
AIMMS Modeling Guide - Integer Programming Tricks

This file contains only one chapter of the book. For a free download of the
complete book in pdf format, please visit www.aimms.com or order your hard-
copy at www.lulu.com/aimms.

Aimms 3.12

http://www.aimms.com
http://www.lulu.com/aimms


Copyright c© 1993–2011 by Paragon Decision Technology B.V. All rights reserved.

Paragon Decision Technology B.V.
Schipholweg 1
2034 LS Haarlem
The Netherlands
Tel.: +31 23 5511512
Fax: +31 23 5511517

Paragon Decision Technology Inc.
500 108th Avenue NE
Ste. # 1085
Bellevue, WA 98004
USA
Tel.: +1 425 458 4024
Fax: +1 425 458 4025

Paragon Decision Technology Pte.
Ltd.
80 Raffles Place
UOB Plaza 1, Level 36-01
Singapore 048624
Tel.: +65 9640 4182

Email: info@aimms.com
WWW: www.aimms.com

Aimms is a registered trademark of Paragon Decision Technology B.V. IBM ILOG CPLEX and sc CPLEX is
a registered trademark of IBM Corporation. GUROBI is a registered trademark of Gurobi Optimization,
Inc. KNITRO is a registered trademark of Ziena Optimization, Inc. XPRESS-MP is a registered trademark
of FICO Fair Isaac Corporation. Mosek is a registered trademark of Mosek ApS. Windows and Excel are
registered trademarks of Microsoft Corporation. TEX, LATEX, and AMS-LATEX are trademarks of the American
Mathematical Society. Lucida is a registered trademark of Bigelow & Holmes Inc. Acrobat is a registered
trademark of Adobe Systems Inc. Other brands and their products are trademarks of their respective
holders.

Information in this document is subject to change without notice and does not represent a commitment on
the part of Paragon Decision Technology B.V. The software described in this document is furnished under
a license agreement and may only be used and copied in accordance with the terms of the agreement. The
documentation may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to
any electronic medium or machine-readable form without prior consent, in writing, from Paragon Decision
Technology B.V.

Paragon Decision Technology B.V. makes no representation or warranty with respect to the adequacy
of this documentation or the programs which it describes for any particular purpose or with respect
to its adequacy to produce any particular result. In no event shall Paragon Decision Technology B.V.,
its employees, its contractors or the authors of this documentation be liable for special, direct, indirect
or consequential damages, losses, costs, charges, claims, demands, or claims for lost profits, fees or
expenses of any nature or kind.

In addition to the foregoing, users should recognize that all complex software systems and their doc-
umentation contain errors and omissions. The authors, Paragon Decision Technology B.V. and its em-
ployees, and its contractors shall not be responsible under any circumstances for providing information
or corrections to errors and omissions discovered at any time in this book or the software it describes,
whether or not they are aware of the errors or omissions. The authors, Paragon Decision Technology
B.V. and its employees, and its contractors do not recommend the use of the software described in this
book for applications in which errors or omissions could threaten life, injury or significant loss.

This documentation was typeset by Paragon Decision Technology B.V. using LATEX and the Lucida font
family.

http://www.aimms.com


Chapter 7

Integer Linear Programming Tricks

This chapterAs in the previous chapter “Linear Programming Tricks”, the emphasis is on
abstract mathematical modeling techniques but this time the focus is on inte-
ger programming tricks. These are not discussed in any particular reference,
but are scattered throughout the literature. Several tricks can be found in
[Wi90]. Other tricks are referenced directly.

Limitation to
linear integer
programs

Only linear integer programming models are considered because of the avail-
ability of computer codes for this class of problems. It is interesting to note
that several practical problems can be transformed into linear integer pro-
grams. For example, integer variables can be introduced so that a nonlinear
function can be approximated by a “piecewise linear” function. This and other
examples are explained in this chapter.

7.1 A variable taking discontinuous values

A jump in the
bound

This section considers an example of a simple situation that cannot be formu-
lated as a linear programming model. The value of a variable must be either
zero or between particular positive bounds (see Figure 7.1). In algebraic nota-
tion:

x = 0 or l ≤ x ≤ u
This can be interpreted as two constraints that cannot both hold simultane-
ously. In linear programming only simultaneous constraints can be modeled.

0 l u
x

Figure 7.1: A discontinuous variable

ApplicationsThis situation occurs when a supplier of some item requires that if an item
is ordered, then its batch size must be between a particular minimum and
maximum value. Another possibility is that there is a set-up cost associated
with the manufacture of an item.



