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Time sequences occur in many applications, ranging from science and technology to 
business and entertainment. In many of these applications, searching through large, un-
structured databases based on sample sequences is often desirable. Such similarity-
based retrieval has attracted a great deal of attention in recent years. Although several 
different approaches have appeared, most are based on the common premise of dimen-
sionality reduction and spatial access methods. This paper gives an overview of recent 
research and shows how the methods fit into a general context of signature extraction. 
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1  Introduction 

Time sequences arise in many applications—any applications that in-
volve storing sensor inputs, or sampling a value that changes over time. 
A problem which has received an increasing amount of attention lately is 
the problem of similarity retrieval in databases of time sequences, so-
called “query by example.” Some uses of this are [Agrawal et al. 
(1993)]: 
! Identifying companies with similar patterns of growth. 
! Determining products with similar selling patterns. 
! Discovering stocks with similar movement in stock prices. 
! Finding out whether a musical score is similar to one of a set of 

copyrighted scores. 
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! Finding portions of seismic waves that are not similar to spot geo-
logical irregularities. 

Applications range from medicine, through economy, to scientific disci-
plines such as meteorology and astrophysics [Faloutsos et al. (1994), Yi 
and Faloutsos (2000)]. 

The running times of simple algorithms for comparing time se-
quences are generally polynomial in the length of both sequences, typi-
cally linear or quadratic. To find the correct offset of a query in a large 
database, a naive sequential scan will require a number of such compari-
sons that is linear in the length of the database. This means that, given a 
query of length m  and a database of length n , the search will have a 
time complexity of )(nmO , or even )( 2nmO . For large databases this is 
clearly unacceptable. 

Many methods are known for performing this sort of query in the 
domain of strings over finite alphabets, but with time sequences there are 
a few extra issues to deal with: 
! The range of values is not generally finite, or even discrete. 
! The sampling rate may not be constant. 
! The presence of noise in various forms makes it necessary to support 

very flexible similarity measures. 
This chapter describes some of the recent advances that have been made 
in this field; methods that allow for indexing of time sequences using 
flexible similarity measures that are invariant under a wide range of 
transformations and error sources. 

The chapter is structured as follows: Section 1.2 gives a more formal 
presentation of the problem of similarity based retrieval and the so-called 
dimensionality curse; Section 1.3 describes the general approach of sig-
nature based retrieval, or shrink and search, as well as three specific 
methods using this approach; Section 1.4 shows some other approaches, 
while Section 1.5 concludes the chapter. Finally, Appendix A gives an 
overview of some basic distance measures.1 

 

                                                      
1 The term “distance” is used loosely in this paper. A distance measure is simply the in-
verse of a similarity measure and is not required to obey the metric axioms. 
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1.1  Terminology and Notation 

A time sequence ),(,),,( 111 nnn tvxtvxx """ !"  is an ordered collec-
tion of elements ix , each consisting of a value iv  and a timestamp it . 
Abusing the notation slightly, the value of ix  may be referred to as ix . 
For some retrieval methods, the values may be taken from a finite class 
of values [Mannila and Ronkainen (1997)], or may have more than one 
dimension [Lee et al. (2000)], but it is generally assumed that the values 
are real numbers. This assumption is a requirement for most of the meth-
ods described in this chapter. 

The only requirement of the timestamps is that they be nondecreas-
ing (or, in some applications, strictly increasing) with respect to the se-
quence indices: 

 jitt ji #$#  (1) 

In some methods, an additional assumption is that the elements are equi-
spaced: For every two consecutive elements ix  and 1%ix  we have 

 &"'% ii tt 1  (2) 

where &  (the sampling rate of x" ) is a (positive) constant. If the actual 
sampling rate is not important, &  may be normalised to 1, and 1t  to 0. 
The length of a time sequence x"  is its cardinality, written as x" . The 
contiguous subsequence of x"  containing elements ix  to jx  (inclusive) is 
written jix : . A signature of a sequence x"  is some structure that some-
how represents x" , yet is simpler than x" . In the context of this chapter, 
such a signature will always be a vector of fixed size k. (For a more thor-
ough discussion of signatures, see Section 1.3.) Such a signature is writ-
ten x~ . For a summary of the notation, see Table 1. 
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Table 1  Notation 

x
"

