

Magnus Lie Hetland
Lecture notes, May 5th 2008∗

1 Introduction

This lecture in some ways covers two separate topics: (1) how to prove al-
gorithms correct, in general, using induction; and (2) how to prove greedy
algorithms correct. Of course, a thorough understanding of induction is a
foundation for the more advanced proof techniques, so the two are related.
Note also that even though these techniques are presented more or less as “af-
ter the fact” methods of verification, knowing them well can be an important
part of coming up with promising algorithm ideas as well.

2 Induction in algorithm design

Summary of method Show that a property (such as correctness) holds for
a base case. Assume that the property holds for problems of a given size n− 1
(or all sizes < n), with n greater than the base case, and show that it follows
that the problem holds for size n. It then follows that the property holds for
all problem sizes greater than the base case.

Induction is assumed to be a known technique (from tdt), including its
application to proving properties such as correctness on iterative (using invari-
ants) and recursive algorithms. The paper by Manber [7] contains numerous
examples of this, as well as several pointers on how to use inductive thinking
to construct algorithms. The core of the technique is the idea that if you can
construct a solution to any subproblem from solutions to smaller subproblems,
then you can solve the problem itself.

Exercise Take any recursive algorithm you know and phrase its correctness
proof in terms of induction. Do the same for an iterative algorithm.

In the following, I cover only a single example, which combines induction with
the common proof technique of proof by contradiction. This is the technique
of proof by maximal counterexample, in this case applied to perfect matchings
in very dense graphs.

We want to show that a parameter P can reach a value n. The general idea
is as follows:

∗These lecture notes for tdt Algorithm Construction, Advanced Course, are based
on the material listed in the bibliography [1–7]. Of this, the chapter in Introduction to
Algorithms [1] and the paper by Manber [7] are in the curriculum, in addition to the lecture
notes themselves.
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1. Prove that P can reach a small value (the base case).

2. Assume that P cannot reach n, and we consider the maximal value k < n
that it can reach.

3. Present a contradiction, usually to the maximality assumption.

A matching in an undirected graph G = (V,E) is a set of edges that have
no nodes in common. A maximal matching is one that cannot be extended,
and a maximum matching is one of maximum cardinality. A matching with n
edges in a graph with 2n nodes is called perfect.

Consider the case in which there are 2n nodes in the graph and all of
them have degrees of at least n. We want to show that in this case a perfect
matching always exists. If n = 1 the graph consists of a single edge, and the
perfect matching is evident.

Assume that n > 1 and that a perfect matching does not exist. Consider
a maximum matching M ⊂ E. We know that |M | < n by assumption, and
clearly |M | ≥ 1, because any single edge qualifies as a matching. Because M is
not perfect, there must be at least two nonadjacent nodes v1 and v2 that are
not included in M . These two nodes have at least 2n distinct edges coming out
of them, and all of these lead to nodes in M (because otherwise the edge could
be added to M). Because the number of edges in M is less than n and there
are 2n edges from v1 and v2 adjacent to them, at least one edge (u1, u2) from
M is adjacent to three edges from v1 and v2, for example, (u1, v2), (u1, v2),
and (u2, v1). By removing (u1, u2) and adding (u1, v2) and (u2, v1) we get a
larger matching, which contradicts the assumption of maximality.

Exercise How can this proof be turned into an algorithm for constructing
perfect matchings for graphs of this kind? (Manber [7] describes a solution,
and the idea applies to other similar proofs as well.)

3 An overview of greedy algorithms

Informally, a greedy algorithm is an algorithm that makes locally optimal deci-
sions, without regard for the global optimum. An important part of designing
greedy algorithms is proving that these greedy choices actually lead to a glob-
ally optimal solution.

One common way of formally describing greedy algorithms is in terms op-
timization problems over so-called weighted set systems [5]. A set system is a
pair (E,F), where U is a nonempty finite set and F ⊆ 2E is a family of subsets
of E. A weighted set system is a set system with an associated weight (or cost)
function c : F → R. The optimization problem is then to find an element of
F whose cost is minimum or maximum. In the interest of simplicity, we will
assume that c is a modular function; that is, c(X) =

∑
e∈X c(e).