Chapter 7. Integer Linear Programming Tricks 76

Modeling dis-
continuous
variables

To model discontinuous variables, it is helpful to introduce the concept of an
indicator variable. An indicator variable is a binary variable (0 or 1) that indi-
cates a certain state in a model. In the above example, the indicator variable y
is linked to x in the following way:

y =
⎧⎨
⎩

0 for x = 0

1 for l ≤ x ≤ u

The following set of constraints is used to create the desired properties:

x ≤ uy
x ≥ ly
y binary

It is clear that y = 0 implies x = 0, and that y = 1 implies l ≤ x ≤ u.

7.2 Fixed costs

The modelA fixed cost problem is another application where indicator variables are added
so that two mutually exclusive situations can be modeled. An example is
provided using a single-variable. Consider the following linear programming
model (the sign “≷” denotes either “≤”, “=”, or “≥” constraints).

Minimize: C(x)

Subject to:
aix +

∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≥ 0

wj ≥ 0 ∀j ∈ J

Where: C(x) =
⎧⎨
⎩

0 for x = 0

k+ cx for x > 0

As soon as x has a positive value, a fixed cost is incurred. This cost function
is not linear and is not continuous. There is a jump at x = 0, as illustrated in
Figure 7.2.

ApplicationIn the above formulation, the discontinuous function is the objective, but such
a function might equally well occur in a constraint. An example of such a
fixed-cost problem occurs in the manufacturing industry when set-up costs
are charged for new machinery.



Chapter 7. Integer Linear Programming Tricks 77

C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed
costs

A sufficiently large upper bound, u, must be specified for x. An indicator
variable, y , is also introduced in a similar fashion:

y =
⎧⎨
⎩

0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original
cost function, except for the case when x > 0 and y = 0. Therefore, one
constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent
mixed integer
program

Now the model can be stated as a mixed integer programming model. The
formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx
Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≤ uy
x ≥ 0

wj ≥ 0 ∀j ∈ J
y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J
cjxj



Chapter 7. Integer Linear Programming Tricks 78

Subject to: ∑

j∈J
a1jxj ≤ b1 (1)

∑

j∈J
a2jxj ≤ b2 (2)

xj ≥ 0 ∀j ∈ J

Where: at least one of the conditions (1) or (2) must hold

The condition that at least one of the constraints must hold cannot be for-
mulated in a linear programming model, because in a linear program all con-
straints must hold. Again, a binary variable can be used to express the prob-
lem. An example of such a situation is a manufacturing process, where two
modes of operation are possible.

Modeling
either-or
constraints

Consider a binary variable y , and sufficiently large upper bounds M1 and M2,
which are upper bounds on the activity of the constraints. The bounds are
chosen such that they are as tight as possible, while still guaranteeing that the
left-hand side of constraint i is always smaller than bi +Mi. The constraints
can be rewritten as follows:

(1)
∑

j∈J
a1jxj ≤ b1 +M1y

(2)
∑

j∈J
a2jxj ≤ b2 +M2(1−y)

When y = 0, constraint (1) is imposed, and constraint (2) is weakened to∑
j∈J a2jxj ≤ b2+M2, which will always be non-binding. Constraint (2) may of

course still be satisfied. When y = 1, the situation is reversed. So in all cases
one of the constraints is imposed, and the other constraint may also hold. The
problem then becomes:

The equivalent
mixed integer
program

Minimize:
∑

j∈J
cjxj

Subject to: ∑

j∈J
a1jxj ≤ b1 +M1y

∑

j∈J
a2jxj ≤ b2 +M2(1−y)

xj ≥ 0 ∀j ∈ J
y binary



Chapter 7. Integer Linear Programming Tricks 79

7.4 Conditional constraints

The modelA problem that can be treated in a similar way to either-or constraints is one
that contains conditional constraints. The mathematical presentation is lim-
ited to a case, involving two constraints, on which the following condition is
imposed.

If (1) (
∑

j∈J
a1jxj ≤ b1) is satisfied,

then (2) (
∑

j∈J
a2jxj ≤ b2) must also be satisfied.

Logical
equivalence

Let A denote the statement that the logical expression “Constraint (1) holds”
is true, and similarly, let B denote the statement that the logical expression
“Constraint (2) holds” is true. The notation ¬A and ¬B represent the case
of the corresponding logical expressions being false. The above conditional
constraint can be restated as: A implies B. This is logically equivalent to writing
(A and ¬B) is false. Using the negation of this expression, it follows that ¬(A
and ¬B) is true. This is equivalent to (¬A or B) is true, using Boolean algebra.
It is this last equivalence that allows one to translate the above conditional
constraint into an either-or constraint.

