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Abstract

This tutorial describes several methods of similarity search, based on
metric indexing, in terms of their common, underlying principles. Sev-
eral approaches to creating lower bounds using the metric axioms are
discussed, including pivoting and compact partitioning with metric ball
regions and generalized hyperplanes. Finally, pointers are given for fur-
ther exploration of the subject, including non-metric, approximate, and
parallel methods.

Introduction

This is a tutorial—a brief introduction to the field of metric indexing. While
there have been several excellent publications that cover this area, this paper
takes a slightly different approach in several respects.1 Primarily, it focuses on
giving a concise explanation of underlying principles rather than a comprehen-
sive survey of specific methods (whcih means that some methods are explained
in ways that differ significantly from the original publications). Also, the main
effort has been put into explaining these principles clearly, rather than going in
depth theoretically or covering the full breadth of the field.

1 The goals of distance indexing

Similarity search is a mode of information retrieval where the query is a sample
object, and the desired result is a set of objects deemed to be similar—in some
sense—to the query. The similarity is usually formalized (inversely) as a so-
called distance function,† and indexing is any form of preprocessing of the data
set to facilitate efficient retrieval.2 The applications range from entertainment
and multimedia (such as image or music search, or even as a component in video

∗mlh@idi.ntnu.no
†A distance function (or simply a distance) d is a non-negative, real-valued, binary function
that is reflexive (d(x, x) = 0) and symmetric (d(x, y) = d(y, x)). The function is defined over
some universe of possible objects, U (that is, it has the signature d : U2 → R+

0 ). Both here
and later on in the paper, constraints are implicitly quantified over U; for example, symmetry
implies that d(x, y) = d(y, x) for all objects x, y in U. When discussing queries, it is assumed
that query objects may be arbitrarily chosen from U, while the returned objects are taken
from some finite subset D ⊆ U (the data set).
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Figure 1: Visualization of a range query in two-dimensional Euclidean space.
The small circles are objects in the data set, while the filled dots are returned
as a result of the query with sample object q and search radius r.

compression) to science and medicine (such as data mining or matching biolog-
ical sequences), or anything else that requires efficient query-by-example but
where traditional (coordinate-based) spatial access methods cannot be used.3

Under the distance function formalism, several query types may be formu-
lated. In the following I focus on one of the basic kinds, so-called range queries,
where all objects that fall within a given distance of the sample are returned.
In other words, for a distance function d, a query object q, and a search radius
q, objects x for which d(q, x) ≤ r are returned (see Fig. 1). While alternatives
are discussed in the literature (most notably returning the nearest object, or
the k nearest objects) it can be argued that range queries are fundamental, and
virtually all published metric indexing methods support them.4

Index structures (such as the inverted files traditionally used in text search)
are structures built over the given data set in order to speed up queries. The
time cost involved in building the index is amortized over the series of queries,
and is usually ignored when considering search cost. The main goal, then, of an
index method is to enable efficient search, either asymptotically or simply in real
wall-clock time. However, in any specialized form of search there may be a few
wrinkles to the story; for example, in examining an index structure theoretically,
some basic operations of the search algorithm may completely dominate others,
but it may not be entirely clear which ones are the more costly, and there may
be different constraints (such as memory use) or required pieces of functionality
(such as being able to accomodate new objects) that influence what the criteria
of optimization are. The three most important measures of quality used in the
literature are:

• The number of distance computation needed during a query;

• The number of I/O operations (disk accesses) needed; and

• The CPU time used beyond distance computations or I/O operations.

Of these three, the first is of primary importance, mainly because it is gen-
erally assumed that the distance computations (which may involve comparing
highly complex objects, such as video clips) are expensive enough to completely
dominate the running time. Beyond this, some (mostly more recent) methods
provide mechanisms for going beyond main memory without incurring an in-
ordinate number of disk accesses, and many methods also involve “tricks” for
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Figure 2: Filtering through distance estimates. The vertical hatched line rep-
resents the range of the query; if an overestimated distance (d̂) falls within the
range, the object is included, and if an underestimated distance (ď) falls beyond
it, the object is discarded. Otherwise, the true distance must be computed.

cutting down on the CPU time. It is quite clear, though, that an underly-
ing assumption for most of the field is that minimizing the number of distance
computation is the main goal.5

2 Domination, signatures, and aggregation

Without even considering the specifics of metric spaces, it is possible to outline
some mechanisms that can be of use when implementing distance indices. This
section discusses some fundamental principles, which may then be implemented,
so to speak, using metric properties (dealt with in the following section), as
shown in sections 4 through 6.

The most basic algorithm for similarity retrieval (or any form of search) is the
linear scan: Traverse the entire data set, examining each object for eligibility.6

In order to improve upon the linear scan, we must somehow infer that an object
x can be included in—or excluded from—the search result without calculating
d(q, x). The way to go is to find a cheap way of approximating the distance. In
order to avoid wrongfully including or excluding objects, we need an approxi-
mation with certain properties.7 In particular, the approximated distance must
either overestimate or underestimate the actual distance, and must do so consis-
tently. If the distance function d̂ consistently yields higher values than another
distance function ď (over the same set of objects), we say that d̂ dominates ď.

Let d̂ be a distance that dominates the actual distance d (i.e., it forms
an upper bound to d), and let d dominate another distance ď (a lower bound).
These estimates may then be used to partition the data set into three categories:
no, yes, and maybe: If ď(q, o) > r, the object o may be safely excluded (because
no objects may, under d̂, be “closer than they appear”). Conversely, if d̂(q, o) ≤
r, the object o may be safely included. The actual distance d(q, o) must then
be calculated for any objects that do not satisfy either criterion. See Fig. 2
above and Fig. 3 on the following page for illustrations of this principle. The
more closely d̂ and ď approximate d, the smaller the maybe set will be; however,
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Figure 3: An example of filtering through domination, where d̂, d, and ď are
all Minkowski metrics, Lp(x, y) = p

√∑
i |xi − yi|p, with p = 1, 2, and ∞, re-

spectively. The circle is the set of points x for which d(q, x) = r. The outer
square and the inner diamond represent similar regions for ď and d̂, respectively.
Objects inside the diamond are safe to include, objects outside the square may
be safely excluded, while the region between them (indicated by the hatching)
contains the “maybe” objects.

there will normally be a tradeoff between approximation quality and cost of
computation. One example of this kind of tradeoff is when there are several
sources of knowledge available, and thus several over- and underestimates; these
may easily be combined, by letting d̂ be the minimum of the overestimates and
ď, the maximum of the underestimates.

Note that under the (quite reasonable) assumption that most of the data set
will not be returned in most queries, the notion of lower bounds and automatic
exclusion is more important than that of upper bounds and automatic inclusion.
Thus, a major theme in the quest for better distance indexing structures is the
search for ever more accurate, yet still cheap, lower-bounding estimates.

One way of viewing such lower bounds is in terms of so-called non-expansive
mappings: All objects are mapped to new objects, or signatures, and the sig-
nature distance becomes an underestimate for the original distance (see Fig. 4
on the next page).8 If one has knowledge about the internal structures of the
objects, such signature spaces may be defined quite specifically using this do-
main knowledge. 9In the general case of distance indexing, however, this is not
possible, and the geometry of the space itself must be exploited. For metric
spaces, certain applications of pivoting (see Sect. 4) make the so-called pivot
space quite explicit.

