
Beginning Python
From Novice to Professional

■ ■ ■

Magnus Lie Hetland

Hetland_519XFront.fm Page i Tuesday, August 23, 2005 5:04 AM

Beginning Python: From Novice to Professional

Copyright © 2005 by Magnus Lie Hetland

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-519-X

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Editor: Matt Moodie
Technical Reviewer: Jeremy Jones
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Associate Publisher: Grace Wong
Project Manager: Beckie Stones
Copy Edit Manager: Nicole LeClerc
Copy Editor: Ami Knox
Assistant Production Director: Kari Brooks-Copony
Production Editor: Linda Marousek
Compositor: Susan Glinert Stevens
Proofreader: Liz Welch
Indexer: Michael Brinkman
Interior Designer: Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

Hetland_519XFront.fm Page ii Tuesday, August 23, 2005 5:04 AM

81

■ ■ ■

C H A P T E R 5

Conditionals, Loops, and Some
Other Statements

By now, I’m sure you are getting a bit impatient. All right—all these data types are just dandy,
but you can’t really do much with them, can you?

Let’s crank up the pace a bit. You’ve already encountered a couple of statement types
(print statements, import statements, assignments). Let’s first take a look at some more ways
of using these before diving into the world of conditionals and loops. Then, you’ll see how list
comprehensions work almost like conditionals and loops, even though they are expressions,
and finally you’ll take a look at pass, del, and exec.

More About print and import
As you learn more about Python, you may notice that some aspects of Python that you thought
you knew have hidden features just waiting to pleasantly surprise you. Let’s take a look at a
couple of such nice features in print and import.

Printing with Commas
You’ve seen how print can be used to print an expression, which is either a string or is auto-
matically converted to one. But you can actually print more than one expression, as long as you
separate them with commas:

>>> print 'Age:', 42
Age: 42

As you can see, a space character is inserted between each argument.

Hetland_519XC05.fm Page 81 Tuesday, July 12, 2005 12:24 PM

82 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E M E N T S

■Note The arguments of print do not form a tuple, as one might expect:

>>> 1, 2, 3
(1, 2, 3)
>>> print 1, 2, 3
1 2 3
>>> print (1, 2, 3)
(1, 2, 3)

This behavior can be very useful if you want to combine text and variable values without
using the full power of string formatting:

>>> name = 'Gumby'
>>> salutation = 'Mr.'
>>> greeting = 'Hello,'
>>> print greeting, salutation, name
Hello, Mr. Gumby

■Note If the greeting string had no comma, how would you get the comma in the result? You couldn’t
just use

print greeting, ',', salutation, name

because that would introduce a space before the comma. One solution would be the following:

print greeting + ',', salutation, name

Here the comma is simply added to the greeting.

If you add a comma at the end, your next print statement will continue printing on the
same line. For example, the statements

print 'Hello,',
print 'world!'

print out Hello, world!

Importing Something As Something Else
Usually when you import something from a module you either use

import somemodule

or

from somemodule import somefunction

or

Hetland_519XC05.fm Page 82 Tuesday, July 12, 2005 12:24 PM

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 83

from somemodule import *

The latter should only be used when you are certain that you want to import everything
from the given module. But what if you have two modules each containing a function called
open, for example—what do you do then? You could simply import the modules using the first
form, and then use the functions as follows:

module1.open(...)
module2.open(...)

But there is another option: You can add an as clause to the end and supply the name you
want to use, either for the entire module:

>>> import math as foobar
>>> foobar.sqrt(4)
2.0

or for the given function:

>>> from math import sqrt as foobar
>>> foobar(4)
2.0

For the open functions you might use the following:

from module1 import open as open1
from module2 import open as open2

Assignment Magic
The humble assignment statement also has a few tricks up its sleeve.

Sequence Unpacking
You’ve seen quite a few examples of assignments, both for variables and for parts of data structures
(such as positions and slices in a list, or slots in a dictionary), but there is more. You can perform
several different assignments simultaneously:

>>> x, y, z = 1, 2, 3
>>> print x, y, z
1 2 3

Doesn’t sound useful? Well, you can use it to switch the contents of two (or more)
variables:

>>> x, y = y, x
>>> print x, y, z
2 1 3

Actually, what I’m doing here is called “sequence unpacking”—I have a sequence of values,
and I unpack it into a sequence of variables. Let me be more explicit:

Hetland_519XC05.fm Page 83 Tuesday, July 12, 2005 12:24 PM

84 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E M E N T S

>>> values = 1, 2, 3
>>> values
(1, 2, 3)
>>> x, y, z = values
>>> x
1

This is particularly useful when a function or method returns a tuple (or other sequence or
iterable object); let’s say that you want to retrieve (and remove) an arbitrary key-value pair
from a dictionary. You can then use the popitem method, which does just that, returning the
pair as a tuple. Then you can unpack the returned tuple directly into two variables:

>>> scoundrel = {'name': 'Robin', 'girlfriend': 'Marion'}
>>> key, value = scoundrel.popitem()
>>> key
'girlfriend'
>>> value
'Marion'

This allows functions to return more than one value, packed as a tuple, easily accessible
through a single assignment. The sequence you unpack must have exactly as many items as the
targets you list on the left of the = sign; otherwise Python raises an exception when the assignment
is performed.

Chained Assignments
Chained assignments are used as a shortcut when you want to bind several variables to the
same value. This may seem a bit like the simultaneous assignments in the previous section,
except that here you are only dealing with one value:

x = y = somefunction()

which is the same as

y = somefunction()
x = y

Note that the preceding statements may not be the same as

x = somefunction()
y = somefunction()

For more information, see the section about the identity operator (is), later in this chapter.

