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Abstract. In research in web archives, large temporal document collections are
necessary in order to be able to compare and evaluate new strategies and algo-
rithms. Large temporal document collections are not easilyavailable, and an alter-
native is to create synthetic document collections. In thispaper we will describe
how to generate synthetic temporal document collections, how this is realized in
theTDocGentemporal document generator, and we will also present a study of
the quality of the document collections created by TDocGen.

1 Introduction

In this paper we will describe how to make document collections to be used in devel-
opment and benchmarking of web archives, and how this is realized in theTDocGen
temporal document generator.

Aspects of temporal document databases are now desired in a number of application
areas, for example web databases and more general document repositories:

– The amount of information made available on the web is increasing very fast, and
an increasing amount of this information is made availableonlyon the web. While
this makes the information readily available to the community, it also results in
a low persistence of the information, compared to when it is stored in traditional
paper-based media. This is clearly a serious problem, and during the last years
many projects have been initiated with the purpose of archiving this information
for the future. This essentially means crawling the web and storing snapshots of
the pages, or making it possible for users to “deposit” theirpages. In contrasts to
most search engines that only store the most recent version of the retrieved pages,
in these archiving projects all (or at least many) versions are kept, so that it should
also be possible to retrieve the contents of certain pages asthey were at a certain
time in the past. The most famous project is this category is probably the Internet
Archive Wayback Machine1, but in many countries similar projects also at the
national level, typically initiated by national librariesor similar organizations.

– An increasing amount of documents in companies and other organizations is now
only available electronically.

⋆ Email of contact author: Kjetil.Norvag@idi.ntnu.no
1 http://archive.org/



Support for temporal document management is not yet widespread. Important rea-
sons for that are issues related to 1) space usage of documentversion storage, 2) per-
formance of storage andretrieval, and 3) efficiency of temporal text indexing. More
research is needed in order to resolve these issues, and for this purpose test data is
needed in order to make it easier to compare existing techniques and study possible
improvements of new techniques. In the case of document databases test data means
document collections. In our previous work [8], we have employed versions of web
pages to build a temporal document collection. However, by using only one collection
we only study the performance of one document creation/update pattern. In order to
have more confidence in results, as well as study characteristics of techniques under
different conditions, we need test collections with different characteristics.

Acquiring large document collections with different characteristics is a problem in
itself, and acquiringtemporaldocument collections close to impossible. In order to pro-
vide us with a variety of temporal document collections, we have developed the TDoc-
Gen temporal document generator. TDocGen creates a temporal document collection
whose characteristics are decided by a number of parameters. For example, probability
of update, average number of new documents in each generation, etc., can be config-
ured. A synthetic data generator is in general useful even when test data from real world
applications exists, because it is very useful to be able to control the characteristics of
the test data in order to do measurements with data sets with different statistical prop-
erties.

Creating synthetic data collections is not a trivial task, even in the case of “simple”
data like relational data. Because one of our application areas of the created document
collections is study of text-indexing techniques, the occurrence of words, size of words,
etc., have to be according to what is expected in the real world. This is a non-trivial
issue that will be explained in more detail later in the paper. In order to make tempo-
ral collections, the TDocGen document generator essentially simulates the document
operation by users during a specific period, i.e., creations, updates, and deletes of doc-
uments. The generator can also be used to create non-temporal document collections
when collections with particular characteristics are needed.

The organization of the rest of this paper is as follows. In Section 2 we give an
overview of related work. In Section 3 we define the data and time models we base our
work on. In Section 4 we give requirements for a good temporaldocument generator.
In Section 5 we describe how to create a temporal document collection. In Section 6
we describe TDocGen in practice. In Section 7 we evaluate howTDocGen fulfill the
requirements. Finally, in Section 8, we conclude the paper.

2 Related work

For measuring various aspects of performance in text-related contexts, a number of
document collections exist. The most well-know example is probably the TREC col-
lections2, which includes text from newspapers as well as web pages. Other examples
are the INEX collection [6] which contains 12,000 articles from IEEE transaction and

2 http://trec.nist.gov/



magazines in XML format, and documents in Project Gutenberg3, which is a collection
of approximately 10,000 books.