Many indexing methods add another mechanism to the (possibly signature-
based) bounds, namely aggregation. The search space is partitioned into re-
gions, and all objects within a region are handled collectively. At the level of
object filtering, this does not give us any obvious advantages. In order to find
a common lower bound that lets us discard an entire region, the bound must
be defined as the minimum over all possible objects in that region—clearly not
an improvement in accuracy. (Another take on this lower bound is to see it
as a non-expansive mapping to R, where no objects in the region have positive
signatures; see Fig. 5 on page 6.)10

There are, however, several reasons for using aggregation in this way, related
to the goals discussed previously (see Sect. 1).∗ Reducing extra CPU time has
been an implicit goal since the earliest metric indexing structures. Hierarchical
∗These reasons, or the fact that aggregation in itself can only reduce filtering power, do not
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Figure 4: The non-expansive mapping f maps objects from a a universe of
objects, U, to a signature space, P. The distance d is defined on U, while ď is
defined on P. For all x, y in U, we have that d(x, y) ≤ ď(f(x), f(y)).

decompositions of the search space makes it possible to filter out regions of data
at increasing levels of precision, somewhat like what is done in search trees over
ordered data.11 When it comes to reducing the number of disk accesses, which is
an important consideration for several recent methods, it is also clear that being
able to exclude entire disk blocks without examining them (i.e., without reading
them into main memory) is vital, and in order to manage this, some form of
aggregation is needed.12 However, even with a single-minded focus on reducing
the number of distance computations, aggregation may be an important factor.
Although using regions rather than individual objects reduces the precision of
the distance estimates (and, hence, the filtering power), it may also reduce the
amount of memory needed for the index structure; if this is the case, methods
using aggregation may, given the same amount of memory, actually be able to
improve upon the filtering power of those without it.13

3 The geometry of metric spaces

In order to qualify as a distance function, a function must normally be symmetric
(d(x, y) = d(y, x)) and reflexive (d(x, x) = 0). If d is a distance defined on the
universe U, the pair (U, d) is called a distance space. A metric space is a distance
space where non-identical objects are separated by positive distances (d(x, y) >
0, unless x = y) and there are no “short-cuts” from x to z via another object y
(that is, the distance satisfies the triangle inequality, d(x, z) ≤ d(x, y)+d(y, z)).
The distance of a metric space is called (naturally enough) a metric. One
important property of metric spaces is that subsets (or subspaces) will also be
metric, so if a metric is defined over a given data type, a finite data set (and
relevant queries) of that data type will form a (finite) metric space, subject to
the same constraints.

Metric spaces are a generalization of Euclidean space, keeping some of its
well-known geometric properties. These properties allow us to derive certain
facts (and from them, upper and lower bounds) without knowing the exact
form of the distance in question.14

seem to be addressed by most authors.
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Figure 5: Illustration of a region R with a non-expansive certification function
(that is, a mapping to the real numbers, R), where f(x) ≤ 0 for all x in R. Rf

is the image of R, mapped to R through f . As can be seen in this example,
because Rf is required to lie below zero, ď(q, x) = f(q) ≤ d(q, x), for all x in R.
Note that if f(q) ≤ 0, the relationship is trivially satisfied, as d is non-negative,
by definition.

While the metric properties may not be a perfect fit for modelling our intu-
ition of similarity,15 they capture some notions that seem essential for the intu-
itive idea of geometric distance. One way to see this is through the metaphor
of road networks. The geometry of roads relaxes some of the requirements of
Euclidean space, in that the shortest path between two points no longer needs
to follow a straight line, but distances still behave “correctly”: Unless we have
one-way streets, or similar artificial constraints, distance in a road network fol-
lows the metric properties exactly. The most interesting of these in this context
is, perhaps, triangularity: In finding the distance from A to B we would never
follow a more winding road than necessary—we invariably choose the shortest
route. Thus, first going from A to C, and subsequently to B, could never give
us a smaller sum (that is, a shorter route) than the distance we have defined
from A to C. (see Fig. 6). Thus, while the distance may not be measured along
a straight line, we still measure it along the shortest path possible.16

One way of interpreting triangularity is that the concept of overlap becomes
meaningful for naturally defined regions such as metric balls (everything within
a given distance of some center object). If we’re allowed to violate triangularity,
two seemingly non-overlapping balls could still share objects (see Fig. 7 on the
next page).

If we assume that our dissimilarity space is, in fact, a metric space, the
essential next step is to construct bounds (as discussed previously, in Sect. 2).
Two lemmas constructing quite general bounds using only the metric properties
can be found in Appendix A. The techniques presented in Sections 4 through 6
may be seen as special cases of these lemmas, but it should be possible to follow
the main text even if the appendix is skipped.
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Figure 6: Triangularity in a road network. The distance from A to B is deter-
mined by the shortest route, which goes via D, and it cannot be improved by
going via C. More importantly, it cannot be improved by going via D either
(because it is already part of the shortest path)—or any other point, for that
matter; that is, d(A,B) ≤ d(A,X) + d(X,B), for any point X in the network.
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Figure 7: Illustration of a non-triangular space. Two regions defined as balls
(everything within a distance rx and ry of x and y, respectively) don’t seemingly
overlap, as d(x, y) > rx + ry. Even so, there may be objects (such as z) that
are found in both regions.
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Figure 8: An illustration of basic pivot filtering, based on Eq. 1. For all objects
inside the inner ball around p, we have that d(q, p) − d(p, o) > r and for those
outside the outer ball, d(p, o) − d(q, p) > r. The “maybe” region is the shell
between the two, where |d(q, p)− d(p, o)| ≤ r. Using several lower bounds (that
is, pivots) is equivalent to intersecting several shells, more closely approximating
the query ball.

4 Pivoting and pivot space

The indexing approaches, and their distance bounds, are generally based on
selecting sample objects, also known as pivots (or, for the regions discussed
in sections 5 and 6, sometimes called centers). Imagine having selected some
pivot object p from your data set, and having pre-computed the distance d(p, o)
from the pivot to every other indexed object. This collection of pre-computed
distances then becomes your index. When performing a query, you also com-
pute the distance from query to pivot, d(q, p). It is quite easy to see (through
some shuffling of the triangle inequality)∗ that the distance d(q, o) can be lower-
bounded as follows (see Fig. 8):

ďp(q, o) = |d(q, p)− d(p, o)| (1)

A search may then be performed by scanning through the data set, filtering out
objects based on this lower bound. While this does not take into account CPU
costs or I/O (see Sect. 1), it does (at least potentially) reduce the total number
of distance computations.†

Perhaps the most obvious way of improving this bound is to combine several
bounds—using more than one pivot. For any query, the maximum over all the
bounds can then be chosen (as the real distance must, of course, obey all the
bounds, and the maximum gives us the closest estimate and therefore the most
pruning power). For a set of pivots, P , the lower bound can be defined as
follows:

ď(q, o) = max
p∈P

ďp(q, o) (2)