Augmented Assignments
Instead of writing x = x + 1, you can just put the expression operator (in this case +) before the
assignment operator (=) and write x += 1. This is called an augmented assignment, and it works
with all the standard operators, such as *, /, %, and so on:

Hetland_519XC05.fm Page 84 Tuesday, July 12, 2005 12:24 PM

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 85

>>> x = 2
>>> x += 1
>>> x *= 2
>>> x
6

It also works with other data types:

>>> fnord = 'foo'
>>> fnord += 'bar'
>>> fnord
'foobar'

Augmented assignments can make your code more compact and concise, and in many
cases, more readable.

■Tip In general, you should not use += with strings, especially if you are building a large string piece by
piece in a loop (see the section “Loops” later in this chapter for more information about loops). Each addition
and assignment needs to create a new string, and that takes time, making your program slower. A much
better approach is to append the small strings to a list, and use the string method join to create the big string
when your list is finished.

Blocks: The Joy of Indentation
This isn’t really a type of statement but something you’re going to need when you tackle the
next two sections.

A block is a group of statements that can be executed if a condition is true (conditional
statements), or executed several times (loops), and so on. A block is created by indenting a part
of your code; that is, putting spaces in front of it.

■Note You can use tab characters to indent your blocks as well. Python interprets a tab as moving to the
next tab stop, with one tab stop every eight spaces, but the standard and preferable style is to use spaces
only, no tabs, and specifically four spaces per each level of indentation.

Each line in a block must be indented by the same amount. The following is pseudocode
(not real Python code) but shows how the indenting works:

this is a line
this is another line:
 this is another block
 continuing the same block
 the last line of this block
phew, there we escaped the inner block

Hetland_519XC05.fm Page 85 Tuesday, July 12, 2005 12:24 PM

86 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E M E N T S

In many languages a special word or character (for example, begin or {) is used to start a
block, and another (such as end or }) is used to end it. In Python, a colon (:) is used to indicate
that a block is about to begin, and then every line in that block is indented (by the same amount).
When you go back to the same amount of indentation as some enclosing block, you know that
the current block has ended.

Now I’m sure you are curious to know how to use these blocks. So, without further ado,
let’s have a look.

Conditions and Conditional Statements
Until now you’ve only written programs in which each statement is executed, one after the
other. It’s time to move beyond that and let your program choose whether or not to execute a
block of statements.

So That’s What Those Boolean Values Are For
Now you are finally going to need those truth values (also called Boolean values, after George
Boole, who did a lot of smart stuff on truth values) that you’ve been bumping into repeatedly.

■Note If you’ve been paying close attention, you noticed the sidebar in Chapter 1, “Sneak Peek: The if
Statement,” which describes the if statement. I haven’t really introduced it formally until now, and as you’ll
see, there is a bit more to it than what I’ve told you so far.

The following values are considered by the interpreter to mean false:

False None 0 "" () [] {}

In other words, the standard values False and None, numeric zero of all types (including
float, long, and so on), empty sequences (such as empty strings, tuples, and lists), and empty
dictionaries are all false. Everything else is interpreted as true, including the special value True.
Laura Creighton describes this as discerning between something and nothing, rather than true
and false.

Got it? This means that every value in Python can be interpreted as a truth value, which
can be a bit confusing at first, but it can also be extremely useful. And even though you have all
these truth values to choose from, the “standard” truth values are True and False. In older
versions of Python, the standard truth values were 0 (for false) and 1 (for true). In fact, True and
False are just glorified versions of 0 and 1 that look different but act the same:

>>> True
True
>>> False
False
>>> True == 1
True

Hetland_519XC05.fm Page 86 Tuesday, July 12, 2005 12:24 PM

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 87

>>> False == 0
True
>>> True + False + 42
43

So now, if you see a logical expression returning 1 or 0 (probably in an older version of
Python), you will know that what is really meant is True and False.

The Boolean values True and False belong to the type bool, which can be used (just like, for
example, list, str, and tuple) to convert other values:

>>> bool('I think, therefore I am')
True
>>> bool(42)
True
>>> bool('')
False
>>> bool(0)
False

Because any value can be used as Boolean values, you will most likely rarely (if ever) need
such an explicit conversion.

Conditional Execution and the if Statement
Truth values can be combined (which you’ll see in a while), but let’s first see what you can use
them for. Try running the following script:

name = raw_input('What is your name? ')
if name.endswith('Gumby'):
 print 'Hello, Mr. Gumby'

This is the if statement, which lets you do conditional execution. That means that if the
condition (the expression after if but before the colon) evaluates to true (as defined previously),
the following block (in this case, a single print statement) is executed. If the condition is false,
then the block is not executed (but you guessed that, didn’t you?).

■Note In the sidebar “Sneak Peek: The if Statement” in Chapter 1, the statement was written on a single
line. That is equivalent to using a single-line block, as in the preceding example.

else Clauses
In the example from the previous section, if you enter a name that ends with “Gumby,” the
method name.endswith returns True, making the if statement enter the block, and the greeting
is printed. If you want, you can add an alternative, with the else clause (called a clause because
it isn’t really a separate statement, just a part of the if statement):

Hetland_519XC05.fm Page 87 Tuesday, July 12, 2005 12:24 PM

88 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E M E N T S

name = raw_input('What is your name? ')
if name.endswith('Gumby'):
 print 'Hello, Mr. Gumby'
else:
 print 'Hello, stranger'

Here, if the first block isn’t executed (because the condition evaluated to false), you enter
the second block instead. This really makes you see how easy it is to read Python code, doesn’t
it? Just read the code aloud (from if) and it sounds just like a normal (or perhaps not quite
normal) sentence.