The set of maximal elements of F (the bases of the set system), that is, the
elements that are not subsets of any other elements of F , is denoted by B.

Here are some examples of problems that can be formulated in this way:

Shortest Path Given a digraph G = (E, V ), c : E → R and s, t ∈ V such
that t is reachable from s, find a shortest s-t-path in G with respect to
c. Here F = {F ⊆ E : F is a subset of an s-t-path}.
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TSP Given a complete undirected graph G = (E, V ) and weights c : E → R+,
find a minimum weight Hamiltonian circuit in G. Here F = {F ⊆ E :
F is a subset of a Hamiltonian circuit in G}

MST Given a connected undirected graph G = (E, V ) and weights c : E → R,
find a minimum weight spanning tree in G. Here F is the set of forests
in G and B is the set of spanning trees.

In the following, it may be helpful to keep the minimum spanning tree
problem in mind as a “prototypical” problem.

Exercise How would you formalize the following problems as optimization
problems with modular weight functions over weighted set systems? The knap-
sack problem; finding a forest of maximum weight; the minimum Steiner tree
problem; finding a perfect bipartite matching; finding a maximum weight bi-
partite matching; finding a maximum weight matching.

Another useful property of these problems is that their set systems are closed
under containment. That is, ∅ ⊆ F , and if X ⊆ Y ∈ F then X ∈ F . We call a
set system with this property an independence system. The elements of F are
called independent, while the elements in 2E \ F are dependent.

Given such a formulation of our problems, the greedy approach (or, sim-
ply, the greedy algorithm) can be characterized as follows (for maximization
problems).

Best-In Greedy Algorithm Here we wish to find a set F ∈ F of maximum
weight.

1. Sort E so that c(e1) ≥ . . . ≥ c(en).

2. F ← ∅.

3. For i = 1 to n: If F ∪ {ei} ∈ F , then F ← F ∪ {ei}

It may be useful to compare (and contrast) this with, for example, Kruskal’s
algorithm for finding minimum spanning trees.

Worst-Out Greedy Algorithm Here we wish to find a basis F of (E,F)
of maximum weight.

1. Sort E so that c(e1) ≤ . . . ≤ c(en).

2. F ← E.

3. For i = 1 to n: If F \ {ei} contains a basis, then F ← F \ {ei}.

Tip At this point it may be useful to have a look at the discussion of Cormen
et al. [1, pp. 379–382] on the topic of the greedy-choice property and optimal
substructure in greedy algorithms, as well as other relevant parts of the tdt
curriculum, which is assumed to be known.
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4 Two basic greedy correctness proof methods

The material in this section is mainly based on the chapter from Algorithm
Design [4].

4.1 Staying ahead

Summary of method If one measures the greedy algorithm’s progress in a
step-by-step fashioin, one sees that it does better than any other algorithm at
each step; it then follows that it produces an optimal solution.

To illustrate this method in more detail, let’s consider the problem of interval
sceduling. We have a set of n intervals, where the ith interval has a starting time
s(i) and an ending time f(i). We say that a subset of intervals is compatible
if no two of them overlap in time, and we wish to find as large a compatible
subset as possible. (These sets are, in other words, optimal.)

Exercise Can you find more than one way of describing the problem structure
as a weighted independence system? How does your formulation affect the
resulting greedy algorithm? Can you create one formulation where the greedy
algorithm is optimal and one where it is not? Also see the following description
of a greedy solution. How can it be rephrased in terms of the previous, generic
greedy algorithms (best-in and worst-out)?

An optimal, greedy solution for this problem can be formalized as follows:

1. Let I be the set of intervals and let A = ∅.

2. Choose an interval i ∈ I that has the smallest finishing time.

3. Add interval i to A.

4. Delete all intervals from I that are not compatible with i.

5. If R is not empty, go to step 2.

It should be obvious that the returned set is a legal solution (that is, all the
returned intervals are compatible). We now need to show that A will, indeed,
be optimal when this algorithm terminates, and we will do that by showing
that the greedy algorithm stays ahead.

