
Retrieving musical information based on
rhythm and pitch correlations

Will Archer Arentz
willa@idi.ntnu.no

Magnus Lie Hetland
magnus@hetland.org

Bjørn Olstad
bjorn.olstad@fast.no

Abstract

Music Information Retrieval and Query-by-Humming systems has re-
cently been given much attention. One of the reasons for this is the diversity
of attractive applications that can be developed with these techniques. Imag-
ine having a tune on the tip of your tongue, but you cannot really place it.
What is the name of the song and who is the artist? The proposed method
is designed to help in pursuing such request. Both pitch and rhythmic infor-
mation is utilized to determine the most closely matched song for any given
theme. This also includes polyphonic songs, which may not contain the
wanted theme in the main melody, but rather in one of it’s accompaniments.

Due to human’s poor ability to accurately reproduce a piece of music,
whether it is caused by poor memory or poor music skills, such methods
must be robust in a way that makes people’s perception of similarity highly
correlated with the distances calculated by the algorithm. The proposed
dynamic programming algorithm finds 93% of the wanted hits among the
top-10 results when the timing is distorted with a standard deviation of 0.2
seconds and the pitch is distorted with a standard deviation of 0.3 notes,
using 7 note queries and a 1564 song MIDI database.

1 Introduction
Typically, people do not memorize everything about a song the first time they hear
it. Information such as title, composer and performer, are often learned at a much
later stage of a person’s relationship with a song. Furthermore, as the human
brain often forgets this information, while the melody remains fresh in mind, it

1



seems obvious that an application capable of retrieving music from humming or
whistling can be very useful.

The recent development in music information retrieval (MIR) has brought for-
ward several promising query-by-humming (QBH) systems that attempt to de-
velop applications where the hummed or whistled theme of a song can be search
through a large database, thus returning the closest matching song. The input
interface to such a system may for example be a digital piano or simply a micro-
phone, where the user is requested to whistle or sing the query into the micro-
phone, before a signal processing system turns the audio into musical notes. The
processed sequence of notes often has several errors in comparison to the origi-
nal piece of music. A major reason for this is human’s poor music-reproduction-
ability. For example, the theme may sound similar, even if a few notes are missing,
the key is wrong, the tempo is to slow and a long tone was reproduce as 3 shorter
tones. A QBH system should calculate the distance based on perceptible differ-
ences. The method proposed in this article has attempted to take such information
into account, and it can therefore provide a very robust and accurate search, even
for a very short query.

1.1 Prior work
Much work has recently been done in the area of music information retrieval
and query-by-humming systems. Some of it is summarized in Pickens’ survey
of feature selection techniques in MIR (Pickens, 2001). Obviously, the most ba-
sic approach is to base the search on a monophonic sequence of notes, with their
accompanying pitch and duration, simplifying the problem to one dimension. Al-
ternatively, the pitch can be extracted and the duration is ignored, or vice versa.
Both pitch and duration may be used in the final system, but in most work these
features are treated separately. Exceptions to this can be found in (Lemstrom,
Laine, & Perttu, 1999; Chen et al., 2000). Furthermore there is a question of
using absolute or relative measures, where relative is the most popular, because
changes in tempo or transposition across keys do not significantly alter the mu-
sic information expressed (Ghias, Logan, Chamberlin, & Smith, 1995; Lindsay,
1994; Lemstrom et al., 1999; Blackburn & Roure, 1998).

The use of dynamic programming (DP) to calculate the distance between a set
of query notes and all the notes within all the songs in the database in a sliding
window manner, has recently been attempted (Song, Bae, & Yoon, 2002; Pauws,
2002). Both projects have limited the research to only include the pitch feature,
thus ignoring the information in the duration feature. However, they both claim
to have fully operational query-by-humming systems. Also, an approach using
dynamic time warping on frame-based queries has been attempted (Mazzoni &
Dannenberg, 2001). This paper shows how to include the timing feature as well

2



as the pitch and thus filling the gap in prior work.
This paper is organized as follows: Section 2 explains the proposed algorithm,

followed by Section 3, which goes through the experimental results. Finally, Sec-
tion 4 presents some concluding remarks, and points out some possible future
research.

2 The Algorithm
A tune or motif can be represented as a sequence of pitch values, p(zi), and a
corresponding timestamp function t(zi) which gives the starting point for each
note. Two tunes x = x1, . . . , xn and y = y1, . . . , yn are said to match if p(xi) =
p(yi) for i = 1 . . . n. To achieve key invariance a match can be redefined as
p(xi) − p(xi−1) = p(yi) − p(yi−1) for i = 2 . . . n. In other words, the semitones
of x must equal the semitones of y.

