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Abstract. In research in web archives, large temporal document dmlecare
necessary in order to be able to compare and evaluate neegisand algo-
rithms. Large temporal document collections are not easiylable, and an alter-
native is to create synthetic document collections. In pliger we will describe
how to generate synthetic temporal document collectioo, this is realized in
the TDocGentemporal document generator, and we will also present g sifid
the quality of the document collections created by TDocGen.

1 Introduction

In this paper we will describe how to make document colledito be used in devel-
opment and benchmarking of web archives, and how this i&zeshin theTDocGen
temporal document generator.

Aspects of temporal document databases are now desirediimidar of application
areas, for example web databases and more general docwapesitories:

— The amount of information made available on the web is irgingavery fast, and
an increasing amount of this information is made availalolg on the web. While
this makes the information readily available to the comryrii also results in
a low persistence of the information, compared to when itasesl in traditional
paper-based media. This is clearly a serious problem, andglthe last years
many projects have been initiated with the purpose of anehithis information
for the future. This essentially means crawling the web d@odrey snapshots of
the pages, or making it possible for users to “deposit” thages. In contrasts to
most search engines that only store the most recent verktbie oetrieved pages,
in these archiving projects all (or at least many) versiorkeapt, so that it should
also be possible to retrieve the contents of certain pagédsegsvere at a certain
time in the past. The most famous project is this categoryabably the Internet
Archive Wayback Machiné, but in many countries similar projects also at the
national level, typically initiated by national libraries similar organizations.

— An increasing amount of documents in companies and othendgtions is now
only available electronically.
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Support for temporal document management is not yet wigaspimportant rea-
sons for that are issues related to 1) space usage of docupreitn storage, 2) per-
formance of storage andretrieval, and 3) efficiency of terabtext indexing. More
research is needed in order to resolve these issues, ankiggourpose test data is
needed in order to make it easier to compare existing teaksiand study possible
improvements of new techniques. In the case of documenbadses test data means
document collections. In our previous work [8], we have esgpl versions of web
pages to build a temporal document collection. However,diggionly one collection
we only study the performance of one document creationtepoatern. In order to
have more confidence in results, as well as study charaeateraf techniques under
different conditions, we need test collections with diéflet characteristics.

Acquiring large document collections with different cheteistics is a problem in
itself, and acquiringemporaldocument collections close to impossible. In order to pro-
vide us with a variety of temporal document collections, weendeveloped the TDoc-
Gen temporal document generator. TDocGen creates a tehtmmament collection
whose characteristics are decided by a number of paramEtarexample, probability
of update, average number of new documents in each generat®, can be config-
ured. A synthetic data generator is in general useful eveanwést data from real world
applications exists, because it is very useful to be abl®tdrol the characteristics of
the test data in order to do measurements with data sets iffitheaht statistical prop-
erties.

Creating synthetic data collections is not a trivial taslerein the case of “simple”
data like relational data. Because one of our applicatieasof the created document
collections is study of text-indexing techniques, the oosuce of words, size of words,
etc., have to be according to what is expected in the realdwditlis is a non-trivial
issue that will be explained in more detail later in the papeorder to make tempo-
ral collections, the TDocGen document generator essnsimhulates the document
operation by users during a specific period, i.e., creatiopdates, and deletes of doc-
uments. The generator can also be used to create non-tdrdpotement collections
when collections with particular characteristics are reed

The organization of the rest of this paper is as follows. lcti®a 2 we give an
overview of related work. In Section 3 we define the data ameé tinodels we base our
work on. In Section 4 we give requirements for a good tempdoalment generator.
In Section 5 we describe how to create a temporal documeletctiohn. In Section 6
we describe TDocGen in practice. In Section 7 we evaluate idacGen fulfill the
requirements. Finally, in Section 8, we conclude the paper.

2 Related work

For measuring various aspects of performance in texteglabntexts, a number of
document collections exist. The most well-know examplergbpbly the TREC col-
lections?, which includes text from newspapers as well as web pagésr@kamples
are the INEX collection [6] which contains 12,000 articlesrh IEEE transaction and
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magazines in XML format, and documents in Project Gutenbespich is a collection
of approximately 10,000 books.