A number of other collections are also publicly available, some of them can be
retrieved from the UCI Knowledge Discovery in Databases Archive 4 and the Glasgow
IR Resources pages5. We are not aware any temporal document collections suitable for
our purpose.

Several synthetics document generators have been developed in order to provide
data to be used by XML benchmarks, however, these do not create document versions,
only independent documents. Examples are ToXgene [1], which creates XML docu-
ments based on a template specification language, and the data generators used for the
Michigan benchmark [9] and XMark [10]. Another example of generator is the change
simulator used to study the performance of the XML Diff algorithm proposed in [3],
which takes an XML document as input, do random modification on the document, and
outputs a new version. Since the purpose of that generator was to test the XML Diff al-
gorithm it does no take into account word distribution and related aspects, thus making
it less suitable for our purpose.

In the context of web warehouses, studies of evolution of webpages like those pre-
sented in [2,4] can give us guidelines on useful parameters to use for creating collections
reflecting that area.

3 Document and time models

In our work we use the same data and time model as is used in the V2 document data-
base system [8].

A document versionV is in our context seen as a list of words, i.e.,V = [w0, w1, ..., wk].
A word wi is an element in the vocabulary setW , i.e.,wi ∈ W . There can be more
than one occurrence of a particular word in a document version, i.e., it is possible that
wi = wj . The total number of wordsnw in the collection isnw =

∑n

i=0
|Vi|.

In our data model we distinguish between documents and document versions. A
temporal document collection is a set of document versionsV0...Vn, where each doc-
ument versionVi is one particular version of a documentDj . Each document version
was created at a particular timeT , and we denote the time of creation of document
versionVi asTi. Version identifiers are assigned linearly, and more than one version of
different documents can have been created atT , thusTi ≥ Ti−1. A particular document
version is identified by the combination of document nameNj andTi. Simply using
document name without time denotes the most recent documentversion.

A document version exists (is valid) from the time it is created (either by creation
of a new document or update of the previous version of the document) and until it is
updated (a new version of the document is created) or the document is deleted (the
delete is logical, so that the document is still contained inthe temporal document data-
base). The collection of all document versions is denotedC, and the collection of all
document versions valid at timeT (a snapshot collection) is denotedCT . A temporal

3 http://www.gutenberg.net
4 http://kdd.ics.uci.edu/
5 http://www.dcs.gla.ac.uk/idom/ir resources/test collections



document collection is a document collection that also includes historical (non-current
versions, i.e., deleted documents and versions that were later updated) documents. The
time model is a linear (non-branching) time model.

4 Requirements for a temporal document generator

A good temporal document generator should produce documents with characteristics
similar to real documents. The generated documents have to satisfy a number of prop-
erties:

– Document contents: 1) number of unique words (size of vocabulary) should be the
same as for real documents, both inside a document and at the document collection
level, 2) size and distribution of word size should be the same as for real documents,
and 3) average document size as well as distribution of sizesshould be similar to
real documents.

– Update pattern: 1) a certain number of document in the start,i.e., when the database
is first loaded, 2) a certain number of documents created and deleted at each time
instant, 3) a certain number of documents updated at each time instant, 4) differ-
ent documents have different probabilities of being updated, i.e., dynamic versus
relatively static documents, and 5) the amount of updates toa document, including
inserting and deleting words.

Many parameters of documents depend on application areas. The document generator
should be used to simulate different application areas, andhas to be easily reconfig-
urable. We will now in detail describe some of the important parameters and character-
istics.