When comparing a query motif q = q1, . . . , qm with a tune s = s1, . . . , sn

from a music database, we would like to find a subsequence in s that matches q.
This means that all notes in the query must be accounted for, but the matching
notes from s need not be contiguous.

Formally, we define an alignment of a query q and a tune s as a strictly increas-
ing sequence of indices i = i1, . . . , im. A matching alignment is an alignment i
such that si1 , . . . , sim matches q. How this match is found will be explained later
in this section. Figure 1 shows a query q aligned with a tune s. Notice that when
the alignment skips a note in the song, this is equivalent to the consolidation of
two notes since only note on sets are considered.

s 1 2 3 4 5 6 7 8 9 10

654321

match

q
Figure 1: Match of query q and tune s with alignment i = 3, 4, 6, 7, 8, 9

Given the notion of a matching alignment, we can now define a dissimilarity

3



measure between a query q and a tune s for a specific alignment i, as follows:

d(q, s, i) =
m∑

j=2

w(qj−1, qj, sij−1 , sij)
2, (1)

where w(qa, qb, sc, sd) represents the cost of pairing up the note pair (qa, qb) in the
query with the note pair (sc, sd) in the tune. A temporal cost function w can be
defined as

w(qa, qb, sc, sd) = α{t(sd)− t(sc)}−{ t(qb)− t(qa)}, (2)

where α is a scaling factor, used to account for tempo differences between the
two tunes, and t(si) is the timestamp for the given note si ∈ s. The dissimilarity
between a query q and a tune s can then be defined as

d(q, s) = min
i

{d(q, s, i)}. (3)

For a given alignment i, d(q, s, i) is minimized by choosing α as

α =

∑m
j=2(t(sij)− t(sij−1))(t(qj)− t(qj−1))∑m

i=2(t(sij)− t(sij−1))
2

. (4)

Since the optimal value for α is given as a function of the alignment i, the opti-
mization task in (3) becomes a matter of finding an optimal alignment.

Assuming, for now, that the value of α is known, the optimization may be
expressed recursively as follows:

d(q1:a, s1:b) = min
c

{d(q1:a−1, s1:c) + w(qa−1, qa, sc, sb)
2} (5)

where q1:a and s1:b are prefixes of q and s, of length a and b, respectively.
This equation may be solved iteratively, by dynamic programming (Bellman,

1957). The basic solution simply consists of constructing a two-dimensional ar-
ray E of size m × n for storing the partial solutions, and iterating over the two
prefix-lengths. See (Sankoff & Kruskal, 1999) for examples of the same technique
applied to the problem of computing the Levenshtein distance (edit distance) and
Euclidean distance under dynamic time warping. An application of the basic Lev-
enshtein distance algorithm to timestamped data, similar to ours, can be found
in (Mannila & Ronkainen, 1997).

There are two issues that must be addressed before such a dynamic program-
ming solution can be implemented: We need to find the value of α, and we need
to determine the allowable values for c in (5).

Preferably, α should be computed according to (4), but not all the required
values are available during the stepwise computation of the dynamic programming

4



algorithm. We approximate the α associated with a given c when calculating
d(q1:a, s1:b) with a recursive filter, as follows:

α̂(a, b) =






1, a = 1

α̂(a− 1, c), a > 1, t(sa)− t(sc) < ε

β · α̂(a− 1, c) + (1− β) · t(qa)−t(qa−1)
t(sb)−t(sc)

, a > 1, t(sa)− t(sc) ≥ ε
(6)

The β value should be relatively high to avoid that the matching algorithm degen-
erates, accepting any rhythm variations due to note-to-note variations in α̂. We
used β = 0.85 in our experiments. Implementing this in a DP framework would
mean introducing a second two-dimensional array α of dimension m× n. In this
way the scaling factor may be iteratively updated according to (6) to reflect the
scaling factor that should be applied when calculating a partial solution.