 A sequence 

x~  A signature of x
"

 

ix  Element number i  of x
"

 

jix :  Elements i  to j  (inclusive) of x
"

 

x
"

 The length of x
"

 

2  The Problem 

The problem of retrieving similar time sequences may be stated as fol-
lows: Given a sequence q" , a set of time sequences X, a (non-negative) 
distance measure d, and a tolerance threshold (, find the set R of se-
quences closer to q"  than (, or, more precisely: 

 }!),(|{ #)" xqdXxR """  (3) 

Alternatively, one might wish to find the k nearest neighbours of q" , 
which amounts to setting ( so that kR " . The parameter ( is typically 
supplied by the user, while the distance function d is domain-dependent. 
Several distance measures will be described rather informally in this 
chapter. For more formal definitions, see Appendix A. 

Figure 1 illustrates the problem for Euclidean distance in two dimen-
sions. In this example, the vector x"  will be included in the result set R, 
while y"  will not. 
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 Figure 1 Similarity Retrieval. 
 

A useful variation of the problem is to find a set of subsequences of 
the sequences in X. This, in the basic case, requires comparing q"  not 
only to all elements of X, but to all possible subsequences.2 

If a method retrieves a subset S of R, the wrongly dismissed se-
quences in SR '  are called false dismissals. Conversely, if S is a super-
set of R, the sequences in RS '  are called false alarms. 

2.1  Robust Distance Measures 

The choice of distance measure is higly domain dependent, and in some 
cases a simple pL  norm such as Euclidean distance may be sufficient. 

However, in many cases, this may be too brittle [Keogh and Pazzani 
(1999b)] since it does not tolerate such transformations as scaling, warp-
ing, or translation along either axis. Many of the newer methods focus on 
using more robust distance measures, which are invariant under such 
transformations as time warping [Sankoff and Kruskal (1999)] without 
loss of performance. 
 
 
 

                                                      
2 Except in the description of LCS in Appendix A, subsequence means contiguous subse-
quence, or segment. 
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2.2   Good Indexing Methods 

Faloutsos et al. [Faloutsos et al. (1994)] list the following desirable 
properties for an indexing method: 

1. It should be faster than a sequential scan. 
2. It should incur little space overhead. 
3. It should allow queries of various length. 
4. It should allow insertions and deletions without rebuilding 

the index. 
5. It should be correct: No false dismissals must occur. 

To achieve high performance, the number of false alarms should also be 
low. Keogh et al. [Keogh et al. (2001b)] add the following criteria to the 
list above: 

6. It should be possible to build the index in reasonable time. 
7. The index should preferably be able to handle more than one 

distance measure. 

2.3  Spatial Indices and the Dimensionality Curse 

The general problem of similarity based retrieval is well known in the 
field of information retrieval, and many indexing methods exist to proc-
ess queries efficiently [Baeza-Yates and Ribeiro-Neto (1999)]. However, 
certain properties of time sequences make the standard methods unsuit-
able. The fact that the value ranges of the sequences usually are continu-
ous, and that the elements may not be equi-spaced, makes it difficult to 
use standard text-indexing techniques such as suffix-trees. One of the 
most promising techniques is multidimensional indexing (R-trees [Gutt-
man (1984)], for instance), in which the objects in question are multidi-
mensional vectors, and similar objects can be retrieved in sublinear time. 
One requirement of such spatial access methods is that the distance 
measure used obeys the triangle inequality ( ),( zxd ""  # ),( yxd ""  + 

),( zyd "" ). 
One important problem that occurs when trying to index sequences 

with spatial acces methods is the so-called dimensionality curse: Spatial 
indices typically work only when the number of dimensions is low 
[Chakrabarti and Mehrotra (1999)]. This makes it unfeasible to code the 
entire sequence directly as a vector in an indexed space. 
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The general solution to this problem is dimensionality reduction: to 
condense the original sequences into signatures in a signature space of 
low dimensionality, in a manner which, to some extent, preserves the dis-
tances between them. One can then index the signature space. 