Let O be an optimal set of intervals. We can’t necessarily show that A = O
(as there may be more than one optimal set). Instead, we wish to show that
|A| = |O| (that is, our solution is as good as any optimal solution). To show
that our algorithm stays ahead, we will compare our partial solution at each
step with a corresponding initial segment of the solution O, and show that our
solution is doing better (or, at least, not worse).

Let i1, . . . , ik be the set of intervals in the order they were added to A. Note
that |A| = k. Similarly, let the elements of O be j1, . . . , jm. We wish to prove
that k = m. Assume that the elements of O are in sorted order according to
their starting and ending times.1

1Because the elements are compatible, the starting times have the same order as the
finishing times.
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Formulating this in terms of staying ahead, we wish to prove that for all
indices r ≤ k we have f(ir) ≤ f(jr). We prove this by induction. The base case,
for r = 1, is clearly correct: The greedy algorithm selects the interval i1 with
minimum finishing time. Now let r > 1 and assume, as induction hypothesis,
that the statement is true for r − 1. In other words, f(ir−1) ≤ f(jr−1). The
question then becomes: Is it possible for the greedy algorithm to “fall behind”
at this step? Is it possible that f(ir) > f(jr)? The answer is clearly no, as the
greedy algorithm could always have chosen jr (which is compatible with jr−1

and therefore must also be compatible with ir−1, which finishes no later).
We now need to show that this staying ahead indeed implies optimality, and

we show this by contradiction. If A is not optimal, then an optimal set O must
have more intervals, that is, m > k. For r = k we know that f(ik) ≤ f(jk).
Since m > k there is a interval jk+1 in O. This starts after jk ends (as all the
intervals in O are compatible), and therefore after ik ends. So after deleting
all the intervals that are not compatible with i1, . . . , ik, R still contains jk+1.
But the greedy algorithm stops with request ik, and it is only supposed to stop
when R is empty. In other words, we have a contradiction.

Exercise Apply the idea of staying ahead to greedy algorithms you already
know, such as Prim’s or Dijkstra’s algorithm.

4.2 Exchange arguments

Summary of method Consider any possible solution to the problem and
gradually transform it into the solution found by the greedy algorithm without
hurting its quality. It follows that the greedy algorithm must have found a
solution that is at least as good as any other solution.

Let’s consider a more flexible version of the interval scheduling problem: In-
stead of a set of intervals with fixed starting and ending times, we have a set of
requests, each of which has a deadline di and a required length ti. As before,
we disallow overlapping intervals in our solution. Assume that we wish to ac-
comodate all requests, but we are allowed to let some requests run late (that
is, we are allowed to place their finish times later than their deadlines). Each
interval i is still [s(i), f(i)], this time with f(i) = s(i) + ti.

A request i is late if f(i) > di, and we define its lateness as li = f(i)− di.
If request i is not late, we say that li = 0. Our goal is not wo schedule all
the requests as non-overlapping intervals so that we minimize the maximum
lateness, L = maxi li.

Exercise How does this problem compare to the generic independence system
problems? Can you find a way of formulating the problem such that the generic
greedy algorithm gives the right answer? How about formulating it so that you
get a wrong answer?

An optimal, greedy solution for this problem (often called earliest deadline
first) can be formalized as follows:

1. Sort the jobs so that d1 ≤ . . . ≤ dn and let f = s (the start time).
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2. For i = 1 to n: Let [s(i), f(i)] = [f, f + ti]; f ← f + ti.

Considering that this algorithm ignores interval length completely in its
scheduling, it may be hard to believe that it is optimal—but it is, and we
will show it using an exchange argument. The general plan for the proof is as
follows: Assume an optimal solution O and gradually modify it, preserving its
optimality at each step, until you have a solution identical to the solution A
found by the greedy algorithm.