The optimization parameter c will take on the values b−1, b−2, . . . . The c is
simply the index of the note in the tune s that was matched by the previous note
in the query q; if we restricted c to b−1, no extra notes would be allowed between
the notes in the query. As a way of pruning the search for an optimal alignment,
we may restrict the values of c, either by setting an absolute limit on the number
of extra notes allowed in the tune between two query notes, or by placing an upper
limit on the ratio

α̂(t(sb)− t(sc))

t(qa)− t(qa−1)
,

as well as placing upper and lower limits on α̂ (for example, 2 and 0.5, respec-
tively). To compute c, a heuristic cost function is introduced. As a part of this, the
pitch error is calculated as

εpitch(a, b) = |p(sc)− p(sb)− p(qa−1) + p(qa)|, (7)

where the pitch values are MIDI note values multiplied by ten. This increase in
pitch resolution allows for more accurate results from the pitch tracker, giving a
more exact match for the cases where the pitch is slightly closer to the wrong,
than the right note.

The proposed cost function for pitch error,

Cp(εp) =

{
Ω1 · εp εp ≤ 10

Ω1 + Ω2−Ω1
10 (εp − 10) εp > 10

, (8)

takes the pitch error as argument and calculates a cost accordingly. The constants
Ω1 and Ω2 are the costs for a difference of one and two semitones’, respectively.
The values Ω1 = 360000 and Ω2 = 1000000 proved to be reasonable values. Al-
though all constants were originally set by trial and error, they were later verified
or optimized by genetic algorithms.

5

Magnus Lie Hetland
The first case should be divided by 10, so that Cp(10) = Ω1.



Given the pitch error cost, follows the temporal error cost. Defining the align-
ment cost as

Ct(a, b) = α(a− 1, c) · {t(sb)− t(sc)}−{ t(qa)− t(qa−1)}, (9)

the following function for “previous song note cost” is suggested:

E(a, b) = min
c

{E(a−1, c)+Ct
2(a, b)+Cp(εp)+(b−c−1)·Cadditionalnote}. (10)

Although several cost functions and parameter values were investigated, using
random queries with different levels of added noise, (10) proved to be most promis-
ing. The constant Cadditionalnote determines the penalty added for skipping a note.
A good choice is Cadditionalnote = 160000.

Pseudocode that illustrates the main ideas of the algorithm can be seen in
figure 2 on the following page. The algorithm can be divided into three sections;
initialization, DP-table computation, and reading and returning best match. In the
first section every value in the first row of the DP-table is set to 0, thus allowing for
transposed queries. The second section loops over all notes in the query (qi) and all
notes in the song (sj). The values kmin and kmax indicates the range of notes that
can be skipped in the song. This range is limited by the constant maxskip. As k
loops over the candidates for previous song note, the cost is computed according
to (10) and the lowest inserted in the DP-table. Finally, in the third section the
lowest value on the last row indicates the best match and is thus returned.

Note that ε denotes a small value, for example 5 milliseconds. This is to adjust
for inaccuracies occurring during manual entering of chords. The running time for
the algorithm is O(mn) for each song in the database.

3 Experimental results
The described algorithm was tested by interfacing it with a pitch tracker, which
converted a hummed or whistled query to notes. Although a pitch tracker was de-
veloped for the proposed query-by-humming system, only the matching algorithm
is described and discussed in this paper. Moreover, although the pitch tracker
and matching algorithm were capable of producing and alternatives with different
probabilities for each choice of pitch in the query, this capability was not used in
any of the experiments.

To achieve a more accurate measurement of the system’s actual performance,
a new evaluation-scheme was set up. The idea was therefore to extract a theme
from a random place in a song with some set length l, and then modify this theme
before using it as a query on the database. The database used in the experiments
contained 1564 monophonic songs. These songs were single channel MIDI files

6



match(q, s)
for j ∈ 1 . . . n

E[1, j] := 0
α[1, j] := 1

for i ∈ 2 . . . m
for j ∈ i . . . n

kmax := j − 1
kmin := kmax −maxskip
Ebest :=∞
α[i, j] := 1
δ := t(qi)− t(qi−1)
rightnote := p(sj) + p(qi−1)− p(qi)
kbest :=−1
for k ∈ kmin . . . kmax

εpitch := |p(sk)− rightnote|
Cεpitch

:= PitchErrorCost(εpitch)
∆ := α[i− 1, k] · (t(sj)− t(sk))− δ
Ecur := E[i− 1, k] + ∆2 + Cεpitch

+ (j − k − 1) · Cadditionalnote

if Ecur < Ebest

kbest := k
Ebest := Ecur

E[i, j] := Ebest

if t(sj)− t(skbest
) < ε

α[i, j] := α[i− 1, kbest ]
else

α[i, j] := β · α[i− 1, kbest ]+
(1− β) · (δ/t(sj)− t(skbest

))
best :=∞
for j ∈ m . . . n

if E[m, j] < best
best := E[m, j]

return best

Figure 2: Pseudocode for the matching algorithm.