3  Signature Based Similarity Search 

A time sequence x"  of length n can be considered a vector or point in an 
n-dimensional space. Techniques exist (spatial access methods, such as 
the R-tree and variants [Chakrabarti and Mehrotra (1999), Wang and 
Perng (2001), Sellis et al. (1987)]) for indexing such data. The problem 
is that the performance of such methods degrades considerably even for 
relatively low dimensionalities [Chakrabarti and Mehrotra (1999)]; the 
number of dimensions that can be handled is usually several orders of 
magnitude lower than the number of data points in a typical time se-
quence. 

A general solution described by Faloutsos et al. [Faloutsos et al. 
(1994), Faloutsos et al. (1997)] is to extract a low-dimensional signature 
from each sequence, and to index the signature space. This shrink and 
search approach is illustrated in Figure 2. 
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 Figure 2  The Signature Based Approach 
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 An important result given by Faloutsos et al. [Faloutsos et al. 
(1994)] is the proof that in order to guarantee completeness (no false 
dismissals), the distance function used in the signature space must under-
estimate the true distance measure, or: 

 ),()~,~( yxdyxdk
""

#  (4) 

 This requirement is called the bounding lemma. Assuming that 
(1.4) holds, an intuitive way of stating the resulting situation is: “if two 
signatures are far apart, we know the corresponding [sequences] must 
also be far apart” [Faloutsos et al. (1997)]. This, of course, means that 
there will be no false dismissals. To minimise the number of false 
alarms, we want kd  to approximate d as closely as possible. The bound-
ing lemma is illustrated in Figure 3. 

  

!x

x̃

!y

ỹ
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 Figure 3  An Intuitive View of the Bounding Lemma 
 
This general method of dimensionality reducion may be summed up as 
follows [Keogh et al. (2001b)]: 
 1. Establish a distance measure d from a domain expert. 
 2. Design a dimensionality reduction technique to produce signa-

tures of length k, where k can be efficiently handled by a stan-
dard spatial access method. 

 3. Produce a distance measure kd  over the k-dimensional signature 
space, and prove that it obeys the bounding condition (4). 
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In some applications, the requirement in (4) is relaxed, allowing for a 
small number of false dismissals in exchange for increased performance. 
Such methods are called approximate. 

 The dimensionality reduction may in itself be used to speed up the 
sequential scan, and some methods (such as the piecewise linear ap-
proximation of Keogh et al., which is described in Section 1.4.2) rely 
only on this, without using any index structure. 

3.1  A Simple Example 

As an example of the signature based scheme, consider the two se-
quences shown in Figure 4. 

 

d(!x,!y) = ∑ | · · · |

!x

!y
v

t

x̃

ỹ

 

 Figure 4  Comparing Two Sequences 
 
The sequences, x"  and y" , are compared using the 1L  measure (Manhat-
tan distance), which is simply the sum of the absolute distances between 
each aligning pair of values. A simple signature in this scheme is the pre-
fix of length 2, as indicated by the shaded area in the figure. As shown in 
Figure 1.5, these signatures may be interpreted as points in a two-
dimensional plane, which can be indexed with some standard spatial in-
dexing method. It is also clear that the signature distance will underesti-
mate the real distance between the sequences, since the remaining sum-
mands of the real distance must all be positive. 
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 Figure 5  A Simple Signature Distance 
 

 Although correct, this simple signature extraction technique is not 
particularly precise. The signature extraction methods introduced in the 
following sections take into account more information about the full se-
quence shape, and therefore lead to fewer false alarms. 

 Figure 6 shows a time series containing measurements of atmos-
pheric pressure. In the following three sections, the methods described 
will be applied to this sequence, and the resulting simplified sequence 
(reconstructed from the extracted signature) will be shown superimposed 
on the original. 

  

 Figure 6  An Example Time Sequence 

3.2  Spectral Signatures 

Some of the methods presented in this section are not very recent, but in-
troduce some of the main concepts used by newer approaces. 
Agrawal et al. [Agrawal et al. (1993)] introduce a method called the F-
index in which a signature is extracted from the frequency domain of a 
sequence. Underlying their approach are two key observations: 
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! Most real-world time sequences can be faithfully represented by their 
strongest Fourier coefficients. 

! Euclidean distance is preserved in the frequency domain (Parseval’s 
Theorem [Shatkay (1995)]). 