As a first step, observe that there are no gaps, or “idle time,” in our sched-
ule. (It should be obvious that there exists an optimal solution with no idle
time.) Also, the greedy solution (per definition) has no “inversions,” that is,
jobs scheduled before other jobs with earlier deadlines. We can show that all
schedules without inversions and idle time have the same maximum lateness:
Two different schedules without inversions and idle time can only differ in the
order in which jobs with identical deadlines are scheduled (and these must be
scheduled consecutively). Among these, maximum lateness depends only on
the last one, and this lateness does not depend on the order of the jobs.

What we seek to prove, then, is that there is an optimal solution without
inversions and idle time (or, simply, one without inversions), as such a solution
would be equivalent to the greedy one.

The proof has three parts:

1. If O has an inversion, then there is pair of jobs i and j such that j is
scheduled immediately after i and dj < di.

2. After swapping i and j we get a schedule with one less inversion.

3. The new swapped schedule has a maximum lateness no larger than that
of O.

The first point should be obvious: Between any two inverted jobs there
must be one point at which the deadline we see decreases for the first time.
This point corresponds to the pair i and j. As for the second point, swapping
i and j clearly removes one inversion (that of i and j) and no new inversion is
created. The hardest part is showing that this swapping will not increase the
maximum lateness (the third part).

Clearly, swapping i and j (so j now comes first) can only potentially increase
the lateness of i. No other job (including j) is “at risk.” In the new schedule, i
finishes where j finished before, and thus its new lateness (if it is late at all) is
f(j)− di. Note that because of the assumption di > dj , f(j)− di < f(j)− dj ,
which means that i cannot be more late than j was originally. Therefore, the
maximum latenes cannot have been increased, and the third part of our proof
is complete.

It should be clear that these three parts together show that the schedule
produced by the greedy algorithm has optimum lateness.

Exercise See if you can apply the idea of exchange arguments to greedy
algorithms you already know.
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5 Three advanced proof methods

A discussion of matroids can be found in An Introduction to Algorithms [1].
Greedoids are dealt with by, for example, Jungnickel [3] and Korte and Vygen
[5] (and even more in-depth by Korte et al. [6]). The concept of matroid em-
beddings was introduced by Helman et al. [2]. Note that even though matroids
and greedoids are fairly managable concepts, the related concept of matroid
embeddings are rather complex, and a full treatment is far beyond the scope
of this lecture.2

The following three sections briefly describe three characterizations of fami-
lies of problems that can be optimally solved using greedy algorithms (with ma-
troid embeddings exactly characterizing all such problems). The proof method
then simply becomes showing that a given problem is, for example, a matroid
or a greedoid.

5.1 Matroids

An independence system (E,F) is a matroid if it satisfies the so-called exchange
property : If X, Y ∈ F and |X| > |Y |, then there is an x ∈ X \ Y with
Y ∪ {x} ∈ F .

Matroid lemma The greedy algorithm will yield an optimal solution on a
weighted matroid [for proof, see 1].

Let’s take a look at minimum spanning trees as an example. We clearly have an
independence system with a modular cost function: For a graph G = (V,E),
the independent in F are the subsets of E that do not contain cycles, and
the cost of any such forest is the sum of the edge weights. To show that this
independence system also satisfies the exchange property, let X, Y ∈ F and
suppose Y ∪ {x} 6∈ F for all x ∈ X \ Y . We now want to show that |X| ≤ |Y |.

For each edge x = (u, v) ∈ X, u and v are in the same connected component
of (V, Y ), per our assumption. Therefore, for each connected component of
(V,X) the nodes will form a subset of a connected component of (V, Y ). So
the number p of connected components of the forest (V,X) is greater than or
equal to the number q of connected components of the forest (V, Y ). But then
|V | − |X| = p ≥ q = |V | − |Y |, implying |X| ≤ |Y |.

Tip For a more in-depth example of showing that a problem is a matroid,
see Sect. 16.5 of An Introduction to Algorithms [1].

5.2 Greedoids

A greedoid is a set system, but it is not an independence system. Simply put,
a greedoid is a matroid that is not necessarily closed under containment (that
is, they are not necessarily subclusive). In other words: A greedoid is a set
system (E,F), with ∅ ∈ F , which satisfies the exchange property.