elif Clauses
If you want to check for several conditions, you can use elif, which is short for “else if.” It is a
combination of an if clause and an else clause—an else clause with a condition:

num = input('Enter a number: ')
if num > 0:
 print 'The number is positive'
elif num < 0:
 print 'The number is negative'
else:
 print 'The number is zero'

Nesting Blocks
Let’s throw in a few bells and whistles. You can have if statements inside other if statement
blocks, as follows:

name = raw_input('What is your name? ')
if name.endswith('Gumby'):
 if name.startswith('Mr.'):
 print 'Hello, Mr. Gumby'
 elif name.startswith('Mrs.'):
 print 'Hello, Mrs. Gumby'
 else:
 print 'Hello, Gumby'
else:
 print 'Hello, stranger'

Here, if the name ends with “Gumby,” you check the start of the name as well—in a separate
if statement inside the first block. Note the use of elif here. The last alternative (the else clause)
has no condition—if no other alternative is chosen, you use the last one. If you want to, you can
leave out either of the else clauses. If you leave out the inner else clause, names that don’t start
with either “Mr.” or “Mrs.” are ignored (assuming the name was “Gumby”). If you drop the
outer else clause, strangers are ignored.

Hetland_519XC05.fm Page 88 Tuesday, July 12, 2005 12:24 PM

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 89

More Complex Conditions
That’s really all there is to know about if statements. Now let’s return to the conditions them-
selves, because they are the really interesting part of conditional execution.

Comparison Operators

Perhaps the most basic operators used in conditions are the comparison operators. They are
used (surprise, surprise) to compare things. The comparison operators are summed up in
Table 5-1.

If you stumble across the expression x <> y somewhere, this means x != y. The <> operator is
deprecated, however, and you should avoid using it. Comparisons can be chained in Python, just
like assignments—you can put several comparison operators in a chain, like this: 0 < age < 100.

■Tip When comparing things, you can also use the built-in function cmp as described in Chapter 2.

Some of these operators deserve some special attention and will be described in the
following sections.

The Equality Operator

If you want to know if two things are equal, you use the equality operator, written as a double
equality sign, ==:

Table 5-1. The Python Comparison Operators

Expression Description

x == y x equals y.

x < y x is less than y.

x > y x is greater than y.

x >= y x is greater than or equal to y.

x <= y x is less than or equal to y.

x != y x is not equal to y.

x is y x and y are the same object.

x is not y x and y are different objects.

x in y x is a member of the container (e.g., sequence) y.

x not in y x is not a member of the container (e.g., sequence) y.

Hetland_519XC05.fm Page 89 Tuesday, July 12, 2005 12:24 PM

90 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E M E N T S

>>> "foo" == "foo"
True
>>> "foo" == "bar"
False

Double? Why can’t you just use a single equality sign, like they do in mathematics? I’m sure
you’re clever enough to figure this out for yourself, but let’s try it:

>>> "foo" = "foo"
SyntaxError: can't assign to literal

The single equality sign is the assignment operator, which is used to change things, which
is not what you want to do when you compare things.

is: The Identity Operator

The is operator is interesting. It seems to work just like ==, but it doesn’t:

>>> x = y = [1, 2, 3]
>>> z = [1, 2, 3]
>>> x == y
True
>>> x == z
True
>>> x is y
True
>>> x is z
False

Until the last example, this looks fine, but then you get that strange result, that x is not z
even though they are equal. Why? Because is tests for identity, rather than equality. The variables x
and y have been bound to the same list, while z is simply bound to another list that happens to
contain the same values in the same order. They may be equal, but they aren’t the same object.

Does that seem unreasonable? Consider this example:

>>> x = [1, 2, 3]
>>> y = [2, 4]
>>> x is not y
True
>>> del x[2]
>>> y[1] = 1
>>> y.reverse()

In this example, I start with two different lists, x and y. As you can see, x is not y (just the
inverse of x is y), which you already know. I change the lists around a bit, and though they are
now equal, they are still two separate lists:

>>> x == y
True
>>> x is y
True

Hetland_519XC05.fm Page 90 Tuesday, July 12, 2005 12:24 PM

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 91

Here it is obvious that the two lists are equal but not identical.
To summarize: Use == to see if two objects are equal, and use is to see if they are identical

(the same object).

■Caution Avoid the use of is with basic, immutable values such as numbers and strings. The result is
unpredictable because of the way Python handles these objects internally.

in: The Membership Operator

I have already introduced the in operator (in Chapter 2, in the section “Membership”). It can
be used in conditions, just like all the other comparison operators:

name = raw_input('What is your name? ')
if 's' in name:
 print 'Your name contains the letter "s".'
else:
 print 'Your name does not contain the letter "s".'

Comparing Strings and Sequences

Strings are compared according to their order when sorted alphabetically:

>>> "alpha" < "beta"
True

If you throw in capital letters, things get a bit messy. (Actually, characters are sorted by
their ordinal values. The ordinal value of a letter can be found with the ord function, whose
inverse is chr.) To ignore the difference between uppercase and lowercase letters, use the
string methods upper or lower:

>>> 'FnOrD'.lower() == 'Fnord'.lower()
True

Other sequences are compared in the same manner, except that instead of characters you
may have other types of elements:

>>> [1, 2] < [2, 1]
True

If the sequences contain other sequences as elements, the same rule applies to these
sequence elements:

>>> [2, [1, 4]] < [2, [1, 5]]
True

Boolean Operators

Now, you’ve got plenty of things that return truth values. (In fact, given the fact that all values
can be interpreted as truth values, all expressions return them.) But you may want to check for

Hetland_519XC05.fm Page 91 Tuesday, July 12, 2005 12:24 PM

92 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E M E N T S

more than one condition. For example, let’s say you want to write a program that reads a number
and checks whether it’s between 1 and 10 (inclusive). You can do it like this:

number = input('Enter a number between 1 and 10: ')
if number <= 10:
 if number >= 1:
 print 'Great!'
 else:
 print 'Wrong!'
else:
 print 'Wrong!'