Based on this, they suggest performing the Discrete Fourier Trans-
form on each sequence, and using a vector consisting of the sequence’s k 
first amplitude coefficients as its signature. Euclidean distance in the sig-
nature space will then underestimate the real Euclidean distance between 
the sequences, as required. 

 Figure 7 shows an approximated time sequence, reconstructed 
from a signature consisting of the original sequence’s ten first Fourier 
components. 

  

 Figure 7  A Sequence Reconstructed from a Spectral Signature 
 

 This basic method allows only for whole-sequence matching. In 
[Faloutsos et al. (1994)], Faloutsos et al. introduce the ST-index, an im-
provement on the F-index that makes subsequence matching possible. 
The main steps of the approach are as follows: 
 1. For each position in the database, extract a window of length w, 

and create a spectral signature (a point) for it. 
Each point will be close to the previous, because the contents of the slid-
ing window change slowly. The points for one sequence will therefore 
constitute a trail in signature space. 
 2. Partition the trails into suitable (multidimensional) Minimal 

Bounding Rectangles (MBRs), according to some heuristic. 
 3. Store the MBRs in a spatial index structure. 
To search for subsequences similar to a query q"  of length w, simply 
look up all MBRs that intersect a hypersphere with radius ( around the 
signature point q~ . This is guaranteed not to produce any false dismiss-
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als, because if a point is within a radius of ( of q~ , it cannot possibly be 
contained in an MBR that does not intersect the hypersphere. 

 To search for sequences longer than w, split the query into w-
length segments, search for each of them, and intersect the result sets. 
Because a resulting sequence cannot be closer to the full query sequence 
than it is to any one of the window signatures, it has to be close to all of 
them, that is, contained in all the result sets. 

 These two papers ([Agrawal et al. (1993)] and [Faloutsos et al. 
(1994)]) are seminal; several newer approaches are based on them. For 
instance, Rafiei and Mendelzon [Rafiei and Mendelzon (1997)] show 
how the method can be made more robust by allowing various transfor-
mations in the comparison, and Chan and Fu [Chan and Fu (1999)] show 
how the Discrete Wavelet Transform can be used instead of the Discrete 
Fourier Transform, and that the DWT method is empirically superior. 
See [Wu et al. (2000)] for a comparison between DFT and DWT based 
similarity search. 

3.3  Piecewise Constant Approximation 

An approach independently introduced by Yi and Faloutsos [Yi and Fa-
loutsos (2000)] and Keogh et al. [Keogh et al. (2001b), Keogh and Paz-
zani (2000)] is to divide each sequence into k segments of equal length, 
and to use the average value of each segment as a coordinate of a k-
dimensional signature vector. Keogh et al. call the method Piecewise 
Constant Approximation, or PCA. This deceptively simple dimensional-
ity reduction technique has several advantages [Keogh et al. (2001b)]: 
The transform itself is faster than most other transforms, it is easy to un-
derstand and implement, it supports more flexible distance measures than 
Euclidean distance, and the index can be built in linear time. 
 Figure 8 shows an approximated time sequence, reconstructed from a 
ten-dimensional PCA signature. 
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 Figure 8  A Sequence Reconstructed from a PCA Signature 
 
Yi and Faloutsos [Yi and Faloutsos (2000)] also show that this signature 
can be used with arbitrary pL  norms without changing the index struc-

ture, which is something no previous method (such as [Agrawal et al. 
(1993), Agrawal et al. (1995), Faloutsos et al. (1997), Faloutsos et al. 
(1994), Rafiei and Mendelzon (1997), Yi et al. (1998)]) could accom-
plish. This means that the distance measure may be specified by the user. 
Preprocessing to make the index more robust in the face of such trans-
formations as offset translation, amplitude scaling, and time scaling can 
also be performed. 

 Keogh et al. demonstrate that the representation can also be used 
with the so-called weighted Euclidean distance, where each part of the 
sequence has a different weight. 

 Empirically, the PCA methods seem promising: Yi and Faloutsos 
demonstrate up to a ten times speedup over methods based on the dis-
crete wavelet transform. Keogh et al. do not achieve similar speedups, 
but point to the fact that the structure allows for more flexible distance 
measures than many of the competing methods. 