One interesting way of viewing this is as a non-expansive mapping to a vector
space, often called pivot space. We can define a mapping f(x) = 〈d(p, x)〉p∈P .
∗d(q, o)+d(p, o) ≥ d(q, p) ⇒ d(q, o) ≥ d(q, p)−d(p, o). Equivalently, d(q, o) ≥ d(p, o)−d(q, p),
and hence, d(q, o) ≥ |d(q, p)− d(p, o)|. This is a special case of Lemma 1 in Appendix A.
†An obvious related upper bound, which can be used for inclusion, is d̂(q, o) = d(q, p)+d(p, o),
which follows directly from the triangular inequality.
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Our lower bound then, in fact, becomes simply L∞.
This, in fact, is the gist of one of the basic metric indexing methods, called

LAESA.17 In LAESA, a set of m pivots is chosen from the data set of size n, and
an n × m matrix is filled with the object-to-pivot distances in a preprocessing
step. Searching becomes a linear scan through the matrix, filtering out rows
based on the lower bound (2). As the focus is entirely on reducing the number
of comparisons, the linear scan is merely seen as acceptable extra CPU cycles.
Some CPU time can be saved by storing columns separately, sorted by distance
from its pivot. In each column, the set of viable objects will be found in a
contiguous interval, and this interval can be found by bisection. One version
of the structure even maintains pointers from cells in one column to the next,
between those belonging to the same data object, permitting more efficient
intersection of the candidate sets.18 The basic idea of LAESA was rediscovered
by Filho et al. (who call it the Omni method), who also index the pivot space
using B-trees and R-trees, to reduce CPU time and I/O.19

The choice of pivots can have quite an effect on the performance of this
basic pivoting scheme. The simplest approach—simply selecting at random—
does work, and several heuristics (such as choosing pivots that are far apart or
that have similar distances to each other∗) have been proposed to improve the
filtering power. One approach, in particular, is to heuristically maximize the
lower bound directly.20 Pivots are added to the pivot set one at a time. For
each iteration, the choice stands between a set of randomly sampled candidate
pivots. In order to evaluate these, a set of pairs of objects is sampled randomly
from the data, and the average pivot distance (using the tentative pivot set,
including the new candidate in question) is computed. The pivot that gets the
highest average is chosen, and the next iteration begins.

The LAESA method is, in fact, based on an older method, called AESA.21

In AESA, there is no separate pivot set; instead, any data object may be used
as a pivot, and the set of pivots used depends on the query object. In order to
achieve this flexibility (and the resulting unsurpassed pruning power) one needs
to store the distances between all objects in the data set in an n × n matrix
(or, rather, half of that, because of symmetry). In the first iteration, a pivot
is chosen arbitrarily, and the data set is filtered. (As we now have the actual
distance to the pivot, it can be either included in or excluded from the final
result set.) In subsequent iterations, a pivot is chosen among the remaining,
unfiltered objects. This object should—in order to maximize pruning power—
be as close as possible to the query. This distance is approximated with the
pivot distance (2), using the pivot set built so far.22

In addition to these main algorithms based on pivoting, and their varia-
tions, the basic principles are used as components in more complex, hybrid
structures.23

5 Metric balls and shells

The pivoting scheme can give quite accurate lower bounds, given enough pivots.
However, that number can be quite high—in many cases leading to unrealisti-
cally high space requirements.24 One possible tradeoff is to reduce the number
∗The latter is the approach used by the Omni method.
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(a) VP-style (b) BS-style

Figure 9: An illustration of the two basic ball partitioning principles. In VP-
style partitioning, the two regions correspond to inside and outside one ball,
while in BS-style, each region has its own ball. Multiway versions of both are
possible.

of pivots below the optimal. As noted in Sect. 2, another possibility is to re-
duce the information available about each object, through aggregation: Instead
of storing the exact distance from an object to a pivot, the object is merely
placed in a region, somehow defined in terms of some of the pivots. This also
implies that the relationship between some objects and some pivots can be left
completely undefined.

One of the most obvious region choices in a metric space is, perhaps, metric
balls. A ball region [p]r is defined by one pivot p (often referred to as its center),
along with a so-called covering radius r, an upper bound to the distance from the
pivot to any object in the region. There are two common ways of partitioning
the data using metric ball regions (see Fig. 9). The first, used in the VP-tree
(vantage point tree), among others, uses a single ball to create two regions: one
inside the ball, and one outside it; the other, used in the BS-tree (bisector tree),
for example, uses a ball for each region. These two basic partitioning schemes
are described in more detail in the following.25

The VP-tree is a static balanced binary tree structure built as follows, from
a given data set: Choose a pivot (or vantage point) p and compute the median
distance dm from p to the rest of the data set. Keep p and dm in the root
node, and recursively construct left and right subtrees from the objects that fall
inside and outside dm, respectively. When searching the tree with a query q
and a search radius r, the search ball is examined for overlap with the inside
and outside regions (there might, of course, be overlap with both), and the
overlapping regions are examined recursively. The respective lower bounds for
objects in the inside and outside regions are, of course, d(q, p) − dm and dm −
d(q, p) (see Fig. 10 on the following page).∗

While the property of balance might intuitively seem to be an obvious ben-
efit, this may not always be the case. Clearly, the balance does not give us any
guaranteed upper bounds on the search time, as we may need to visit multiple
(or, indeed, all) subtrees at any point. There may, in fact, be reason to think
that unbalanced structures are superior for metric indexing in certain cases.
One structure based on this idea is LC (list of clusters).26 Simply put, LC is
a highly unbalanced VP-tree, with each left (inside) branch having a fixed size
(either in terms of the radius or the number of items). The right (outside)

∗See also Fig. 5 on page 6, with f(q) = d(q, p)−dm for the inside region, and f(q) = dm−d(q, p)
for the outside region.
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ď(q1, y) = dm − d(q1, p) ď(q2, x) = d(q2, p)− dm

Figure 10: The lower bounds based on VP-style partitioning: The inside region
must be checked if d(q, p)− dm ≤ r, and the outside region, if dm − d(q, p) ≤ r.
If q is in the same region as an object, the lower bound becomes negative.

branch contains the rest of the data, and functions almost as a next-pointer in
a linked list consisting of the inside region clusters (hence the name). Search in
LC is performed in the same manner as in the VP-tree, but it has one property
that can give it an edge under circumstances: If, at any point, the query is
completely contained within one of the cluster balls, the entire tail of the list
(the outside) can be discarded.27

The VP-style partitioning can be generalized to multiway trees in at least
two ways: Either, one can use multiple radii and partition the data set in shells,
or bands, between the radii∗ (either with a fixed distance between them, or with
a fixed number of object in each region), or one can use several pivots in each
node. The multi-vantage point (MVP) tree uses both of these techniques: Each
node in the tree has two pivots (more or less corresponding to two levels of a
VP-tree collapsed into a single node) as well as (potentially) several radii for
each pivot.28

The original BS-tree is also a binary tree, but it is dynamic and potentially
unbalanced, unlike the VP-tree. The objects in a subtree are contained in a
metric ball specific to that tree. The pivot and radius of this ball are kept in
the parent node, so each node contains up to two pivots (and corresponding
radii). When an object is inserted into a node with zero or one pivots, it is
added as a pivot to that node (with an empty subtree). If a node is already full,
the pivot is inserted into the subtree of the nearest pivot.29