Modeling
conditional
constraints

One can observe that

If (
∑

j∈J
a1jxj ≤ b1) holds, then (

∑

j∈J
a2jxj ≤ b2) must hold,

is equivalent to

(
∑

j∈J
a1jxj > b1) or (

∑

j∈J
a2jxj ≤ b2) must hold.

Notice that the sign in (1) is reversed. A difficulty to overcome is that the strict
inequality “not (1)” needs to be modeled as an inequality. This can be achieved
by specifying a small tolerance value beyond which the constraint is regarded
as broken, and rewriting the constraint to:

∑

j∈J
a1jxj ≥ b1 + ε

This results in:
∑

j∈J
a1jxj ≥ b1 + ε, or

∑

j∈J
a2jxj ≤ b2 must hold.

This last expression strongly resembles the either-or constraints in the pre-
vious section. This can be modeled in a similar way by introducing a binary



Chapter 7. Integer Linear Programming Tricks 80

variable y , a sufficiently large upper bound M on (2), and a sufficiently lower
bound L on (1). The constraints can be rewritten to get:

∑

j∈J
a1jxj ≥ b1 + ε− Ly

∑

j∈J
a2jxj ≤ b2 +M(1−y)

You can verify that these constraints satisfy the original conditional expression
correctly, by applying reasoning similar to that in Section 7.3.

7.5 Special Ordered Sets

This sectionThere are particular types of restrictions in integer programming formulations
that are quite common, and that can be treated in an efficient manner by
solvers. Two of them are treated in this section, and are referred to as Spe-
cial Ordered Sets (SOS) of type 1 and 2. These concepts are due to Beale and
Tomlin ([Be69]).

SOS1
constraints

A common restriction is that out of a set of yes-no decisions, at most one
decision variable can be yes. You can model this as follows. Let yi denote
zero-one variables, then ∑

i
yi ≤ 1

forms an example of a SOS1 constraint. More generally, when considering
variables 0 ≤ xi ≤ ui, then the constraint

∑

i
aixi ≤ b

can also become a SOS1 constraint by adding the requirement that at most
one of the xi can be nonzero. In Aimms there is a constraint attribute named
Property in which you can indicate whether this constraint is a SOS1 constraint.
Note that in the general case, the variables are no longer restricted to be zero-
one variables.

SOS1 and
performance

A general SOS1 constraint can be classified as a logical constraint and as such it
can always be translated into a formulation with binary variables. Under these
conditions the underlying branch and bound process will follow the standard
binary tree search, in which the number of nodes is an exponential function
of the number of binary variables. Alternatively, if the solver recognizes it as
a SOS1 constraint, then the number of nodes to be searched can be reduced.
However, you are advised to only use SOS sets if there exists an natural order
relationship among the variables in the set. If your model contains multiple
SOS sets, you could consider specifying priorities for some of these SOS sets.



Chapter 7. Integer Linear Programming Tricks 81

SOS1 branchingTo illustrate how the SOS order information is used to create new nodes during
the branch and bound process, consider a model in which a decision has to
be made about the size of a warehouse. The size of the warehouse should
be either 10000, 20000, 40000, or 50000 square feet. To model this, four
binary variables x1, x2, x3 and x4 are introduced that together make up a
SOS1 set. The order among these variables is naturally specified through the
sizes. During the branch and bound process, the split point in the SOS1 set
is determined by the weighted average of the solution of the relaxed problem.
For example, if the solution of the relaxed problem is given by x1 = 0.1 and
x4 = 0.9, then the corresponding weighted average is 0.1·10000+0.9·50000 =
46000. This computation results in the SOS set being split up between variable
x3 and x4. The corresponding new nodes in the search tree are specified by
(1) the nonzero element is the set {x1, x2, x3} (i.e. x4 = 0) and (2) x4 = 1 (and
x1 = x2 = x3 = 0).

SOS2
constraints

Another common restriction, is that out of a set of nonnegative variables, at
most two variables can be nonzero. In addition, the two variables must be
adjacent to each other in a fixed order list. This class of constraint is referred
to as a type SOS2 in Aimms. A typical application occurs when a non-linear
function is approximated by a piecewise linear function. Such an example is
given in the next section.