 In [Keogh et al. (2001a)] Keogh et al. propose an improved ver-
sion of the PCA, the so-called Adaptive Piecewise Constant Approxima-
tion, or APCA. This is similar to the PCA, except that the segments need 
not be of equal length. Thus regions with great fluctuations may be rep-
resented with several short seqments, while reasonably featureless re-
gions may be represented with fewer, long segments. The main contribu-
tion of this representation is that it is a more effective compression than 
the PCA, while still representing the original faithfully. 

Two distance measures are developed for the APCA, one which is 
guaranteed to underestimate Euclidean distance, and one which can be 



M.L. Hetland 

 
 

40 

calculated more efficiently, but which may generate some false dismiss-
als. It is also shown that this technique, like the PCA, can handle arbi-
trary pL  norms. The empirical data suggest that the APCA outperforms 

both methods based on the discrete Fourier transform, and methods 
based on the discrete wavelet transform with a speedup of one to two or-
ders of magnitude. 

3.4  Landmark Methods 

In [Keogh and Smyth (1997)] Keogh and Smyth introduce a probabilistic 
method for sequence retrieval, where the features extracted are character-
istic parts of the sequence, so-called feature shapes. In [Keogh (1997)] 
Keogh uses a similar landmark based technique. Both these methods also 
use the dimensionality reduction technique of piecewise linear approxi-
mation (see Section 1.4.2) as a preprocessing step. The methods are 
based on finding similar landmark features (or shapes) in the target se-
quences, ignoring shifting and scaling within given limits. The techique 
is shown to be significantly faster than sequential scanning (about an or-
der of magnitude), which may be accounted for by the compression of 
the piecewise linear approximation. One of the contributions of the 
method is that it is one of the first that allows some longitudinal scaling. 

 A more recent paper by Perng et al. [Perng et al. (2000)] intro-
duces a more general landmark model. In its most general form, the 
model allows any point of great importance to be identified as a land-
mark. The specific form used in the paper defines an n-th order landmark 
of a one-dimentional function to be a point where the function’s n-th de-
rivative is zero. Thus, first-order landmarks are extrema, second-order 
landmarks are inflection points, and so forth. A smothing technique is 
also introduced, which lets certain landmarks be overshadowed by oth-
ers. For instance, local extrema representing small fluctuations may not 
be as important as a global maximum or minimum. 

 Figure 8 shows an approximated time sequence, reconstructed 
from a twelve-dimensional landmark signature. 



A Survey of Recent Methods for Efficient Retrieval of Similar Time Sequences 

 

41 

  

 Figure 9  A Landmark Approximation 
 

 One of the main contributions of [Perng et al. (2000)] is to show 
that for suitable selections of landmark features, the model is invariant 
with respect to the following transformations: 
! Shifting 
! Uniform amplitude scaling 
! Uniform time scaling 
! Non-uniform time scaling (time warping) 
! Non-uniform amplitude scaling 
It is also possible to allow for several of these transformations at once, by 
using the intersection of the features allowed for each of them. This 
makes the method quite flexible and robust, although as the number of 
transformations allowed increases, the number of features will decrease; 
consequently, the index will be less precise. 

 A particularly simple landmark based method (which can be seen 
as a special case of the general landmark method) is introduced by Kim 
et al. in [Kim et al. (2001)]. They show that by extracting the minimum, 
maximum, and the first and last elements of a sequence, one gets a 
(rather crude) signature that is invariant to time warping. However, since 
time warping distance does not obey the triangle inequality [Yi et al. 
(1998)], it cannot be used directly. This problem is solved by developing 
a new distance measure that underestimates the time warping distance 
while simultaneously satisfying the triangle inequality. 

4  Other Approaches 

Not all recent methods rely on spatial access methods. This section con-
tains a sampling of other approaches. 
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4.1  Using Suffix Trees to Avoid Redundant Computation 

Baeza-Yates and Gonnet [Baeza-Yates and Gonnet (1999)] and Park et 
al. [Park et al. (2000)] independently introduce the idea of using suffix 
trees [Gusfield (1997)] to avoid duplicate calculations when using dy-
namic programming to compare a sequence with a database. In [Baeza-
Yates and Gonnet (1999)] edit distance is used, while in [Park et al. 
(2000)] time warping is used (see Appendix A for a details). 