The BS-tree has some closely related descendants30 but one of the most well-
known structures using BS-style ball partitioning is rarely presented as one of
them: The M-tree.31

The structures in the M-tree family are, at core, multiway BS-trees, with
each subtree contained in a metric ball, and new objects inserted into the closest
ball (if inside, the one with the closest pivot; if outside, the one whose radius will
increase the least). While more recents structures based on the M-tree may have
extra features (such as special heuristics for insertion or balancing, or AESA-like
pivot filtering in each node) this basic structure is common to them all. The
main contribution of the M-tree, however, is not simply the use of a multiway
tree structure; it is the way it is implemented—as a balanced, disk-based tree.
Each node is a disk block, and balancing is achieved through algorithms quite
similar to those of the B-tree family (or the spatial index structures of the R-
tree family).32 This means that it is dynamic (with support for insertions and
deletions) and that it is usable for large, disk-based data sets.

∗For more on using shells in indexing, see Fig. 11 on the following page and the discussion of
GNAT in Sect. 6.
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Figure 11: Lower bounds for a shell region R. As discussed in the text, the
shell region gives rise to two bounds: ď1(q, o) = d−(p, R)−d(q, p) and ď2(q, o) =
d(q, p)−d+(p, R). The bound ď1 is only useful if the query falls inside the shell,
and ď2 only when it falls outside.

A region type closely related to the ball is the shell. It is the set difference
[p]r − [p]s of two metric balls (where r ≥ s), and a shell region R can be
represented with single center, p, and two radii: the inner radius, d−(p, R), and
the outer radius, d+(p, R). These will then be lower and upper bounds on the
distance d(p, o) for any object o in the region R. Of course, we have similar
lower and upper bounds for any object in the query region as well: d(q, p) − r
and d(q, p) + r. Only if these two distance intervals overlap can there be any
hits in R. To put things differently, for each pivot p and corresponding shell
region R, we have two lower bounds:

ď1(q, o) = d−(p, R)− d(q, p)
ď2(q, o) = d(q, p)− d+(p, R)

Here, ď1 is non-negative if the query falls inside the shell and ď2 is non-negative
if it falls outside∗ (see Fig. 11).33

For an example of a structure using shell regions, see the Discussion of GNAT
in the following section.

6 Metric planes and Dirichlet domains

A less obvious partitioning choice than metric balls is the generalized hyper-
plane, also known as the midset between two pivots in a metric space—the set
of objects for which the the pivots are equidistant. The two regions generated
by this midset consist of the objects closer to one pivot or the other. In the
Euclidean plane, this can be visualized by the half-plane on either side of the
bisector between two points (see Fig. 12(a) on the following page).34 This space
bisection is used by the GH-tree, and the multiway equivalent is used by the
structure called the Geometric Near-neighbor Access Tree, or simply GNAT (see
Fig. 12(b)).35

The GH-tree is a close relative to the other basic metric trees—especially
the BS-tree. In fact, you might say it’s simply a BS-tree without the covering
radii. It’s a dynamic binary structure where every node has (up to) two pivots
∗If the query falls inside R, both bounds are negative.
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(a) GH-style (b) GNAT-style

Figure 12: Illustration of two-way and multiway generalized hyperplane parti-
tioning. In two-way (GH-style) partitioning, two half-spaces are formed, each
consisting of objects closer to one of the two pivots. In multiway (GNAT-style)
partitioning, this is simply extended to multiple pivots. The resulting regions
are called Dirichlet domains.

and every new object is recursively inserted into the subtree of the closest pivot,
just as in the BS-tree. The difference is that no covering radius is maintained
or used for searching. Instead, the hyperplane criterion is used directly: If the
object o is known to be closer to pivot v than to u, then (d(q, v)− d(q, u))/2 is
a lower bound on d(q, o), and can be used to filter out the v branch.36

At core, GNAT is simply a generalization of the GH-style partitioning to
multiway trees, partitioning the space into so-called Dirichlet domains (a gen-
eralization of Voronoi partitioning). While GNAT is often classified into the
“hyperplane family” of metric index methods, this is a bit misleading, as it is al-
most a closer relative of the BS-tree (and, indeed, the M-tree family) than to the
GH-tree, for example. It is built recursively by selecting a set of pivots/centers
(heuristically, so they are reasonably distant from each other), allocating objects
to their closest pivots, and then processing each region recursively (with a num-
ber of pivots proportional to the number of objects in that region, to balance
the tree). However, the Dirichlet domains are not used for searching; instead,
for each region, a set of covering shells (distance ranges) are constructed—one
for each other pivot in that node. If the query ball does not intersect with each
of these shells, the given region is discarded. (For a discussion on shell regions,
see Sect. 5.)

Recently, Uribe et al. have developed a dynamic version of GNAT called the
Evolutionary Geometric Near-neighbor Access Tree, or EGNAT, which is also
well-suited for secondary memory and parallelization.37 EGNAT is, at heart,
simply a GNAT, but it has one addition: All nodes are initially simply buckets
(with a given capacity), where the only information stored is the distance to
the parent pivot.∗ When a bucket becomes full, it is converted into a GNAT
node (with buckets as its children). Searching a GNAT node works just like
with GNAT, while searching a bucket uses plain pivoting (using the single pivot
available).

Another related structure is the Spatial Approximation (SA) tree.38 The
SA-tree approximates the metric space similarly to a GNAT node—that is, by
a partition into Dirichlet domains—but the tree structure is quite different.
Rather than representing a hierarchical decomposition, the tree edges simply
connect adjacent regions (with one pivot per node).39 Search is then performed

∗In other words, this is simply one-dimensional pivoting.
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by traversing this tree, moving from region to region.
The SA-tree is built as follows. First a random object is selected as the root,

and a set of suitable neighbors are chosen: Every neighbor is required to be
closer to the root than to all other neighbors. Also, all other objects are closer
to at least one of the neighbors than to the root (otherwise they would simply
be included as neighbors).40 Each remaining (non-neighbor) object is assigned
to a subset associated with the closest of the neighbors (and subtrees for these
subsets are constructed recursively). Consequently, starting our traversal at the
root, we can always get closer to any object by moving to the neighbor that is
closest to our destination.

The basic traversal strategy only works for single objects, and only when
searching for objects taken from the data set. If we search for multiple objects
(as in a range query) we may need to retrieve objects from multiple branches,
and if the query object is unknown, we may hit dead ends that don’t end in
the desired objects. In either case, we need to add backtracking to our search;
or, to put it in the terms used for the other tree-based algorithms: We must
traverse the tree, discarding subtrees when possible, using a lower bound on the
distance.