A number of other collections are also publicly availableme of them can be
retrieved from the UCI Knowledge Discovery in Databaseswe* and the Glasgow
IR Resources pagésWe are not aware any temporal document collections seifabl
our purpose.

Several synthetics document generators have been deddlomeder to provide
data to be used by XML benchmarks, however, these do notecdeaument versions,
only independent documents. Examples are ToXgene [1],iwtrieates XML docu-
ments based on a template specification language, and thgela¢rators used for the
Michigan benchmark [9] and XMark [10]. Another example ohgeator is the change
simulator used to study the performance of the XML Diff aifun proposed in [3],
which takes an XML document as input, do random modificatiothe document, and
outputs a new version. Since the purpose of that generattonast the XML Diff al-
gorithm it does no take into account word distribution arldtes aspects, thus making
it less suitable for our purpose.

In the context of web warehouses, studies of evolution of pagges like those pre-
sented in [2,4] can give us guidelines on useful paramedersd for creating collections
reflecting that area.

3 Document and time models

In our work we use the same data and time model as is used inZldd®ument data-
base system [8].

AdocumentversiofY is in our context seen as a list of words, i¥.= [wq, w1, ..., wg].
A word w; is an element in the vocabulary 3ét, i.e.,w; € W. There can be more
than one occurrence of a particular word in a document veysie., it is possible that
w; = wj. The total number of words,, in the collection isw,, = ;" |Vil.

In our data model we distinguish between documents and destwersions. A
temporal document collection is a set of document versignsV;,, where each doc-
ument versior¥/; is one particular version of a documeyf. Each document version
was created at a particular tif¥e and we denote the time of creation of document
versionV; asT;. Version identifiers are assigned linearly, and more thanansion of
different documents can have been createfd, attusT; > T;_;. A particular document
version is identified by the combination of document nalyeandZ;. Simply using
document name without time denotes the most recent docuragsitn.

A document version exists (is valid) from the time it is cesh{either by creation
of a new document or update of the previous version of the mect) and until it is
updated (a new version of the document is created) or thendexuis deleted (the
delete is logical, so that the document is still containetthentemporal document data-
base). The collection of all document versions is dendtednd the collection of all
document versions valid at tini€ (a snapshot collection) is denotét-. A temporal
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document collection is a document collection that alsoudek historical (non-current
versions, i.e., deleted documents and versions that wireupdated) documents. The
time model is a linear (non-branching) time model.

4 Requirements for a temporal document generator

A good temporal document generator should produce docunwétit characteristics
similar to real documents. The generated documents hawaisfysa number of prop-
erties:

— Document contents: 1) number of unique words (size of voeapushould be the
same as for real documents, both inside a document and ab¢engnt collection
level, 2) size and distribution of word size should be theesasifor real documents,
and 3) average document size as well as distribution of sizeald be similar to
real documents.

— Update pattern: 1) a certain number of document in the s&rtwhen the database
is first loaded, 2) a certain number of documents created aleded| at each time
instant, 3) a certain number of documents updated at eahitistant, 4) differ-
ent documents have different probabilities of being updiate., dynamic versus
relatively static documents, and 5) the amount of updatesimcument, including
inserting and deleting words.

Many parameters of documents depend on application arbasddcument generator
should be used to simulate different application areas,tasdto be easily reconfig-
urable. We will now in detail describe some of the importaarigmeters and character-
istics.

4.1 Contents of Individual Documents and a Document Colleain

Documents containing text will in general satisfy someistiaal properties based on
empirical laws, for example size of vocabulary will typigafollow Heaps’ law [5],
distribution of words are according to Zipf's law [11], andve a particular average
length of words.