7



H
it 

ra
te

 (%
)

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000

’top−1’

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000

’top−1’
’top−5’

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000

’top−1’
’top−5’

’top−10’

Time distortion (ms)

0

Figure 3: The algorithm’s hit rate as a function of time distortion(σtime)

(Loy, 1985), which were used as ring tones on mobile phones. The MIDI files
were found by searching on the Internet. The proposed algorithm can handle
polyphonic songs as well, but for simplicity only monophonic songs were used
for the experiments in this paper, as the handling of polyphonic files is basically
traversing each channel sequentially, as if they were separate files. In the database
used in the experiments, several recordings were present for some of the songs.

When simulating the errors of humans as they try to recreate a musical piece, it
is important to understand that the ability to accurately reproduce the right pitch at
the right time varies greatly. The timing is especially important in this context, as
this is where most of the errors occur. By measuring the errors of a few musicians
trying to perfectly recreate a piece of music, we discover that the errors can be
approximated by the normal distribution:

n(x; µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2

Thus, we can sample new values into a query q = q1, ..., ql, from the exact motif
m = m1, ...,ml extracted from the song.

The time of the query element qi is set by

t(qi) = [
√
−2ln(U2)cos(2πU1)]σtime + t(mi) (11)

where U1 and U2 are uniformly distributed random numbers, and σ is set to some
appropriate standard deviation. The greater the standard deviation, the greater

8



Pitch distortion (semitones x 10)

20

40

60

80

100

0 5 10 15 20 25 30

’top−1’

0

20

40

60

80

100

0 5 10 15 20 25 30

’top−1’
’top−5’

0

20

40

60

80

100

0 5 10 15 20 25 30

’top−1’
’top−5’

’top−10’

H
it 

ra
te

 (%
)

0

Figure 4: The algorithm’s hit rate as a function of pitch distortion(σpitch)

the error introduced into the query. Figure 3 shows how the increasing standard
deviation decreases accuracy in the result. For each chosen standard deviation,
one hundred queries were run, and the results measured as being the top match,
among the top 5 or among the top 10 result hits. Each query had a size of 10 notes,
which will usually suffice to get a good result. Throughout the experiments it was
decided to use 100 queries to determine the hit rate. That means the percent of
the queries that found its match among the top-n (usually top-10) results from the
100 queries run through the search algorithm.

Furthermore, since some songs are manually typed into a computer or mobile
phone rather than played on an instrument, several songs may have the same se-
quence of 10 notes and thereby leaving additional potential for errors. And, more
importantly, some songs had more than one entry in the database, but with differ-
ent names. This makes it impossible for the algorithm to know which one we are
searching for. Thus, the top-1 measure is not very reliable, and the top-5 and es-
pecially the top-10 should be the focus of our attention. It can be seen from figure
3 that even with a standard deviation of 8000 milliseconds, that is 8 seconds, the
requested result is among the top-10 in 21% of the queries.

Figure 4 shows how the algorithm performs as the pitch is distorted using the
Box-Muller method as described in (11). Also here the query consisted of 10
notes and 100 queries were tested for each choice of σpitch. The values describing
pitch changes (x-axis) are the number of semitones between two notes, multiplied

9



0 500 1000 1500 2000 2500 3000

0

5

10

15

20

0

10

20

30

40

50

60

70

80

90

100

Pitch distortion
Time distortion

Hi
t r

at
e

Figure 5: The algorithm’s hit rate as a function of time and pitch distortion

by 10. That is, if a C equals 600, then a C# would be 610. It can be seen that the
penalty for making a pitch mistake is higher than the penalty for making a severe
rhythmic mistake. This is due to the fact that humans perceive pitch mistakes as
significantly more serious than timing mistakes (Shmulevich, Yli-Harja, Coyle,
Povel, & Lemstrom, 1999). Our algorithm should therefore act on this principle.

By adding distortion both to the pitch and to the time, the hit rate response of
the algorithm can be seen from figure 5. Here a “hit” is defined as included in
the top-10 matches returned from the algorithm. For each point in the graph 100
queries consisting of 10 notes were run through the algorithm.

However, the hit rate also depends on the number of notes in the query. In
figure 6 it can be seen how the algorithm’s ability to find the right results im-
proves as the query length increases. In this figure’s bottom graph, distortion was
introduced in both the time (σtime = 500) and the pitch (σpitch = 5) data.