The lower bound is twofold: First, a covering radius is kept for each node,
and BS-style filtering is used as an initial step (see Sect. 5 for details). Second,
the the generalized hyperplane bound (the same as in the GH-tree) is used:
ď(q, o) = (d(q, v) − d(q, u))/2, for objects closer to (that is, in the subtree of)
v.41 Note that when considering branch v, we could construct a separate bound
for each other neighbor, u. Instead, we can get the same filtering power by
simply using the u for which d(q, u) is lowest. In fact, at any state of the search,
we can choose this u among all the ancestors of the current root, as well as
their neighbors, because we know the object o will be closer to v than any of
them—and we will already have computed d(q, u) for all of these. The minimum
of these distances can be passed along as an extra parameter to the recursive
search (updated at each node).42

7 Further approaches and issues

Although an attempt has been made in this tutorial to include the basic prin-
ciples of all the central approaches to metric indexing, there are, of course,
potentially relevant methods that have not been covered, and interesting topics
that have not been discussed. As mentioned in the introduction, there are some
surveys and textbooks that cover the field much more thoroughly; the remain-
der of this section elaborates on the the scope of the paper, and points to some
sources of further information.

Other indexing approaches. While the general principles of distance de-
scribed in Sect. 2 hold in general, in the discussions of particulars in the previ-
ous sections, several approaches have been deliberately left out. Some important
ones are:

• Coordinate-based, or spatial, access methods (see the textbook on the sub-
ject by Samet [4] for extensive information on multidiensional indexing).
This includes methods in the borderland between purely distance-based
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methods and spatial ones, such as the M+- and BM+-trees of Zhou et al.
[5, 6].

• Coordinate-based vector space embeddings, such as FastMap [7]. While
pivot space mapping (as used in LAESA [8] and Omni [1]) is an embedding
into a vector space (Rk under L∞) it is not based on the initial objects
having coordinates.

• Approximate methods, such as approximate search with the M-tree [9],
MetricMap [10], kNN graphs [see, e.g., 4, pp. 637–641], SASH [11], the
proximity preserving order of Chávez et al. [12] or several others [13–15]

• Methods based on stronger assumptions than the metric axioms, such as
the growth-restricted metrics of Karger and Ruhl [16].

• Methods based on weaker assumptions than the metric axioms, such as
the TriGen method of Skopal [17, 18].∗

• Methods exploiting the properties of discrete distances (or discrete met-
rics, in particular), such as the Burkhart-Keller tree, and The Fixed-Query
Tree and its relatives.43

• Methods dealing with query types other than range search,† such as the
similarity self-join (nearest pair queries) of the eD-index [19], the multi-
metric or complex searches of M3-tree [20] and others [21–24], searching
with user-defined metrics, as in the QIC-M-tree [25], or the incremental
search of Hjaltason and Samet [26].

• Parallel and distributed methods, using several processors (beyond simple
data partitioning), such as GHT∗ [27], MCAN [28], parallel EGNAT [29]
and several other approaches [25, 28, 30–32].

Metric space dimension. It is well known that spatial access methods deal
more effectively with low-dimensional vector spaces than high-dimensional ones
(one aspect of the so-called curse of dimensionality).44 Some attempts have
been made to generalize the concept of dimension to metric spaces as well, in
order to measure how difficult a given space would be to index.

One thing that happens when the dimension increases in Euclidean space,
for example, is that all distances become increasingly similar, offset somewhat
by any clustering in the data. One hypothesis is that it is this convergence
of distances that makes indexing difficult, and this idea is formalized in the
intrinsic dimensionality of Chávez et al. [33]. Rather than dealing with coor-
dinates, this measure is defined using the distance distribution of a metric (or,
in general, distance) space. The intrinsic dimensionality is defined as µ2/2σ2,
where µ and σ2 are the mean and variance of distribution, respectively. For a
set of uniformly random vectors, this is actually proportional to the dimension
of the vector space. Note that a large spread of distances results in a lower
dimensionality, and vice versa.
∗Some approximate methods, such as SASH, kNN graphs, and the proximity preserving order
of Chávez et al. also waive the metric axioms in favor of more heuristic ideas of how a distance
behaves.
†While kNN is only briefly mentioned in this tutorial, most methods discussed support it.
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An interesting property of distance distributions with a low spread can be
seen when considering the cumulative distribution function N(r), the average
number of objects returned for a range query with radius r. For r-values around
the mean distance, the value of N will increase quite rapidly—the narrower the
distribution, the more quickly it will increase. Traina Jr. et al. [34], building on
the work on the work on fractal dimensions by Belussi and Faloutsos [35], show
that for many synthetic and real-world metric data sets, for suitable ranges of
r, the cumulative distribution follows a power-law; that is, N(r) ∈ Θ(rD), for
some constant D, which they call the distance exponent.45 They show how to
estimate the distance exponent, and demonstrate that it is closely related to,
among other things, the number of disk accesses needed when performing range
queries using the M-tree.

Another, rather different, hypothesis is that the problem with high dimen-
sionality in vector spaces is the abundance of emptiness: As the dimension
grows, the ratio of data to the sheer volume of space falls exponentially. It
becomes hard to create tight regions about subsets of the data set, and region
overlap abounds. The ball-overlap factor (BOF) of Skopal [17] tackles this prob-
lem head-on, and measures the relative frequency of overlap between suitably
chosen ball regions. BOFk is defined as the relative number of overlaps between
balls that each cover an object and its k nearest neighbors. In other words, it
predicts the likelihood that two rather arbitrary ball-shaped regions will over-
lap. This factor can describe both the degree of overlap by distinct regions in
an index structure, and the the probability that a query will have to investigate
irrelevant ball regions (only non-overlapping regions can be discarded).

Method quality. In the introduction, the main goals and quality measures
used in the development of metric indexing methods were briefly discussed, but
the full picture can be rather complex. The theoretical analysis of these struc-
tures can be quite difficult, so experimental validation becomes essential. There
are some theoretically defined measures such as the fat and bloat factors and
prunability of Traina Jr. et al. [36, 37], but even such properties are generally es-
tablished empirically for a given structure.46 Moret [38] gives some reasons why
asymptotic analysis alone may not be enough for algorithm studies in general
(the worst-case behavior may be restricted to a very small subset of instances
and thus not be at all characteristic of instances encountered in practice, and
even in the absence of any of these problems, deriving tight asymptotic bounds
may be very difficult). Given a sufficiently problematic metric space, a full
linear scan can never be avoided, so the non-asymptotic (primarily empirical)
analysis may be particularly relevant for metric indexing.

Even beyond the specifics of a given data set (including measures such as
intrinsic dimensionality, fractal dimension, and ball-overlap factor) there are, of
course, the real-world issues that plague all theoretical studies of algorithms,
such as caching and the memory hierarchy—issues that are not easily addressed
in terms of basic principles (at least not given the current state of the theory of
metric index structures) and therefore have been omitted from this tutorial.
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Figure 13: Illustration of Lemma 1. (a) The bounds on d(o, p) and d(q, p)
define two shell regions around p: one containing o and one containing q, and
the underestimates are given by the distances from the outer one to the inner
one. (b) The upper bound is also given by two shell regions: one around o and
one around q, both containing p; because these must overlap in at least one
point (that is, p), the overestimate is simply the sum of their (outer) radii.

A Bounding lemmas, with proofs

The following two lemmas give us some useful bounds for use in metric indexing.
For a more detailed discussions, see, for example, the survey by Hjaltason and
Samet [39] or the textbook by Zezula et al. [40]. lemmas 1 and 2 are illustrated
in figures 13 and 14, respectively.