Size of VocabularyAccording to Heaps’ law, the number ahiquewordsn,, = |W|
(number of elements in vocabulary) in a document collectiotypically a function
of the total number of words., in the collection:|WW| = Kn, where K and 3
are determined empirically. In English texts typical vaweeld < K < 100 and
04 < 8 <06 (cf. http://en.w ki pedi a. or g/ wi ki / Heaps’ 1 aw). Note
that Heaps’ law is valid for anapshot collectiorand not necessarily valid for a com-
plete temporal collection. The reason is that a temporé&ctibn in general will contain
many versions of the same documents, contributing to tta &amhount of words, but
not many new words to the vocabulary.

Distribution of Words:The distribution of the words in natural languages and &fpic
texts is Zipfian, i.e., the frequency of use of thé&-most-frequently-used word is in-
versely proportional ta: P, = f—;, whereP, is the frequency of occurrence of thé*



ranked itemg is close to 1, and® ~ 0.1.5

Word Length:Average word length can be different for different languagand we

have also two different measures: 1) average length of wiardgcabulary, and 2) av-
erage length of words occurring in documents. Because thst frequent words are
short words, the latter measure will have a lower value. Meeagye word length for the
words in the documents we used from the Project Gutenbelertioin was 4.3.

4.2 Temporal Characteristics

The characteristics of a snapshot collection as describedeais well studied during
the years, and a typical document collection will obey thersirical laws. Temporal
characteristics, on the other hand, are likely to be morerde;, and very dependent of
application area. For example, in a document databaseinmgaewspaper articles the
articles themselves are seldom updated after publicafiarihe other hand, a database
storing web pages will be very dynamic.

It will also usually be the case that some documents are wargrdic and frequently
updated, while some documents are relatively static amtbsebr never updated after
they have been created. Because these characteristicsrgrapplication area depen-
dent, a document generator should be able to create docsitmesed on specified pa-
rameters, i.e., update ratio, amount of change in each dext®tc., as listed earlier in
this section.

5 Creating a temporal document collection

In this section we describe how to create a temporal docuoadiection. We describe
first the basis of creating non-temporal documents, befereescribe how to use this
for creating a temporal document collection.

Each snapshot collectidrir, or “generation”, should satisfy properties as described
in the previous section. The basis for creating the first geimn as well as new texts to
be inserted into updated documents is the same as if creating-temporal collection.

5.1 Creating Synthetic Non-Temporal Documents

Several methods exists for creating synthetic documergswill here describe the
methods we considered in our research, which we calhtiiee random-text Zipf-
distributed/random wordsand theZipf-distributed/real wordsnethods.

Naive: The easiest method is probably to simply create a document & random
number of randomly created words. Although this could béigaht for benchmark-
ing when only data amount is considered, it would for exanmplebe appropriate for
benchmarking text indexing. Two problems are that occueatistribution of words
and vocabulary size is not easily controllable with this imoet Although the method
can be improved so that these problems are reduced, thelsoigh@ problem that
because words in real life are not created by random, andédreqvords are not neces-
sarily uniformly distributed in the vocabulary, some ofitihean be close to each other.

8 For our test collections we have measufgd= 0.05.



One example is some frequently occurring words startingg witmmon prefixes, or
different forms of the same word (for example “program” apddgrams”), especially
the case when stemming (where only the root form of a word®iged in the index) is
not employed.

Random-textlf a randomly generated sequence of symbols taken from drabgiS
where one of the symbols are blanihte spacg and the symbols between two blank
spaces are considered as a word, the frequency of words eppbeximated by a Zipf
distribution [7]. The average word size will be determingdtihe number of symbols
in S. Such sequences can be used to create synthetic documewtsét, the problem
is that if the average length of words should be comparabietaral languages like
English, the number of symbols ihave to be low. Another problem is that the distri-
bution is only an approximation to Zipf: it is stepwise distition, all words with same
length has same probability of occurrence. Both problemsbeafixed by introducing
bias among different symbols. By giving a sufficient high lpability for blanks the
average length of words even with a larger number of symifotsekample, 26 in the
case of the English language) can be reduced to averagé lgfitghglish words, and by
giving different probabilities for the other symbols a srtier distribution is achieved.
It is also possible to introduce cut-off for long words. Thivantage with this methods
is that an unlimited vocabulary can be created, but the problith lexicographically
closer words as described above remain.