7.6 Piecewise linear formulations

The modelConsider the following model with a separable objective function:

Minimize:
∑

j∈J
fj(xj)

Subject to: ∑

j∈J
aijxj ≷ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

Separable
function

In the above general model statement, the objective is a separable function,
which is defined as the sum of functions of scalar variables. Such a func-
tion has the advantage that nonlinear terms can be approximated by piecewise
linear ones. Using this technique, it may be possible to generate an integer pro-
gramming model, or sometimes even a linear programming model (see [Wi90]).
This possibility also exists when a constraint is separable.

Examples of
separable
functions

Some examples of separable functions are:

x2
1 + 1/x2 − 2x3 = f1(x1)+ f2(x2)+ f3(x3)

x2
1 + 5x1 − x2 = g1(x1)+ g2(x2)



Chapter 7. Integer Linear Programming Tricks 82

The following examples are not:

x1x2 + 3x2 + x2
2 = f1(x1, x2)+ f2(x2)

1/(x1 + x2)+ x3 = g1(x1, x2)+ g2(x3)

Approximation
of a nonlinear
function

Consider a simple example with only one nonlinear term to be approximated,
namely f(x) = 1

2x
2. Figure 7.3, shows the curve divided into three pieces that

are approximated by straight lines. This approximation is known as piecewise
linear. The points where the slope of the piecewise linear function changes (or
its domain ends) are referred to as breakpoints. This approximation can be ex-
pressed mathematically in several ways. A method known as the λ-formulation
is described below.

x

f̃ (x)

0
x1

1
x2

2
x3

4
x4

1
2

2

8

Figure 7.3: Piecewise linear approximation of f(x) = 1
2x

2

Weighted sumsLet x1, x2, x3 and x4 denote the four breakpoints along the x-axis in Figure 7.3,
and let f(x1), f (x2), f (x3) and f(x4) denote the corresponding function val-
ues. The breakpoints are 0, 1, 2 and 4, and the corresponding function values
are 0, 1

2 , 2 and 8. Any point in between two breakpoints is a weighted sum of
these two breakpoints. For instance, x = 3 = 1

2 · 2+ 1
2 · 4. The corresponding

approximated function value f̃ (3) = 5 = 1
2 · 2+ 1

2 · 8.

λ-FormulationLet λ1, λ2, λ3, λ4 denote four nonnegative weights such that their sum is 1.
Then the piecewise linear approximation of f(x) in Figure 7.3 can be written
as:

λ1f(x1)+ λ2f(x2)+ λ3f(x3)+ λ4f(x4) = f̃ (x)
λ1x1 + λ2x2 + λ3x3 + λ4x4 = x

λ1 + λ2 + λ3 + λ4 = 1

with the added requirement that at most two adjacent λ’s are greater than
zero. This requirement together with the last constraint form the SOS2 con-



Chapter 7. Integer Linear Programming Tricks 83

straint referred to at the end of the previous section. The SOS2 constraints for
all separable functions in the objective function together guarantee that the
points (x, f̃ (x)) always lie on the approximating line segments.

Adjacency
requirements
sometimes
redundant

The added requirement that at most two adjacent λ’s are greater than zero
can be modeled using additional binary variables. This places any model with
SOS2 constraints in the realm of integer (binary) programming. For this reason,
it is worthwhile to investigate when the added adjacency requirements are
redundant. Redundancy is implied by the following conditions.

1. The objective is to minimize a separable function in which all terms
fj(xj) are convex functions.

2. The objective is to maximize a separable function in which all terms
fj(xj) are concave functions.

Convexity and
concavity

A function is convex when the successive slopes of the piecewise linear approx-
imation are nondecreasing, and concave if these slopes are non-increasing. A
concave cost curve can represent an activity with economies of scale. The unit
costs decrease as the number of units increases. An example is where quantity
discounts are obtained.

The case of a
non-convex
function

The adjacency requirements are no longer redundant when the function to be
approximated is non-convex. In this case, these adjacency requirements must
be formulated explicitly in mathematical terms.

SOS2 in AimmsIn Aimms you do not need to formulate the adjacency requirements explicitly.
Instead you need to specify sos2 in the property attribute of the constraint in
which the λ’s are summed to 1. In this case, the solver in Aimms guarantees
that there will be at most two adjacent nonzero λ’s in the optimal solution.
If the underlying minimization model is convex, then the linear programming
solution will satisfy the adjacency requirements. If the model is not convex,
the solver will continue with a mixed integer programming run.