Lemma 1 (Ball lemma). Let o, p and q be objects in U, and let d be a metric
over U. For any objects u, v in U, assume that the the value of d(u, v) is known
to be in the range [d−uv, d+

uv]. The value of d(q, o) may then be bounded as follows:

max{0, d−po − d+
pq, d

−
qp − d+

op} ≤ d(q, o) ≤ d+
qp + d+

po .

Proof. From the triangle inequality we have d(p, o) ≤ d(p, q) + d(q, o), which
gives us d(q, o) ≥ d(p, o) − d(p, q) ≥ d−po − d+

pq. Similarly, we have d(q, p) ≤
d(q, o) + d(o, p), which gives us d(q, o) ≥ d(q, p) − d(q, p) ≥ d−qp − d+

op. Finally,
the upper bound follows directly from the triangle inequality: d(q, o) ≤ d(q, p)+
d(p, o) ≤ d+

qp + d+
po.

Lemma 2 (Plane lemma). Let o, q, u and v be objects in U and let d(o, v) ≤
d(u, o). We can then bound d(q, o) as follows:

max{(d(q, v)− d(q, u))/2, 0} ≤ d(q, o) .

Proof. From the triangle inequality, we have d(q, v) ≤ d(q, o) + d(o, v), which
yields d(q, v)− d(q, o) ≤ d(o, v). When combined with d(u, o) ≤ d(q, u) + d(q, o)
(from the triangle inequality) and d(o, v) ≤ d(u, o), we obtain d(q, v)−d(q, o) ≤
d(q, u)+ d(q, o). Rearranging yields d(q, v)− d(q, u) ≤ 2d(q, o), which yields the
first combined of the lower bound, the second component being furnished by
nonnegativity.
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Figure 14: Illustration of Lemma 2 (ď(q, o) = (d(q, v) − d(q, u)/2)). The lower
bound may intuitively be seen as a bound on the distance from q (on the u-
side) to the “plane” of points midway from u to v (note that no such points
may actually exist). As the object o is on the v-side, this is a lower bound on
d(q, o). The figure shows the case where q is on the metric interval between u
and v (that is, d(u, v) = d(u, q) + d(q, v)); other placements of q for the same
bound (the hyperbola in the figure) would be further away from the v-region.

B An overview of the indexing methods

Many methods are discussed in this tutorial, either in the main text or in the
end notes. Some important ones are summarized in Table 1 on the next page,
with a brief indication of their structure and functionality. The structural prop-
erties indicate the use of pivoting (P), BS-style ball partitioning (BS), VP-style
ball partitioning (VP), generalized hyperplane partitioning (GH), and multiway
partitioning (MW). The functional features indicate whether the method is dy-
namic (D), whether it is designed to reduce extra CPU cost (CPU) or memory
use and/or disk accesses (I/O). A bullet (•) indicates the presence of a property,
while a circle (◦) indicates partial (or implicit) presence. This table, of course,
only gives the coarsest of overviews of the differences between the methods, cer-
tainly does not cover all their unique features, and is not meant as a comparison
of their relative merits.
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Notes

Introduction

1. Chávez et al. [33] have written a very thorough and rather theoretical survey
paper on the subject. In addition to describing the methods available at the
time, they construct a taxonomy of the methods and derive theoretical bounds
for their complexity. They also introduce the concept of intrinsic dimensionality
(see Sect. 7). The later survey by Hjaltason and Samet [39] takes a somewhat
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Table 1: Some structural properties and functional features of some of the
metric indexing methods discussed in this tutorial. The numbers refer to the
bibliography.

Structure Functionality
Method p bs vp gh mw d cpu i/o

AESA 41–43 •
AHC 44 • • •
Antipole Tree 45 • • ◦ ◦ •
BS-Tree 46 • ◦ • •
BU-Tree 47 • ◦ •
CM-Tree 48 • • ◦ • • • •
DBM-Tree 49, 50 ◦ • ◦ • • • •
DF-Tree 37 • • ◦ • • • •
D-Index 51–54 • • • ◦ • •
DSA-Tree 55–57 • • • • ◦
EGNAT 3 ◦ • ◦ • • • •
EHC 44 • ◦ •
EM-VP-Forest 58 • •
GH-Tree 59, 60 • • •
GNAT 61 • ◦ • •
HC 44, 62 • •
HSA-Tree 63–65 • • • • • ◦
iAESA 66 •
iDistance 67 ◦ • ◦ • • • •
LAESA 2, 8, 41, 103 • • ◦
LC 68, 69 • • ◦
Linear Scan 70 •
MB+-Tree 71 • • • • •
MB∗-Tree 72, 73 • ◦ •
M∗-Tree 74 • • ◦ • • • •
M-Tree 75–78 ◦ • ◦ • • • •
MVP-Tree 79, 80 • • • • • •
OMNI 1 • • • •
Opt-VP-Tree 81 • • • • •
PM∗-Tree 74 • • ◦ • • • •
PM-Tree 82 • • ◦ • • • •
ROAESA 83 • •
SA-Tree 84, 85 • • •
Slim-Tree 36, 86 • ◦ • • • •
Spaghettis 87 • • •
SSS-Tree 88 • • • •
SSS-LC 89 • • ◦ • •
TLAESA 90, 91 • • •
Voronoi-Tree 92 • ◦ ◦ • •
VP-Tree 59, 60, 93 • •
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different approach, and uses a different fundamental formalism, but is also quite
comprehensive and solid, and complements the paper by Chávez et al. nicely. In
recent years, a textbook on the subject by Zezula et al. has appeared [40], and
Sect. 4.5 of Samet’s book on multidimensional and metric data structures [4] is
also devoted to distance based methods. The paper by Pestov and Stojmirović
[94] is specifically about a model for similarity search, but in many ways provides
a brief survey as well. The encyclopedia entry by Chávez and Navarro [95]
is another example of a brief introduction. In addition to publications that
specifically set out to describe the field, there are also publications, such as the
PhD thesis of Skopal [96], with more specific topics, that still have substantial
sections devoted to the general field of metric indexing.