This will work, but it’s clumsy. The fact that you have to write print 'Wrong!' in two places
should alert you to this clumsiness. Duplication of effort is not a good thing. So what do you do?
It’s so simple:

if number <= 10 and number >= 1:
 print 'Great!'
else:
 print 'Wrong!'

■Note In this example, you could (and quite probably should) have made this even simpler by using the
following chained comparison:

1 <= number <= 10

The and operator is a so-called Boolean operator. It takes two truth values, and returns true
if both are true, and false otherwise. You have two more of these operators, or and not. With
just these three, you can combine truth values in any way you like:

if ((cash > price) or customer_has_good_credit) and not out_of_stock:
 give_goods()

SHORT-CIRCUIT LOGIC

The Boolean operators have one interesting property: They only evaluate what they need to. For example, the
expression x and y requires both x and y to be true; so if x is false, the expression returns false immediately,
without worrying about y. Actually, if x is false, it returns x—otherwise it returns y. (Can you see how this
gives the expected meaning?) This behavior is called short-circuit logic: the Boolean operators are often called
logical operators, and as you can see, the second value is sometimes “short-circuited.” This works with or, too.
In the expression x or y, if x is true, it is returned, otherwise y is returned. (Can you see how this makes sense?)

So, how is this useful? Let’s say a user is supposed to enter his or her name, but may opt to enter
nothing, in which case you want to use the default value '<unknown>'. You could use an if statement, but
you could also state things very succinctly:

Hetland_519XC05.fm Page 92 Tuesday, July 12, 2005 12:24 PM

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 93

name = raw_input('Please enter your name: ') or '<unknown>'

In other words, if the return value from raw_input is true (not an empty string), it is assigned to name
(nothing changes); otherwise, the default '<unknown>' is assigned to name.

This sort of short-circuit logic can be used to implement the so-called “ternary operator” (or conditional
operator), found in languages such as C and Java. For a thorough explanation, see Alex Martelli’s recipe on the
subject in the Python Cookbook (http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/
52310).

Assertions
There is a useful relative of the if statement, which works more or less like this (pseudocode):

if not condition:
 crash program

Now, why on earth would you want something like that? Simply because it’s better that
your program crashes when an error condition emerges than at a much later time. Basically,
you can require that certain things be true. The keyword used in the statement is assert:

>>> age = 10
>>> assert 0 < age < 100
>>> age = -1
>>> assert 0 < age < 100
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AssertionError

It can be useful to put the assert statement in your program as a checkpoint, if you know
something has to be true for your program to work correctly.

A string may be added after the condition, to explain the assertion:

>>> age = -1
>>> assert 0 < age < 100, 'The age must be realistic'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AssertionError: The age must be realistic

Loops
Now you know how to do something if a condition is true (or false), but how do you do some-
thing several times? For example, you might want to create a program that reminds you to pay
the rent every month, but with the tools we have looked at until now, you’d have to write the
program like this (pseudocode):

Hetland_519XC05.fm Page 93 Tuesday, July 12, 2005 12:24 PM

94 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E M E N T S

send mail
wait one month
send mail
wait one month
send mail
wait one month
(...and so on)

But what if you wanted it to continue doing this until you stopped it? Basically, you want
something like this (again, pseudocode):

while we aren't stopped:
 send mail
 wait one month

Or, let’s take a simpler example. Let’s say that you want to print out all the numbers from
1 to 100. Again, you could do it the stupid way:

print 1
print 2
print 3

. . . and so on. But you didn’t start using Python because you wanted to do stupid things, right?

while Loops
In order to avoid the cumbersome code of the preceding example, it would be useful to be able
to do something like this:

x = 1
while x <= 100:
 print x
 x += 1

Now, how do you do that in Python? You guessed it—you do it just like that. Not that
complicated is it? You could also use a loop to ensure that the user enters a name, as follows:

name = ''
while not name:
 name = raw_input('Please enter your name: ')
print 'Hello, %s!' % name

Try running this, and then just pressing the Enter key when asked to enter your name: the
question appears again because name is still an empty string, which evaluates to false.

■Tip What would happen if you entered just a space character as your name? Try it. It is accepted because
a string with one space character is not empty, and therefore not false. This is definitely a flaw in our little
program, but easily corrected: just change while not name to while not name or name.isspace(),
or, perhaps, while not name.strip().

Hetland_519XC05.fm Page 94 Tuesday, July 12, 2005 12:24 PM

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 95

for Loops
The while statement is very flexible. It can be used to repeat a block of code while any condition
is true. While this may be very nice in general, sometimes you may want something tailored to
your specific needs. One such need is to perform a block of code for each element of a set (or,
actually, sequence or other iterable object) of values. You can do this with the for statement:

words = ['this', 'is', 'an', 'ex', 'parrot']
for word in words:
 print word

or

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
for number in numbers:
 print number

Because iterating (another word for “looping”) over a range of numbers is a common thing
to do, there is a built-in function to make ranges for you:

>>> range(0, 10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Ranges work like slices. They include the first limit (in this case 0), but not the last (in this
case 10). Quite often, you want the ranges to start at 0, and this is actually assumed if you only
supply one limit (which will then be the last):

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

■Tip There is also another function called xrange that works just like range in loops, but where range
creates the whole sequence at once, xrange creates only one number at a time. This can be useful when
iterating over huge sequences more efficiently, but in general you needn’t worry about it.

The following program writes out the numbers from 1 to 100:

for number in range(1,101):
 print number

Notice that this is much more compact than the while loop I used earlier.