7.7 Elimination of products of variables

This sectionThis section explains a method for linearizing constraints and objective func-
tions in which the products of variables are incorporated. There are numerous
applications that give rise to nonlinear constraints and the use of integer vari-
ables. These problems become very difficult, if not impossible, to solve.



Chapter 7. Integer Linear Programming Tricks 84

Replacing
product term

In general, a product of two variables can be replaced by one new variable, on
which a number of constraints is imposed. The extension to products of more
than two variables is straightforward. Three cases are distinguished. In the
third case, a separable function results (instead of a linear one) that can then
be approximated by using the methods described in the previous section.

Two binary
variables

Firstly, consider the binary variables x1 and x2. Their product, x1x2, can be
replaced by an additional binary variable y . The following constraints force y
to take the value of x1x2:

y ≤ x1

y ≤ x2

y ≥ x1 + x2 − 1

y binary

One binary and
one continuous
variable

Secondly, let x1 be a binary variable, and x2 be a continuous variable for which
0 ≤ x2 ≤ u holds. Now a continuous variable, y , is introduced to replace the
product y = x1x2. The following constraints must be added to force y to take
the value of x1x2:

y ≤ ux1

y ≤ x2

y ≥ x2 −u(1− x1)

y ≥ 0

The validity of these constraints can be checked by examining Table 7.1 in
which all possible situations are listed.

x1 x2 x1x2 constraints imply

0 w : 0 ≤ w ≤ u 0 y ≤ 0 y = 0
y ≤ w

y ≥ w −u
y ≥ 0

1 w : 0 ≤ w ≤ u w y ≤ u y = w
y ≤ w
y ≥ w
y ≥ 0

Table 7.1: All possible products y = x1x2



Chapter 7. Integer Linear Programming Tricks 85

Two continuous
variables

Thirdly, the product of two continuous variables can be converted into a sep-
arable form. Suppose the product x1x2 must be transformed. First, two (con-
tinuous) variables y1 and y2 are introduced. These are defined as:

y1 = 1
2
(x1 + x2)

y2 = 1
2
(x1 − x2)

Now the term x1x2 can be replaced by the separable function

y2
1 −y2

2

which can be approximated by using the technique of the preceding section.
Note that in this case the non-linear term can be eliminated at the cost of
having to approximate the objective. If l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2, then
the bounds on y1 and y2 are:

1
2
(l1 + l2) ≤ y1 ≤ 1

2
(u1 +u2) and

1
2
(l1 −u2) ≤ y2 ≤ 1

2
(u1 − l2)

Special caseThe product x1x2 can be replaced by a single variable z whenever

� the lower bounds l1 and l2 are nonnegative, and
� one of the variables is not referenced in any other term except in prod-

ucts of the above form.

Assume, that x1 is such a variable. Then substituting for z and adding the
constraint

l1x2 ≤ z ≤ u1x2

is all that is required to eliminate the nonlinear term x1x2. Once the model is
solved in terms of z and x2, then x1 = z/x2 when x2 > 0 an x1 is undeter-
mined when x2 = 0. The extra constraints on z guarantee that l1 ≤ x1 ≤ u1

whenever x2 > 0.

7.8 Summary

In practical applications, integer linear programming models often arise when
discontinuous restrictions are added to linear programs. In this chapter, some
typical examples have been shown, along with methods to reformulate them
as integer programs. The binary “indicator variable” plays an important role.
With the aid of binary variables it is possible to model discontinuities in vari-
ables or objectives, as well as either-or constraints and conditional constraints.
By conducting a piecewise linear approximation of a nonlinear program, con-
taining a separable nonlinear objective function, it may be possible to gener-
ate a linear programming model or perhaps an integer programming model.
At the end of the chapter, methods for eliminating products of variables are
described.



Bibliography

[Be69] E.M.L. Beale and J.A. Tomlin, Special facilities in a general mathemati-
cal programming system for non-convex problems using ordered sets of
variables, Proceedings of the 5th International Conference on Opera-
tions Research (Tavistock, London) (J. Lawrence, ed.), 1969.

[Wi90] H.P. Williams, Model building in mathematical programming, 3rd ed.,
John Wiley & Sons, Chichester, 1990.


	AIMMS Modeling Guide - Integer Programming Tricks
	Integer Linear Programming Tricks
	A variable taking discontinuous values
	Fixed costs
	Either-or constraints
	Conditional constraints
	Special Ordered Sets
	Piecewise linear formulations
	Elimination of products of variables
	Summary

	Bibliography