Section 1

2. Note that the terminology is not entirely consistent across the literature.
The use of ‘distance’ here conforms with the usage of Deza and Deza [97].
3. Many of the surveys mentioned previously [4, 33, 39, 40, 94–96] discuss
various applications, as do most publications about specific metric indexing
methods. Spatial access methods [see, e.g., 4] can also be used for many query-
by-example applications, but they rely on the specific structure of the problem—
the fact that all objects are represented as vectors of a space of fixed, low
dimensionality. Metric indexing is designed for cases where less is known about
the space (i.e., where we only know the distances between objects, and those
distances satisfy the metric axioms), and thus have a different, possibly wider,
field of applications. Because the metric indexing methods disregard the number
of dimensions of a vector space and are only hampered by the innate complexity
of the given distance (or the distribution of objects), they may also be better
suited to indexing high-dimensional traditional vector spaces (see Sect. 7).
4. The nearest neighbor (or NN) query type, and the more general k near-
est neighbors (kNN), are quite intuitive from the user and application point
of view. They may even be combined with range queries to give even more
powerful functionality, limiting both the permitted distance and the allowed
number of returned objects. Even though several metric index structures have
specific algorithms for kNN queries, they can quite generally be simulated using
range queries, as explained by Hjaltason and Samet [39]. (Note, though, that
some principles discussed in this paper—such as domination and non-expansive
mappings—do not transfer directly to the case of kNN search.) Beyond these
basic query types, there are several more exotic ones, dealt with only rarely in
the literature. They include finding the object furthest from the query, finding
pairs of objects within a given distance of each other (a so-called similarity self-
join), or incrementally returning objects in order of increasing distance from
the query.
5. The field in question is defined by in excess of fifty published methods for
metric indexing, stretching back to the 1983 paper of Kalantari and McDonald
[46] (with more recent publications including ones by Aronovich and Spiegler [48]
and Skopal and Hoksza [74], for example), not counting several methods aimed
specifically at discrete distance measures (surveyed along with more general
methods by Chávez et al. [33]; see also Sect. 7).
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Section 2

6. While a linear scan is a very straightforward, and seemingly quite ineffi-
cient, it may serve as an important “reality check,” especially for complex index
structures (especially involving disk access) or high-dimensional data. The ex-
tra work in maintaining and traversing the structures may become so high, in
some cases, that it swamps the reduction in distance computations [see, e.g.,
70].
7. As discussed in Sect. 7, there are approximate retrieval methods as well,
where som such errors are permitted. In these cases, looser notions of distance
approximation may be acceptable.
8. Such mappings are normally defined between metric spaces, and are known
by several names, including metric mappings and 1-Lipschitz mappings.
9. One example of this technique is similarity indexing for time series, where
many signature types have been suggested, normally in the form of fixed-
dimensional vectors that may be indexed using spatial access methods. Hetland
[98] gives a survey of this application.
10. Hjaltason and Samet [39] use hierarchical decompositions of the space into
regions (represented as tree structures) as their main formalism when discussing
indexing methods. In order to discard such a region R from a search, a lower
bound on the point-set distance d(q, R) = infx∈R d(q, x) must be defined; this
bound is a characteristic of the region type used. Pestov and Stojmirović [94] use
basically the same formalism, although presented rather differently. Instead of
equipping the tree nodes corresponding to regions with lower-bounding distance
estimates, they give them certification functions, which are non-expansive (1-
Lipschitz) mappings f : R → R, where f(x) ≤ 0,∀x ∈ R. While not discussed
by the authors, it should be clear that these certification functions are equivalent
to lower-bounding estimates of the point-set distance (see Fig. 4 on page 5). For
a rather different approach, see the survey by Chávez et al. [33]. They base their
indexing formalism on the hierarchical decomposition of the search space into
equivalence classes, and discuss overlapping regions without directly involving
lower bounds in the fundamental model.
11. Indeed, it may seem like some structures have rather uncritically trans-
planted the ideas behind search trees to the field of similarity search, even
though the advantages of this adaptation are not as obvious as they might
seem. In addition to the varying balance between distance computations, CPU
time and I/O, there are such odd phenomena as unbalanced structures being
superior to balanced ones in certain circumstances (see the discussion of LC in
Sect. 7).
12. Examples of methods that rely on this are the M-tree [75–77] (and its
descendants), the MVP-tree [79] and D-index [51–54, 99].
13. Chávez et al. [33] discuss this in depth for the case of metric indexing,
and the use of compact regions versus pivoting (see sections 4 through 6), and
show that, in general, if one has an unlimited amount of memory, pivoting will
be superior, but that the region-based methods will normally utilize limited
memory more efficiently.
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Section 3

14. The theory of metric spaces is extensive (see the tutorial by Semmes [100] for
a brief introduction, or the book by Jain and Ahmad [101] for a more thorough
treatment), but the discussion in this paper focuses on the basic properties
of metric spaces, and how they permit the construction of bounds usable for
indexing.
15. See, for example, the discussion of Skopal [17] for some background on
this issue. One example he gives, illustrating broken triangularity, is that of
comparing humans, horses and centaurs. While a human might be quite similar
to a centaur, and a centaur looks quite a bit like a horse, most would think a
human to be completely different from a horse.
16. This is, of course, simply a characterization of metric spaces in terms of
(undirected) graphs. It is clear that shortest paths (geodesics) in finite graphs
with positive edge weights invariably form metric spaces, but it is interesting to
note that the converse is also true: Any finite metric space may be realized as
such a graph geodesic [see, e.g., Lemma 3.2.1 of 102, p. 62]. It is also interesting
to note that the triangularity of geodesics is preserved in the presence of nega-
tive edge weights (that is, shortest paths still cannot be shortened). Similarly,
directed triangularity holds for directed graphs.

Section 4

17. Linear Approximating and Eliminating Search Algorithm [8, 41].
18. This is the Spaghettis structure, described by Chávez et al. [87].
19. See the paper by Filho et al. [1] for more information.
20. For more details on this approach, and a comparison between it and a few
similar heuristics, see the paper by Bustos et al. [103]. A recent variation on
chosing pivots that are far apart is called Sparse Spatial Selection [2], and it is
used in the so-called SSS-Tree [88] and in SSS-LC [89].
21. Approximating and Eliminating Search Algorithm [42, 43].
22. Actually, a recent algorithm called iAESA [66], managed, as the first method
in twenty years, to improve upon AESAs search performance. iAESA uses the
same basic strategy as AESA, but uses a different heuristic for selecting pivots,
involving the correlation between distance-based permutations of another set of
pivots. In theory, any cheap and accurate approximation could be used as such
a heuristic, potentially improving the total performance.
23. A couple of variations of interest are ROAESA, or Reduced Overhead-
AESA [83], and TLAESA, or Tree-LAESA [90, 91], which reduce the CPU time
of AESA and LAESA, respectively, to sublinear. Applications of pivoting in
hybrid structures include MVP-tree [79, 80], D-index [51–53, 53, 54, 99] and the
related, PM-tree [82], and CM-tree [48].