■Tip If you can use a for loop rather than a while loop, you should probably do so.

Hetland_519XC05.fm Page 95 Tuesday, July 12, 2005 12:24 PM

96 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E M E N T S

Iterating Over Dictionaries
To loop over the keys of a dictionary, you can use a plain for statement, just as you can with
sequences:

d = {'x': 1, 'y': 2, 'z': 3}
for key in d:
 print key, 'corresponds to', d[key]

In Python versions before 2.2, you would have used a dictionary method such as keys to
retrieve the keys (since direct iteration over dictionaries wasn’t allowed). If only the values
were of interest, you could have used d.values instead of d.keys. You may remember that
d.items returns key-value pairs as tuples. One great thing about for loops is that you can use
sequence unpacking in them:

for key, value in d.items():
 print key, 'corresponds to', value

To make your iteration more efficient, you can use the methods iterkeys (equivalent to
the plain for loop), itervalues, or iteritems. (These don’t return lists, but iterators, which are
explained in Chapter 9.)

■Note As always, the order of dictionary elements is undefined. In other words, when iterating over either
the keys or the values of a dictionary, you can be sure that you’ll process all of them, but you can’t know in
which order. If the order is important, you can store the keys or values in a separate list and, for example, sort
it before iterating over it.

Some Iteration Utilities
There are a few functions that can be useful when iterating over a sequence (or other iterable
object). Some of these are available in the itertools module (described in Chapter 9), but there
are some built-in functions that come in quite handy as well.

Parallel Iteration

Sometimes you want to iterate over two sequences at the same time. Let’s say that you have the
following two lists:

names = ['anne', 'beth', 'george', 'damon']
ages = [12, 45, 32, 102]

If you want to print out names with corresponding ages, you could do the following:

for i in range(len(names)):
 print names[i], 'is', ages[i], 'years old'

Here I use i as a standard variable name for loop indices (as these things are called).

Hetland_519XC05.fm Page 96 Tuesday, July 12, 2005 12:24 PM

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 97

A useful tool for parallel iteration is the built-in function zip, which “zips” together the
sequences, returning a list of tuples:

>>> zip(names, ages)
[('anne', 12), ('beth', 45), ('george', 32), ('damon', 102)]

Now I can unpack the tuples in my loop:

for name, age in zip(names, ages):
 print name, 'is', age, 'years old'

The zip function works with as many sequences as you want. It’s important to note what
zip does when the sequences are of different lengths: it stops when the shortest sequence is
“used up”:

>>> zip(range(5), xrange(100000000))
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]

I wouldn’t recommend using range instead of xrange in the preceding example—although
only the first five numbers are needed, range calculates all the numbers, and that may take a lot
of time. With xrange, this isn’t a problem because it calculates only those numbers needed.

Numbered Iteration

In some cases you want to iterate over a sequence of objects and at the same time have access
to the index of the current object. For example, you might want to replace every string that
contains the substring 'xxx' in a list of strings. There would certainly be many ways of doing
this, but let’s say you want to do something along the following lines:

for string in strings:
 if 'xxx' in string:
 index = strings.index(string)
 strings[index] = '[censored]'

This would work, but it seems unnecessary to search for the given string before replacing
it. Also, if you didn’t replace it, the search might give you the wrong index (that is, the index of
some previous occurrence of the same word). A better version would be the following:

index = 0
for string in strings:
 if 'xxx' in string:
 strings[index] = '[censored]'
 index += 1

This also seems a bit awkward, although acceptable. There is another solution, however;
you can use the built-in function enumerate:

for index, string in enumerate(strings):
 if 'xxx' in string:
 strings[index] = '[censored]'

This function lets you iterate over index-value pairs, where the indices are supplied
automatically.

Hetland_519XC05.fm Page 97 Tuesday, July 12, 2005 12:24 PM

98 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E M E N T S

Reversed and Sorted Iteration

Let’s look at another couple of useful functions: reversed and sorted. They’re similar to the list
methods reverse and sort (with sorted taking similar arguments as sort), but they work on
any sequence or iterable object, and instead of modifying the object in place, they return
reversed and sorted versions:

>>> sorted([4, 3, 6, 8, 3])
[3, 3, 4, 6, 8]
>>> sorted('Hello, world!')
[' ', '!', ',', 'H', 'd', 'e', 'l', 'l', 'l', 'o', 'o', 'r', 'w']
>>> list(reversed('Hello, world!'))
['!', 'd', 'l', 'r', 'o', 'w', ' ', ',', 'o', 'l', 'l', 'e', 'H']
>>> ''.join(reversed('Hello, world!'))
'!dlrow ,olleH'

Note that although sorted returns a list, reversed returns a more mysterious iterable object.
You needn’t worry about what this really means; you can use it in for loops or methods such as
join without any problems. You just can’t index or slice it or call list methods on it directly; in
order to do that you have to convert it, using the list type, as shown in the previous example.