Zipf-distributed/random-wordsA method that will create a document collection that
follow Heaps’ law and has a Zipfian distribution, is to firseaten = n, random
words with an average word lengfh The humber ofx can be determined based on
Heaps’ law with appropriate parameters. Then, each wordsgyaed an occurrence
probability bases on Zipfian distribution. This can be dosddallows: As described
in Section 4.1, the Zipfian distribution can be approximated#,, = %. The sum of
probabilities should be 1, so that:

S P=1=Y" b o1 P Y L=1=0p, Y =1

1

D v

i=1?
In order to select a new word to include in a document, theltresfrom a random
generator producing valués< r < 1 are used to select the word rankethat satisfies
Y P <r<YiL P
Using this method will create a collection with nice statiak properties, but still have
the problem of not including the aspect of lexicographicalbse words as described
above.
Zipf-distributed/real wordsThis actually the approach we use in TDocGen, and is an
extension of the Zipf-distributed/random-words approadtére areal-world vocabu-
lary is used instead of randomly created words. In order to majeraprovement,
these words need to have the same properties as in real dotsyrimeluding occur-
rence probability and ranking. This is achieved by first mgka histogram of word
frequency (i.e., frequency/word tuples) based on reaktart rank words according
to this. The result will be documents that include the aspétgxicographically close
words as well as following Heaps’ law and having a Zipfianréisition of words.

" This is typically the case for web search engines/web warstm



5.2 Creating Temporal Documents

The first event in a system containing the document collacfar example a document
database, is to load the initial documents. The number afidents can be zero, but it
can also be a larger number if an existing collection is stimghe system. The initial
collection can be made from individual documents createtkasribed above.

During later events, a random number of documents are diedeieta random num-
ber of new documents are inserted. The next step is to sienajsrations to the docu-
ment collection: inserting, deleting, and updating docntse
Inserting documentdNew documents to be inserted into the collection are creiated
the same way as the initial documents.

Deleting document®ocuments to be deleted are selected from the documentimgxis
at a particular time instant.

Updating documentdhe first task is to decidehichdocuments to be updated. In gen-
eral, the probability of updates to files will also in gendadlow a Zipfian distribution.
A commonly used approximation is to classify files into dymaend static files, where
the most updates will be to dynamic files, and the number oathja size is smaller
than the number of static files. A general rule of thumb in basas is that 20% of the
data is dynamic, but 80% of the updates are applied to thés dais can be assumed to
be the case in the context of document databases as wellpdridloicGen documents
are characterized as being static or dynamic, and whiclyoatea document belongs
to is decided when it is created. When updates are to be pesfyrit is first decided
whether the update should be to a dynamic or static file, aridhndocument in the
category that is actually updated, is chosen at randominéorm distribution).

After it is decided what documents to update, the task is téopm the actual up-
date. Since we do not care about structure of text in the deatsnwe simply delete a
random number of lines, and insert a random number of new.liflee text in the new
lines are created in the same way as the text to be includeslirdncuments.

One of the goals of TDocGen is that it should be able to crestgoral document
collections that can have characteristics for chosen egjn areas. This is achieved
by having a number of parameters that can be changed in ardenerate collections
with different properties. The table on the next page sunmaarthe most important
parameters. Some of them are given a fixed value, while othimpeters are given
as average value and standard deviation. The table alsaigsrihe values for two
parameter sets in our experiments which are reported indpect

6 Implementation and practical use of TDocGen

TDocGen has been implemented according to the previousip#sa, and consists
of two programs: one to create histograms from an existingudeent collection, and
a second program to create the actual document collecticati@g histograms is a
relatively time-consuming task, but by separating thi® iatseparate task this only
have to be performed once. Histograms are stored in sefasabgram files that can
also be distributed, so that it is it is not actually neces$ar every user to retrieve a
large collection. This is a big saving, because a histogri@mafe much smaller than the



document collection it is made from, for example, the corapee size of the document
collection we use is 1.8 GB, while the compressed histogrienisfonly 10 MB.