Section 5

24. Chávez et al. [33] show that the optimal number is logarithmic in the size of
the data set (Θ(n), for n objects). Filho et al. [1], on the other hand, claim that
the required number of pivots is proportional to the fractal (which they also call
intrinsic) dimensionality of the data set, and that using pivots beyond this is of
little use. In other words, this means that the optimal number of pivots is not
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necessarily related to the size of the data set (that is, it is Θ(1)). See Sect. 7
for a brief discussion of fractal and intrinsic dimensionality.
25. For more information about the VP-tree, see the papers by Uhlmann [59]
(who calls them simply metric trees) and Yianilos [93] (who rediscovered them,
and gave them their name). The VP partitioning scheme has been extended in,
for example, the MVP-tree [79, 80]. It is extended with a so-called exclusion
zone in the Excluded Middle Vantage Point Forest [58] (which is in many ways
very similar to the more recent D-index, discussed later). The BS-tree was first
described by Kalantari and McDonald [46], and the BS partitioning scheme has
been adopted by several subsequent structures, including the M-tree [75–77] and
its descendants. A recent addition to the BS-tree family is the SSS-Tree [88].
26. Chávez and Navarro [68, 69] give a theoretical analysis of high-dimensional
metric spaces (in terms of intrinsic dimensionality, as explained in Sect. 7)
as support for their assumption that unbalanced structures may be beneficial.
Fredriksson [44] describes several extended versions of the LC structure (HC,
AHC and EHC). [89] describes a hybrid of LC and LAESA, using the SSS pivot
selection strategy.
27. An interesting point here is that one can use other metric index structures
to speed up the building of LC, because one needs to find which objects (of
those remaining) are inside the cluster radius, or which k objects are the near-
est neighbors of the cluster center—and both of these operations are standard
metric queries.
28. The MVP-tree is discussed in detail by [79, 80]. In addition to the basic
partitioning strategy, each leaf also contains a LAESA structure, filtering with
the pivots found on the path from the root to that leaf (thereby reusing distances
that have already been computed).
29. Note that this decision is actually based on a generalized hyperplane, or
bisector—hence the name “bisector tree.” Hyperplanes are discussed in more
detail in Sect. 6.
30. Perhaps the most closely related structure is the Voronoi-tree [92, 104],
which is essentially a ternary BS-tree with an additional property: When a new
leaf is created, the parent pivot (the one closest to the new object) is also added
to the leaf. This guarantees that no node can have a greater covering radius
than its parent. Another relative is the Monotonous Bisector∗ Tree (MBS∗-
tree) [72, 73].
31. For more details on the M-tree, see the papers by Zezula et al. [75] and
Ciaccia et al. [76, 77, 78], for example. Some recent structures based on the
M-tree include the QIC-M-tree [25], the Slim-tree [86], the PM-tree [82], the
Antipole Tree [45], the M∗-tree [74], and the CM-tree [48].
32. The B-tree and its descendants is described in several basic textbooks on
algorithms; a general structure called GiST (Generalized Search Tree, avail-
able from http://gist.cs.berkeley.edu) implements disk-based B-tree-style
balancing for use in index structures in general, and has been used in several
published implementations (including the original M-tree). For more informa-
tion on recent developments in the R-tree family, see the book by Manolopoulos
et al. [105].
33. For more on why this is correct, see Lemma 1 on page 17.
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Section 6

34. Note that in general, the midset itself may be empty.
35. For more information on the GH-tree, see the papers by Uhlmann [59, 60];
GNAT is described in detail by Brin [61].
36. See Lemma 2 on page 17 for an explanation of this bound. Also note that
there is no reason why this criterion couldn’t be used in addition to a covering
radius.
37. For more information on EGNAT, see the paper by Uribe et al. [3].
38. For more information on the SA-tree, see the papers by Navarro [84, 85].
Though the originally published structure is static, it has since been extended to
admit insertions and deletions [55–57, 63] and combined with pivoting [64, 65].
39. If you create a graph from the pivots by adding edges between neighboring
(Dirichlet) you get what is often known as the Delaunay graph (or, for the
Euclidean plane, the Delaunay triangulation) of the pivot set. The SA-tree will
be a spanning tree of this graph.
40. Note that the neighbor set is defined recursively, and it is not necessarily
entirely obvious how to construct it. In fact, there can be several sets satisfying
the definition. As finding a minimum set of neighbors it not a trivial task,
Navarro [84] uses an incremental heuristic approach: Consider nodes in order
of increasing distance from the root, and add them if they are closer to the
root than all neighbors added previously. While the method does not guarantee
neighbor sets of minimum size, the sets are correct (and usually rather small):
Clearly all object that are closer to the root than the other neighbors have been
added. Conversely, let’s say consider a root r and two neigbors u and v, added
in that order. Thus, by assumption, d(u, r) ≤ d(v, r). We could only have added
v if d(v, r) < d(u, v), so both must be closer to r than to each other.
41. See Lemma 2 on page 17 for proof.
42. Although the description of the search algorithm here is formally equivalent
to that of Navarro [84], the presentation differs quite a bit. He gives two expla-
nations for the correctness of the search algorithm: one involving a lower bound
(similar to the hyperplane argument given here), and one based on the notion
of traversing the tree, moving toward a hypothetical object within a distance r
of the query. The final result is the same, of course.

Section 7

43. These relatives include FHQT, FQA/FMVPA, FHQA, and FQMVPT; see
the survey by Chávez et al. [33] for details on these discrete-metric methods.
44. For a discussion of how to deal with high-dimensional vector spaces, see the
survey by Hetland [98]. It may be interesting to note that the intrinsic dimen-
sionality of a vector data set may be lower than its representational dimensional-
ity; that is, the vectors may be mapped faithfully to a lower-dimensional vector
space without distorting the distances much. In this case, using a distance-based
(metric) index may be quite a bit more efficient than indexing the original di-
mensions directly with a spatial access method. (See the discussion of intrinsic
and fractal dimension in Sect. 7.)
45. This D plays a role similar to that of the ‘correlation’ fractal dimension of
a vector space, also known as D2 [35]. The fractal dimension of a metric space
may be found in quadratic time [see, e.g., 106], but the method of Traina Jr.
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et al. [34] is based on a linear time approximation. Filho et al. [1] use the
concept of fractal space in their analysis of the required number of pivots (or
foci) for optimum performance of the Omni method (see note 24).
46. Note that Chávez et al. [33] give some general bounds for pivoting and
region-based methods based on intrinsic dimensionality, but these are not really
fine-grained enough to gives us definite comparisons of methods.
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Maŕın. An index data structure for searching in metric space databases.
In Vassil N. Alexandrov, Geert Dick van Albada, Peter M. A. Sloot, and
Jack Dongarra, editors, Proceedings of the 6th International Conference of
Computational Science, ICCS, volume 3991 of Lecture Notes in Computer
Science, pages 611–617. Springer, 2006.

[4] Hanan Samet. Foundations of Multidimensional and Metric Data Struc-
tures. Morgan Kaufmann, 2006.

[5] Xiangmin Zhou, Gouren Wang, Jeffrey Xu Yu, and Ge Yu. M+-tree:
A new dynamical multidimensional index for metric spaces. In Xiao-
fang Zhou and Klaus-Dieter Schewe, editors, Proceedings of the 14th Aus-
tralasian Database Conference, ADC, volume 17 of Conferences in Re-
search and Practice in Information Technology, 2003.

[6] Xiangmin Zhou, Guoren Wang, Xiaofang Zhou, and Ge Yu. BM+-tree:
A hyperplane-based index method for high-dimensional metric spaces. In
Lizhu Zhou, Beng Chin Ooi, and Xiaofeng Meng, editors, Proceedings of
the 10th International Conference on Database Systems for Advanced Ap-
plications, DASFAA, volume 3453 of Lecture Notes in Computer Science,
page 398. Springer, 2005.

[7] Christos Faloutsos and King-Ip Lin. FastMap: A fast algorithm for in-
dexing, data-mining and visualization of traditional and multimedia. In
Michael J. Carey and Donovan A. Schneider, editors, Proceedings of the
1995 ACM SIGMOD International Conference on Management of Data,
pages 163–174, San Jose, California, 1995.
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