Breaking Out of Loops
Usually, a loop simply executes a block until its condition becomes false, or until it has used up
all sequence elements—but sometimes you may want to interrupt the loop, to start a new iter-
ation (one “round” of executing the block), or to simply end the loop.

break

To end (break out of) a loop, you use break. Let’s say you wanted to find the largest square (an
integer that is the square of another integer) below 100. Then you start at 100 and iterate down-
wards to 0. When you’ve found a square, there’s no need to continue, so you simply break out
of the loop:

from math import sqrt
for n in range(99, 0, -1):
 root = sqrt(n)
 if root == int(root):
 print n
 break

If you run this program, it will print out 81, and stop. Notice that I’ve added a third argu-
ment to range—that’s the step, the difference between every pair of adjacent numbers in the
sequence. It can be used to iterate downwards as I did here, with a negative step value, and it
can be used to skip numbers:

>>> range(0, 10, 2)
[0, 2, 4, 6, 8]

Hetland_519XC05.fm Page 98 Tuesday, July 12, 2005 12:24 PM

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 99

continue

The continue statement is used less often than break. It causes the current iteration to end, and
to “jump” to the beginning of the next. It basically means “skip the rest of the loop body, but
don’t end the loop.” This can be useful if you have a large and complicated loop body and
several possible reasons for skipping it—in that case you can use continue as follows:

for x in seq:
 if condition1: continue
 if condition2: continue
 if condition3: continue

 do_something()
 do_something_else()
 do_another_thing()
 etc()

In many cases, however, simply using an if statement is just as good:

for x in seq:
 if not (condition1 or condition2 or condition3):
 do_something()
 do_something_else()
 do_another_thing()
 etc()

Even though continue can be a useful tool, it is not essential. The break statement, however,
is something you should get used to because it is used quite often in concert with while True,
as explained in the next section.

The while True/break Idiom

The while and for loops in Python are quite flexible, but every once in a while you may encounter
a problem that makes you wish you had more functionality. For example, let’s say you want to
do something while a user enters words at a prompt, and you want to end the loop when no
word is provided. One way of doing that would be

word = 'dummy'
while word:
 word = raw_input('Please enter a word: ')
 # do something with the word:
 print 'The word was ' + word

Here is an example session:

Please enter a word: first
The word was first
Please enter a word: second
The word was second
Please enter a word:

Hetland_519XC05.fm Page 99 Tuesday, July 12, 2005 12:24 PM

100 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E M E N T S

This works just like you want it to. (Presumably you’d do something more useful with the
word than print it out, though.) However, as you can see, this code is a bit ugly. To enter the
loop in the first place, you have to assign a dummy (unused) value to word. Dummy values like
this are usually a sign that you aren’t doing things quite right. Let’s try to get rid of it:

word = raw_input('Please enter a word: ')
while word:
 # do something with the word:
 print 'The word was ' + word
 word = raw_input('Please enter a word: ')

Here the dummy is gone, but I have repeated code (which is also a bad thing): I have to use
the same assignment and call to raw_input in two places. How can I avoid that? I can use the
while True/break idiom:

while True:
 word = raw_input('Please enter a word: ')
 if not word: break
 # do something with the word:
 print 'The word was ' + word

■Note An idiom is a common way of doing things that people who know the language are assumed to know.

The while True part gives you a loop that will never terminate by itself. Instead, you put
the condition in an if statement inside the loop, which calls break when the condition is
fulfilled. Thus you can terminate the loop anywhere inside the loop instead of only at the begin-
ning (as with a normal while loop). The if/break line splits the loop naturally in two parts: The first
takes care of setting things up (the part that would be duplicated with a normal while loop), and
the other part makes use of the initialization from the first part, provided that the loop condi-
tion is true.

Although you should be wary of using break too often (because it can make your loops
harder to read), this specific technique is so common that most Python programmers (including
yourself) will probably be able to follow your intentions.

else Clauses in Loops
When you use break statements in loops, it is often because you have “found” something, or
because something has “happened.” It’s easy to do something when you break out (like print n),
but sometimes you may want to do something if you didn’t break out. But how do you find out?
You could use a Boolean variable, set it to False before the loop, and set it to True when you
break out. Then you can use an if statement afterwards to check whether you did break out
or not:

Hetland_519XC05.fm Page 100 Tuesday, July 12, 2005 12:24 PM

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 101

broke_out = False
for x in seq:
 do_something(x)
 if condition(x):
 broke_out = True
 break
 do_something_else(x)
if not broke_out:
 print "I didn't break out!"

A simpler way is to add an else clause to your loop—it is only executed if you didn’t call
break. Let’s reuse the example from the preceding section on break:

from math import sqrt
for n in range(99, 81, -1):
 root = sqrt(n)
 if root == int(root):
 print n
 break
else:
 print "Didn't find it!"

Notice that I changed the lower (exclusive) limit to 81 to test the else clause. If you run the
program, it prints out “Didn’t find it!” because (as you saw in the section on break) the largest
square below 100 is 81. You can use continue, break, and else clauses both with for loops and
while loops.

List Comprehension—Slightly Loopy
List comprehension is a way of making lists from other lists (similar to set comprehension, if
you know that term from mathematics). It works in a way similar to for loops, and is actually
quite simple:

>>> [x*x for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The list is composed of x*x for each x in range(10). Pretty straightforward? What if you only
want to print out those squares that are divisible by 3? Then you can use the modulo operator—
y % 3 returns zero when y is divisible by 3. (Note that x*x is divisible by 3 only if x is divisible by
3.) You put this into your list comprehension by adding an if part to it:

>>> [x*x for x in range(10) if x % 3 == 0]
[0, 9, 36, 81]

Hetland_519XC05.fm Page 101 Tuesday, July 12, 2005 12:24 PM

102 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E M E N T S

You can also add more for parts:

>>> [(x, y) for x in range(3) for y in range(3)]
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]

This can be combined with an if clause, just like before:

>>> girls = ['alice', 'bernice', 'clarice']
>>> boys = ['chris', 'arnold', 'bob']
>>> [b+'+'+g for b in boys for g in girls if b[0] == g[0]]
['chris+clarice', 'arnold+alice', 'bob+bernice']

This gives the pairs of boys and girls who have the same initial letter in their first name.