2Korte and Vygen [5] also discuss another matroid generalization, namely polymatroids.
They are not covered here.
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Note It is interesting to note that instead of subclusiveness, we now have a
property called accessibility. A set system is accessible if ∅ ∈ F and for any
X ∈ F \ {∅} there exists an x ∈ X with X \ {x} ∈ F . All greedoids are
accessible (this follows directly from their definition).

One interesting example of greedoids that are not matroids are undirected
branchings. If G = (V,E) is a graph and r ∈ V is a specified root, and F is
the family of edge-sets of subtrees of G containing r, then (E,F) is a greedoid.
This is exactly the situation we have with Prim’s algorithm (and this is why
matroids can not be used to prove its correctness): We do not wish to include
arbitrary subforests of G in F , as we require our solutions to be “growable”
from r.

To show that this is a greedoid, we need to show that the exchange property
is satisfied: If X, Y ∈ F and |X| > |Y |, then there is an x ∈ X \ Y with
Y ∪ {x} ∈ F . This is indeed satisfied, because there must be a node covered
by X that is not covered by Y , and that is reachable from Y by the edge x.

Assume that you have a greedoid (E,F) and a (not necessarily modular)
function c : 2E → R, given by an oracle which for any given X ⊆ E says
whether X ∈ F and returns c(X). The following is the greedy algorithm
for greedoids:

1. Let F = ∅.

2. Let e ∈ E \ F such that F ∪ {e} ∈ F and c(F ∪ {e}) is maximum; if no
such e exists then stop.

3. F ← F ∪ {e}; go to step 2.

Note that even for modular cost functions, this algorithm does not always
provide an optimal solution. In fact, optimizing modular cost functions (let
alone more complex functions) over general greedoids is NP-hard.3

Greedoid lemma The greedy algorithm for greedoids finds a set F ∈ F of
maximum weight for each modular weight function c : 2E → R+ if and only
if (E,F) has the so-called strong exchange property : For all A ∈ F , B ∈ B,
A ⊆ B and x ∈ E \ B with A ∪ {x} ∈ F there exists a y ∈ B \ A such that
A ∪ {y} ∈ F and B \ {y} ∪ {x} ∈ F [for proof, see 5].

The strong exchange property can be rephrased as follows: B is a base for
the set system (that is, it is not a subset of any other element of F) and A
is a subset of B. The element x is outside B and we can legally add x to A,
“branching away from” B. We then require that we can exchange an element
y in B (outside A) with x. That is, we are allowed to add y to A, and if we
remove y from B, we can subsequently add x to it.

As an example, consider again the case of undirected branchings, in this case
with an associated modular cost function (that is, an edge weight function). For
this problem, the greedy algorithm for greedoids is simply Prim’s algorithm.
To show its correctness, we must show that the strong exchange property holds.

3On the other hand, there are interesting functions that can be maximized over arbitrary
greedoids.
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B is the set of spanning trees and F is the set of partial spanning trees grown
from r.

So, we start out with an arbitrary partial spanning tree A and a full span-
ning tree B containing A. Now, assume that that A can be grown outside B
by adding an edge x. We then have to show that it can also be grown inside
B by adding another edge y, and that if we exchange y with x in B, it is still
a spanning tree. This is not really all that hard to show: If A can be grown
outside B by adding x, then adding x to B will give us a cycle. As x may be
legally added to A, there must be at least one other branch y in this cycle that
is not part of A. By exchanging y for x in B, we still have a spanning tree,
which means that we have the strong exchange property in place.

5.3 Matroid embeddings

Even more general than matroids and greedoids is the concept of matroid
embeddings. Its definition is quite a bit more involved than that of a greedoid.4

Helman et al. [2] showed that the following three statements are equivalent:

1. For every possible weighted linear objective function, (E,F) has an op-
timal basis.

2. (E,F) is a matroid embedding.

3. For every linear objective function, the greedy bases of (E,F) are exactly
its optimal bases.

Simply put: There exists an explicit, exact characterization of greedy struc-
tures (but it is quite complex, and the details go way beyond the scope of this
lecture).
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