 The basic idea of the approach is as follows: When comparing two 
sequences x"  and y"  with dynamic programming, a subtask will be to 
compare their prefixes ix :1  and jy :1 . If two other sequences are compared 

that have identical prefixes to these (for instance, the query and another 
sequence from the database), the same calculations will have to be per-
formed again. If a sequential search for subsequence matches is per-
formed, the cost may easily become prohibitive. 

 To avoid this, all the sequences in the database are indexed with a 
suffix tree. A suffix tree stores all the suffixes of a sequence, with identi-
cal prefixes stored only once. By performing a depth-first traversal of the 
suffix tree one can access every suffix (which is equivalent to each pos-
sible subsequence position) and backtrack to reuse the calculations that 
have already been performed for the prefix that the current and the next 
candidate subsequence share. 

 In [Baeza-Yates and Gonnet (1999)] it is assumed that the se-
quences are strings over a finite alphabet; Park et al. avoid this assump-
tion by classifying each sequence element into one of a finite set of cate-
gories. Both methods achieve subquadratic running times. 

4.2  Data Reduction through Piecewise Linear Approximation 

Keogh et al. have introduced a dimensionality reduction technique using 
piecewise linear approximation of the original sequence data [Keogh 
(1997), Keogh and Pazzani (1998), Keogh and Pazzani (1999a), Keogh 
and Pazzani (1999b), Keogh and Smyth (1997)]. This reduces the num-
ber of data points by a compression factor typically in the range from 10 
to 600 for real data [Keogh (1997)], outperforming methods based on the 
Discrete Fourier Transform by one to three orders of magnitude [Keogh 
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and Pazzani (1999b)]. This approximation is shown to be valid under 
several distance measures, including dynamic time warping distance 
[Keogh and Pazzani (1999b)]. An enhanced representation is introduced 
in [Keogh and Pazzani (1998)], where every line segment in the ap-
proximation is augmented with a weight representing its relative impor-
tance; for instance, a combined sequence may be constructed represent-
ing a class of sequences, and some line segments may be more represen-
tative of the class than others. 

4.3  Search Space Pruning through Subsequence Hashing 

In [Keogh and Pazzani (1999a)] Keogh and Pazzani introduce an index-
ing method based on hashing, in addition to the piecewise linear ap-
proximation. An equi-spaced template grid window is moved across the 
sequence, and for each position a hash key is generated to decide into 
which bin the corresponding subsequence is put. The hash key is simply 
a binary string, where 1 means that the sequence is predominantly in-
creasing in the corresponding part of the template grid, while 0 means 
that it is decreasing. These bin keys may then be used during a search, to 
prune away entire bins without examining their contents. To get more 
benefit from the bin pruning, the bins are arranged in a best-first order. 

5  Conclusion 

This chapter has sought to give an overview of recent advances in the 
field of similarity based retrieval in time sequence databases. First, the 
problem of similarity search and the desired properties of robust distance 
measures and good indexing methods were outlined. Then, the general 
approach of signature based similarity search was described. Following 
the general description, three specific signature extraction approaches 
were discussed: Spectral signatures, based on Fourier components (or 
wavelet components); piecewise constant approximation, and the related 
method adaptive piecewise constant approximation; and landmark meth-
ods, based on the extraction of significant points in a sequence. Finally, 
some methods that are not based on signature extraction were mentioned. 

 Although the field of time sequence indexing has received much 
attention and is now a relatively mature field [Keogh et al. (2002)] there 
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are still areas where further research might be warranted. Two such areas 
are (1) thorough empirical comparisons and (2) applications in data min-
ing. 

 The published methods have undergone thorough empirical tests 
that evaluate their performance (usually by comparing them to sequential 
scan, and, in some cases, to the basic spectral signature methods), but 
comparing the results is not a trivial task—in most cases it might not 
even be very meaningful, since variations in performance may be due to 
implementation details, available hardware, and several other factors that 
may not be inherent in the indexing methods themselves. Implementing 
several of the most promising methods and testing them on real world 
problems (under similar conditions) might lead to new insights, not only 
about their relative performances in general, but also about which meth-
ods are best suited for which problems. Although some comparisons 
have been made (such as in [Wu et al. (2000)] and, in the more general 
context of spatial similarity search, in [Weber et al. (1998)]), little re-
search seems to have been published on this topic. 