A BETTER SOLUTION

The boy/girl pairing example isn’t particularly efficient because it checks every possible pairing. There are
many ways of solving this problem in Python. The following was suggested by Alex Martelli:

girls = ['alice', 'bernice', 'clarice']
boys = ['chris', 'arnold', 'bob']
letterGirls = {}
for girl in girls:
 letterGirls.setdefault(girl[0], []).append(girl)
print [b+'+'+g for b in boys for g in letterGirls[b[0]]]

This program constructs a dictionary called letterGirl where each entry has a single letter as its key
and a list of girls’ names as its value. (The setdefault dictionary method is described in the previous chapter.)
After this dictionary has been constructed, the list comprehension loops over all the boys and looks up all the
girls whose name begins with the same letter as the current boy. This way the list comprehension doesn’t
have to try out every possible combination of boy and girl and check whether the first letters match.

And Three for the Road
To end the chapter, let’s take a quick look at three more statements: pass, del, and exec.

Nothing Happened!
Sometimes you need to do nothing. This may not be very often, but when it happens, it’s good
to know that you have the pass statement:

>>> pass
>>>

Not much going on here.
Now, why on earth would you want a statement that does nothing? It can be useful as a

placeholder while you are writing code. For example, you may have written an if statement
and you want to try it, but you lack the code for one of your blocks. Consider the following:

Hetland_519XC05.fm Page 102 Tuesday, July 12, 2005 12:24 PM

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 103

if name == 'Ralph Auldus Melish':
 print 'Welcome!'
elif name == 'Enid':
 # Not finished yet...
elif name == 'Bill Gates':
 print 'Access Denied'

This code won’t run because an empty block is illegal in Python. To fix this, simply add a
pass statement to the middle block:

if name == 'Ralph Auldus Melish':
 print 'Welcome!'
elif name == 'Enid':
 # Not finished yet...
 pass
elif name == 'Bill Gates':
 print 'Access Denied'

■Note An alternative to the combination of a comment and a pass statement is to simply insert a string.
This is especially useful for unfinished functions (see Chapter 6) and classes (see Chapter 7) because they will
then act as docstrings (explained in Chapter 6).

Deleting with del
In general, Python deletes names (or parts of data structures) that you don’t use anymore:

>>> scoundrel = {'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> robin = scoundrel
>>> scoundrel
{'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> robin
{'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> scoundrel = None
>>> robin
{'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> robin = None

At first, robin and scoundrel are both bound to the same dictionary. So when I assign None
to scoundrel, the dictionary is still available through robin. But when I assign None to robin as
well, the dictionary suddenly floats around in the memory of the computer with no name
attached to it. There is no way I can retrieve it or use it, so the Python interpreter (in its infinite
wisdom) simply deletes it. (This is called garbage collection.) Note that I could have used any
value other than None as well. The dictionary would be just as gone.

Another way of doing this is to use the del statement (which we used to delete sequence
and dictionary elements in Chapters 2 and 4, remember?). This not only removes a reference to
an object, it also removes the name itself:

Hetland_519XC05.fm Page 103 Tuesday, July 12, 2005 12:24 PM

104 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E M E N T S

>>> x = 1
>>> del x
>>> x
Traceback (most recent call last):
 File "<pyshell#255>", line 1, in ?
 x
NameError: name 'x' is not defined

This may seem easy, but it can actually be a bit tricky to understand at times. For instance,
in the following example, x and y refer to the same list:

>>> x = ["Hello", "world"]
>>> y = x
>>> y[1] = "Python"
>>> x
['Hello', 'Python']

You might assume that by deleting x, you would also delete y, but that is not the case:

>>> del x
>>> y
['Hello', 'Python']

Why is this? x and y referred to the same list, but deleting x didn’t affect y at all. The reason
for this is that you only delete the name, not the list itself (the value). In fact, there is no way to
delete values in Python (and you don’t really need to because the Python interpreter does it by
itself whenever you don’t use the value anymore).

Executing and Evaluating Strings with exec and eval
Sometimes you may want to create Python code “on the fly” and execute it as a statement or
evaluate it as an expression. This may border on dark magic at times—consider yourself warned.

■Caution In this section, you learn to execute Python code stored in a string. This is a potential security
hole of great dimensions. If you execute a string where parts of the contents have been supplied by a user,
you have little or no control over what code you are executing. This is especially dangerous in network appli-
cations, such as CGI scripts, which you will learn about in Chapter 15.

exec

The statement for executing a string is exec:

>>> exec "print 'Hello, world!'"
Hello, world!

However, using this simple form of the exec statement is rarely a good thing; in most cases
you want to supply it with a namespace, a place where it can put its variables. You want to do
this so that the code doesn’t corrupt your namespace (that is, change your variables). For example,
let’s say that the code uses the name sqrt:

Hetland_519XC05.fm Page 104 Tuesday, July 12, 2005 12:24 PM

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 105

>>> from math import sqrt
>>> exec "sqrt = 1"
>>> sqrt(4)
Traceback (most recent call last):
 File "<pyshell#18>", line 1, in ?
 sqrt(4)
TypeError: object is not callable: 1

Well, why would you do something like that in the first place, you ask? The exec statement
is mainly useful when you build the code string on the fly. And if the string is built from parts
that you get from other places, and possibly from the user, you can rarely be certain of exactly
what it will contain. So to be safe, you give it a dictionary, which will work as a namespace for it.

■Note The concept of namespaces, or scopes, is a very important one. You will look at it in depth in the
next chapter, but for now you can think of a namespace as a place where you keep your variables, much like
an invisible dictionary. So when you execute an assignment like x = 1, you store the key x with the value 1
in the current namespace, which will often be the global namespace (which we have been using, for the most
part, up until now), but doesn’t have to be.