Table 1 shows how the length of the query affects the hit rate, in some typical
distortion scenarios. It should be noted that even with as few as 5 notes in the
query, good results can be achieved with medium distortion.

Although these experiments, using fabricated queries with statistically sam-

10



Query Length (number of notes)

20

40

60

80

100

0 5 10 15 20 25 30

’top−10’

H
it 

ra
te

 (%
)

0

H
it 

ra
te

 (%
)

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

’top−10’

Query length (number of notes)

0

Figure 6: The algorithm’s hit rate as a function of query length (top:σtime =
0, σpitch = 0, bottom:σtime = 500, σpitch = 5)

11



Table 1: The hit rate (% in top-10 from tested 100 queries) as function of the query
length and some typical distortions

Query length 3 5 7 10 15 20 25
σtime = 0
σpitch = 0 76 100 100 100 100 100 100
σtime = 50
σpitch = 1 43 93 100 100 100 100 100
σtime = 100
σpitch = 2 22 89 100 100 100 100 100
σtime = 200
σpitch = 3 15 63 93 98 100 100 100
σtime = 300
σpitch = 4 16 37 74 94 100 100 100
σtime = 400
σpitch = 5 5 29 53 78 96 100 100
σtime = 500
σpitch = 6 4 22 47 59 96 95 97

pled errors can say a lot about the algorithm’s capabilities, experimenting with
a real-world data set may be necessary to ensure robustness against typical hu-
man errors. Errors, such as gradual or sudden tempo changes, key changes, and
skipping or adding notes were not tested for with the fabricated queries.

Even though the MAMI project (Lesaffre et al., 2003 (ISMIR 2003)) has a
great collection of freely available audio queries, they do not include a correspond-
ing MIDI database. The data set used by Mazzoni and Dannenberg (Mazzoni &
Dannenberg, 2001) was therefore chosen, for comparing our approach with their
frame-based dynamic time warping,

where the authors suggested to use sequences of 10ms frames - assigning one
pitch value to each frame - as basis for their DTW search. While the database
scores are easily converted to frames, the authors used a “pitch tracker” applica-
tion to transform audio queries into sequences of frames. The data set was com-
posed of 481 single-track songs and 136 queries, both in MIDI format. The audio
recordings used to generate the MIDI queries were not available, we did not have
any control over the note segmentation process. Although the queries also were
available in the frame-format used in Mazzoni and Dannenberg’s experiments,
these could not simply be converted to MIDI.

Mazzoni and Dannenberg’s use of frames instead of musical scores, introduce
a potentially significant source of error in the process, because we don’t know

12



much about the algorithm converting a query to MIDI compared to the one for
converting to frame-sequences.

Mazzoni did, however, experiment both with frame-based and score-based
matching (Mazzoni, 2002). The reported results for these experiments were sum-
marized as 77% of the queries resulting with a match among the top-10 search
results for the frame-based approach, and 54% for the score-based. It is finally
concluded that the frame based approach, although very slow, is superior to any
score-based matching scheme for QBH systems. Although there are a number of
issues not handled by the DTW algorithm (i.e. skipping notes, additional note,
changing key), it seems reasonable that a frame based Dynamic Programming al-
gorithm would give good results for QBH systems. This is especially true, because
the fine details of the input are kept and used in a non-heuristic search.

Using the same score-based queries; we were able to get 67% among the top-
10 with the presented method. Although well bellow Mazzoni’s frame-based ap-
proach, several factors have to be considered when comparing the two methods.

Firstly, the score segmentation is believed to be the primary source for er-
ror. Furthermore, the DTW method was unable to robustly handle tempo and key
changes, although these errors were not extensively tested for in the present data
set. Finally, it should be noted that the DTW algorithm only matched against
the beginning section of each song, as all queries were composed, starting at the
beginning of the song. The proposed method did, however, match against all pos-
sible compositions of seven notes (excluding possible skipped notes) in each song,
using only the first seven notes in the query. In other words, we searched through
a much larger search space than the DTW method.

The current implementation of the search engine can handle more than thou-
sand polyphonic songs in each collection, and still search through a collection in a
fraction of a second. As the running time of the matching algorithm is linear, any
growth in the database size will require and equal growth in CPU power to retain
search speeds. In the proposed system, large databases were divided into collec-
tions, which were searched through individually with different CPUs/computers,
before finally collecting, sorting and representing the results.