 Data mining in time series databases is a relatively new field [Ke-
ogh et al. (2002)]. Most current mining methods are based on a full, lin-
ear scan of the sequence data. While this may seem unavoidable, con-
structing an index of the data could make it possible to perform this full 
data traversal only once, and later perform several data mining passes 
that only use the index to perform their work. It has been argued that data 
mining should be interactive [Das et al. (1998)], in which case such 
techniques could prove useful. Some publications can be found about us-
ing time sequence indexing for data mining purposes (such as [Keogh et 
al. (2002)], where a method is presented for mining patterns using a suf-
fix tree index) but there is still a potential for combining existing se-
quence mining techniques with existing methods for similarity-based re-
trieval. 

Appendix A  Distance Measures 

Faloutsos et al. [Faloutsos et al. (1997)] describe a general framework 
for sequence distance measures (a similar framework can be found in 
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[Jagadish et al. (1995)]). They show that many common distance meas-
ures can be expressed in the following form: 

 
*
+
, %%

" )

),(
))}(),(()()({min

min),(
0

2121, 21

yxd
yTxTdTcTc

yxd TTT ""
""

""  (5) 

T is a set of allowable transformations, )( iTc  is the cost of performing 
the transformation iT , )(xTi

" is the sequence resulting from performing 
the transformation iT  on x" , and 0d  is a so-called base distance, typi-
cally calculated in linear time. For instance, pL  norms (such as Manhat-
tan distance and Euclidean distance) results when -"T  and 

 p l

i
p

iip yxLyxd . "
'""

10 ),( ""  (6) 

where lyx ""
"" . 

 
Editing distance (or Levenshtein distance) is the weight of the minimum 
sequence of editing operations needed to transform one sequence into 
another [Sankoff and Kruskal (1999)]. It is usually defined on strings (or 
equi-spaced time sequences), but in [Mannila and Ronkainen (1997)] 
Mannila and Ronkainen show how to generalise this measure to general 
(non equi-spaced) time sequences. In the framework given above, editing 
distance may be defined as: 

 
/
*

/
+

,

%
%
%

"
),()),((

),())((
),())((

min),(

:2:211

:21

:21

nmed

ned

med

ed

yxdyxsubc
yxdydelc

yxdxdelc
yxd "

"
""  (7) 

where xm "
" , yn "

" , )( 1xdel  and )( 1ydel  stand for deleting the first 
elements of x"  and y" , respectively, and ),( 11 yxsub  stands for substitut-
ing the first element of x"  with the first element of y" . 
A distance function with time warping allows non-uniform scaling along 
the time axis, or, in sequence terms, stuttering. Stuttering occurs when an 
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element from one of the sequences is repeated several times. A typical 
distance measure is: 

 
/
*

/
+

,
%"

stutter) no(),(
)stutter-(),(
)stutter-(),(

min),(),(

:2:2

:2

:2

110

nmtw

mtw

ntw

tw

yxd
yyxd
xyxd

yxdyxd ""
""

""  (8) 

Both edd  and twd  can be computed in quadratic time ( )(mnO ) using dy-
namic programming [Cormen et al. (1993), Sankoff and Kruskal (1999)]: 
An nm0  table D  is filled iteratively so that ),(],[ :1:1 ji yxdjiD " . The 
final distance ),( yxd ""  is found in ],[ nmD . 
The Longest Common Subsequence (LCS) measure [Cormen et al. 
(1993)], ),( yxdlcs

"" , is the length of the longest sequence s"  which is a 
(possibly non-contiguous) subsequence of both x"  and y" , in other words: 

 },|max{),( ysxssyxdlcs
"""""""

11"  (9) 

In some applications the measure is normalised by dividing by 
),max( yx "" , giving a distance in the range ]1,0[ . ),( yxdlcs

""
 may be cal-

culated using dynamic programming, in a manner quite similar to edd . 
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