You do this by adding in <scope>, where <scope> is some dictionary that will function as
the namespace for your code string:

>>> from math import sqrt
>>> scope = {}
>>> exec 'sqrt = 1' in scope
>>> sqrt(4)
2.0
>>> scope['sqrt']
1

As you can see, the potentially destructive code does not overwrite the sqrt function; the
function works just like it should, and the sqrt variable resulting from the exec’ed assignment
is available from the scope.

Note that if you try to print out scope, you see that it contains a lot of stuff because the
dictionary called __builtins__ is automatically added and contains all built-in functions and
values:

>>> len(scope)
2
>>> scope.keys()
['sqrt', '__builtins__']

eval

A built-in function that is similar to exec is eval (for “evaluate”). Just as exec executes a series
of Python statements, eval evaluates a Python expression (written in a string) and returns the

Hetland_519XC05.fm Page 105 Tuesday, July 12, 2005 12:24 PM

106 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E M E N T S

value. (exec doesn’t return anything because it is a statement itself.) For example, you can use
the following to make a Python calculator:

>>> eval(raw_input("Enter an arithmetic expression: "))
Enter an arithmetic expression: 6 + 18 * 2
42

■Note The expression eval(raw_input(...)) is, in fact, equivalent to input(...).

You can supply a namespace with eval, just as with exec, although expressions rarely
rebind variables in the way statements usually do. (In fact, you can supply eval with two
namespaces, one global and one local. The global one must be a dictionary, but the local one
may be any mapping.)

■Caution Even though expressions don’t rebind variables as a rule, they certainly can (for example by
calling functions that rebind global variables). Therefore, using eval with an untrusted piece of code is no
safer than using exec. There is, at present, no safe way of executing untrusted code in Python. One alterna-
tive is to use an implementation of Python such as Jython (see Chapter 17) and use the some native mechanism
such as the Java sandbox.

PRIMING THE SCOPE

When supplying a namespace for exec or eval, you can also put some values in before actually using the
namespace:

>>> scope = {}
>>> scope['x'] = 2
>>> scope['y'] = 3
>>> eval('x * y', scope)
6

In the same way, a scope from one exec or eval call can be used again in another one:

>>> scope = {}
>>> exec 'x = 2' in scope
>>> eval('x*x', scope)
4

Actually, exec and eval are not used all that often, but they can be nice tools to keep in your back
pocket (figuratively, of course).

Hetland_519XC05.fm Page 106 Tuesday, July 12, 2005 12:24 PM

C H A P T E R 5 ■ C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 107

A Quick Summary
In this chapter you’ve seen several kinds of statements:

Printing. You can use the print statement to print several values by separating them with
commas. If you end the statement with a comma, later print statements will continue
printing on the same line.

Importing. Sometimes you don’t like the name of a function you want to import—perhaps
you’ve already used the name for something else. You can use the import...as... statement,
to locally rename a function.

Assignments. You’ve seen that through the wonder of sequence unpacking and chained
assignments, you can assign values to several variables at once, and that with augmented
assignments you can change a variable in place.

Blocks. Blocks are used as a means of grouping statements through indentation. They are
used in conditionals and loops, and as you see later in the book, in function and class defi-
nitions, among other things.

Conditionals. A conditional statement either executes a block or not, depending on a condi-
tion (Boolean expression). Several conditionals can be strung together with if/elif/else.

Assertions. An assertion simply asserts that something (a Boolean expression) is true,
optionally with a string explaining why it has to be so. If the expression happens to be false,
the assertion brings your program to a halt (or actually raises an exception—more on that
in Chapter 8). It’s better to find an error early than to let it sneak around your program
until you don’t know where it originated.

Loops. You either can execute a block for each element in a sequence (such as a range of
numbers) or continue executing it while a condition is true. To skip the rest of the block
and continue with the next iteration, use the continue statement; to break out of the loop,
use the break statement. Optionally, you may add an else clause at the end of the loop,
which will be executed if you didn’t execute any break statements inside the loop.

List comprehension. These aren’t really statements—they are expressions that look a lot
like loops, which is why I grouped them with the looping statements. Through list compre-
hension, you can build new lists from old ones, applying functions to the elements, filtering
out those you don’t want, and so on. The technique is quite powerful, but in many cases
using plain loops and conditionals (which will always get the job done) may be more readable.

pass, del, exec, and eval. The pass statement does nothing, which can be useful as a place-
holder, for example. The del statement is used to delete variables or parts of a datastructure,
but cannot be used to delete values. The exec statement is used to execute a string as if it
were a Python program. The built-in function eval evaluates an expression written in a
string and returns the result.

Hetland_519XC05.fm Page 107 Tuesday, July 12, 2005 12:24 PM

108 C H A P T E R 5 ■ C O N D I T I O N A L S , L O O P S , A N D S O M E O T H E R S T A T E M E N T S

New Functions in This Chapter

What Now?
Now you’ve cleared the basics. You can implement any algorithm you can dream up; you can
read in parameters and print out the results. In the next couple of chapters, you learn about
something that will help you write larger programs without losing the big picture. That some-
thing is called abstraction.

Function Description

chr(n) Returns a one-character string with ordinal n
(0 ≤ n < 256)

eval(source[, globals[, locals]]) Evaluates a string as an expression and returns
the value

enumerate(seq) Yields (index, value) pairs suitable for iteration

ord(c) Returns the integer ordinal value of a one-
character string

range([start,] stop[, step]) Creates a list of integers

reversed(seq) Yields the values of seq in reverse order, suitable
for iteration

sorted(seq[, cmp][, key][, reverse]) Returns a list with the values of seq in sorted order

xrange([start,] stop[, step]) Creates an xrange object, used for iteration

zip(seq1, seq2,...) Creates a new sequence suitable for parallel
iteration

Hetland_519XC05.fm Page 108 Tuesday, July 12, 2005 12:24 PM