Pattern | Pattern Il

Parameters Avg. or| Avg. or|

FixedStd. dev| FixedStd. dev.
Number of files that exist the first day 100d - 10 -
Percentage of documents being dynamic 20 - 20 -
Percent of updates applied to dynamic documents 80 - 80 -
Number of new documents created/day 200 5 2 1
Number of deleted documents/day 100 2 1 1
Number of updated documents/day 500 20 5 2
Number of words in each line in document 10 - 10 -
Number of lines in new document 150 10 150 10
Number of new lines resulted from update 25 5 25 5
Number of deleted lines resulted from update 20 5 20 5

The result of running TDocGen is a number of compressedardhes. There is
one file for each day/generation, and the file contains alidmmt versions that existed
during that particular time instant. The words in the docotasvill follow Heaps’ and
Zipf’s laws, but because the vocabulary/histogram has d k&, Heaps’ law will only
be obeyed as long as the size of a the documents in a partgeia@ration is smaller
than the data set which the vocabulary was created from.

7 Evaluation of TDocGen

The purpose of the output of a document generator is to betosedhluate other al-
gorithms or system, and it is therefore important that tleated documents have the
quality in terms of statistical properties as expecteds Hlso important that the docu-
ment generator has sufficient performance, so that the ggsafereating test document
does not in itself become a bottleneck in the developmertga®s In this section, we
will study the performance of TDocGen, and the quality of ¢heated document col-
lection.

TDocGen creates documents based on a histogram created frase collection. In
our measurements we have used several base collectionpeffbemance and quality
of results when using these is mostly the same, so we will limareour discussion to
the largest collection we used. This collection is based dn@ment collection that
is available from Project Gutenbefg The collection contains approximately 10,000
books, and our collection consists of most of the texts thexeept some documents
that contain contents we do not expect to be typical for dentrdatabases., e.g., files
contains list of words (for crosswords), etc.

Cost: In order to be feasible in use, a dataset generator has taderossults within
“reasonable time”. The total run time for creating a coli@ctusing the actual parame-
ters in this paper is close to linear wih respect to numbeagtsd

8http://ww. gut enberg. net
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Fig. 1. Comparison of ideal Zipf distribution and the words in théuat created docu-
ment collections.

The total collection created in this experiment is quitgéara total of 1.6 million
files are created, containing 13.3 GB of text. The size of éisé deneration is 159MB
of text in 18,000 files. The elapsed time is less than half am,hwehich should be low
for most uses of such a generator.

Quality of Generated Document Collectiovge will study the quality of the generated
document collections with respect to word distribution andhber of unique words.

The first study is word distribution in the created collenspand we perform this
study on the first and last snapshot collections createdhguhie tests using the two
patterns in the previous table. As Figure 1 show, wordsibigion is Zipfian in the
created collections. It should also be mentioned that greictton of the highest ranked
words shows that the most frequently occurring words are™;thof”, “and”, and “to”.
This is as expected in a document collection that is basedourdents that are mostly
in English.



We also studied the valug for the created collections. We saw tHatis between
60 and 70 which is well within reasonable bounds, and hennéroted that the docu-
ment collections are according to Heaps' law.

8 Conclusions and further work

In research in web archiving, different algorithms and apghes are emerging, and in
order to be able to compare these good test collections guartemt. In this paper we
have described how to make temporal document collectiang this is realized in the
TDocGen temporal document generator, and we have providedis of the quality of
the document collections that are created by TDocGen.

TDocGen have been shown to meet the requirements for a gogubtal docu-
ment collection generato. Also available are ready-mastegiams, including the one
used for the experiments in this paper, based on 4 GB of texdrdents from Project
Gutenberg.

If users want to generate temporal document collectionsaially suited for their
own domain, it is possible to use own existing documents asslfar building the
histograms used to generate the temporal document versiagiwould also be noted
that the generator can also be used to create non-tempaaindmt collections when
collections with particular characteristics are needed.
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