4 Conclusion
This paper has presented a method for accurately searching in music databases
with short queries, allowing distortion in both the pitch and time domain. The
dynamic programming algorithm finds 93% of the wanted hits among the top-10
results when the timing is distorted with a standard deviation of 0.2 seconds and
the pitch is distorted with a standard deviation of 0.3 semitones (σpitch = 3), using
only 7 note queries.

13



Figure 7: A screenshot from our query-by-humming interface

The algorithm has currently a linear running time, so future work includes re-
searching how to index the search so that the speed can be increased. Also, the
comparison with Mazzoni’s work suggests that a frame-based version of the algo-
rithm may prove interesting. Furthermore, a generalized framework for applying
and adjusting the algorithm to other applications also deserves further investiga-
tion.

All in all the proposed method has shown to be very successful, and it has
generated much commercial interest, as well as being incorporated into several
applications such as a full query-by-humming system (see figure 7), a mobile
ring tone search application and a real-time search and assist feature on MIDI
keyboards.

References
Bellman, R. (1957). Dynamic Programming. Princeton University Press.
Blackburn, S., & Roure, D. D. (1998). A tool for content-based navigation

of music. In Proceedings of ACM International Multimedia Conference
(ACMMM). Retrieved April 07, 2005, from http://eprints.ecs.
soton.ac.uk/725/02/html.

Chen, A. L. P., Hsu, J.-L., Chang, M., Chen, J., Hsu, C.-H., & Hua, S. Y. S. (2000).
Query by Music Segments: An Efficient Approach for Song Retrieval. In
Proceedings of IEEE International Conference on Multimedia and Expo.
Retrieved April 07, 2005, from http://make.cs.nthu.edu.tw:
8000/asp/query2.asp.

14



Ghias, A., Logan, J., Chamberlin, D., & Smith, B. C. (1995). Query by Humming:
Musical Information Retrieval in an Audio Database. In ACM Multimedia
(p. 231-236).

Lemstrom, K., Laine, P., & Perttu, S. (1999). Using Relative Interval Slope in
Music Information. Retrieval. In Proceedings of International Computer
Music Conference (p. 317-320).

Lesaffre, M., Tanghe, K., Martens, G., Moelants, D., Leman, M., Baets, B. D.,
et al. (2003 (ISMIR 2003), October 26-30). The MAMI Query-By-Voice
Experiment: Collecting and annotating vocal queries for music information
retrieval. In Proceedings of the International Conference on Music Infor-
mation Retrieval.

Lindsay, A. (1994). Using contour as a mid-level representation of melody.
Master Thesis, Massachusetts Institute of Technology, Retrieved April 07,
2005, from http://citeseer.nj.nec.com/lindsay96using.
html.

Loy, G. (1985). Musicians Make a Standard: The MIDI Phenomenon. In Com-
puter Music Journal 9(4) (p. 8-26).

Mannila, H., & Ronkainen, P. (1997). Similarity of Event Sequences (revised
version). In Proceedings of the Fourth International Workshop on Temporal
Representation and Reasining, TIME 97 (p. 136-139).

Mazzoni, D. (2002, August). Tech Report: Melody Matching Using Time Warping
(Tech. Rep.). Harvey Mudd College.

Mazzoni, D., & Dannenberg, R. B. (2001). Melody Matching Directly From Au-
dio. In Proceedings of ISMIR (p. 17-18). Bloomington: Indiana University.

Pauws, S. (2002). Cubyhum: A Fully Operational Query by Humming System.
In Proceedings of ISMIR (p. 187-196).

Pickens, J. (2001). A survey of feature selection techniques for music infor-
mation retrieval. Technical report, Center for Intelligent Information Re-
trieval, Departament of Computer Science, University of Massachussetts.
Retrieved April 07, 2005, from http://citeseer.ist.psu.edu/
pickens01survey.html.

Sankoff, D., & Kruskal, J. (Eds.). (1999). Time Warps, String Edits, and Macro-
molecules : The Theory and Practice of Sequence Comparison (Reissue
ed.). CSLI Publications.

Shmulevich, I., Yli-Harja, O., Coyle, E., Povel, D., & Lemstrom, K. (1999, April).
Perceptual issues in music pattern recognition — complexity of rhythm and
key finding. In Proceedings of AISB Symposium on Musical Creativity (p.
64-69). Edinburgh, United Kingdom.

Song, J., Bae, S. Y., & Yoon, K. (2002). Mid-Level Music Melody Representation
of Polyphonic Audio for Query-by-Humming System. In Proceedings of
ISMIR (p. 133-139).

15