4.1 Contents of Individual Documents and a Document Collection

Documents containing text will in general satisfy some statistical properties based on
empirical laws, for example size of vocabulary will typically follow Heaps’ law [5],
distribution of words are according to Zipf’s law [11], and have a particular average
length of words.
Size of Vocabulary:According to Heaps’ law, the number ofuniquewordsnu = |W |
(number of elements in vocabulary) in a document collectionis typically a function
of the total number of wordsnw in the collection:|W | = Knβ

w, whereK and β

are determined empirically. In English texts typical values are10 < K < 100 and
0.4 < β < 0.6 (cf. http://en.wikipedia.org/wiki/Heaps’ law). Note
that Heaps’ law is valid for asnapshot collection, and not necessarily valid for a com-
plete temporal collection. The reason is that a temporal collection in general will contain
many versions of the same documents, contributing to the total amount of words, but
not many new words to the vocabulary.
Distribution of Words:The distribution of the words in natural languages and typical
texts is Zipfian, i.e., the frequency of use of thenth-most-frequently-used word is in-
versely proportional ton: Pn = P1

na , wherePn is the frequency of occurrence of thenth



ranked item,a is close to 1, andP1 ≈ 0.1.6

Word Length:Average word length can be different for different languages, and we
have also two different measures: 1) average length of wordsin vocabulary, and 2) av-
erage length of words occurring in documents. Because the most frequent words are
short words, the latter measure will have a lower value. The average word length for the
words in the documents we used from the Project Gutenberg collection was 4.3.

4.2 Temporal Characteristics

The characteristics of a snapshot collection as described above is well studied during
the years, and a typical document collection will obey theseempirical laws. Temporal
characteristics, on the other hand, are likely to be more diverse, and very dependent of
application area. For example, in a document database containing newspaper articles the
articles themselves are seldom updated after publication.On the other hand, a database
storing web pages will be very dynamic.

It will also usually be the case that some documents are very dynamic and frequently
updated, while some documents are relatively static and seldom or never updated after
they have been created. Because these characteristics are very application area depen-
dent, a document generator should be able to create documents based on specified pa-
rameters, i.e., update ratio, amount of change in each document, etc., as listed earlier in
this section.

5 Creating a temporal document collection

In this section we describe how to create a temporal documentcollection. We describe
first the basis of creating non-temporal documents, before we describe how to use this
for creating a temporal document collection.

Each snapshot collectionCT , or “generation”, should satisfy properties as described
in the previous section. The basis for creating the first generation as well as new texts to
be inserted into updated documents is the same as if creatinga non-temporal collection.

5.1 Creating Synthetic Non-Temporal Documents

Several methods exists for creating synthetic documents, we will here describe the
methods we considered in our research, which we call thenaive, random-text, Zipf-
distributed/random words, and theZipf-distributed/real wordsmethods.
Naive: The easiest method is probably to simply create a document from a random
number of randomly created words. Although this could be sufficient for benchmark-
ing when only data amount is considered, it would for examplenot be appropriate for
benchmarking text indexing. Two problems are that occurrence distribution of words
and vocabulary size is not easily controllable with this method. Although the method
can be improved so that these problems are reduced, there is also the problem that
because words in real life are not created by random, and frequent words are not neces-
sarily uniformly distributed in the vocabulary, some of them can be close to each other.

6 For our test collections we have measuredP1 = 0.05.



One example is some frequently occurring words starting with common prefixes, or
different forms of the same word (for example “program” and “programs”), especially
the case when stemming (where only the root form of a words is stored in the index) is
not employed.7

Random-text:If a randomly generated sequence of symbols taken from an alphabetS
where one of the symbols are blank (white space), and the symbols between two blank
spaces are considered as a word, the frequency of words can beapproximated by a Zipf
distribution [7]. The average word size will be determined by the number of symbols
in S. Such sequences can be used to create synthetic documents. However, the problem
is that if the average length of words should be comparable tonatural languages like
English, the number of symbols inS have to be low. Another problem is that the distri-
bution is only an approximation to Zipf: it is stepwise distribution, all words with same
length has same probability of occurrence. Both problems can be fixed by introducing
bias among different symbols. By giving a sufficient high probability for blanks the
average length of words even with a larger number of symbols (for example, 26 in the
case of the English language) can be reduced to average length of English words, and by
giving different probabilities for the other symbols a smoother distribution is achieved.
It is also possible to introduce cut-off for long words. The advantage with this methods
is that an unlimited vocabulary can be created, but the problem with lexicographically
closer words as described above remain.
Zipf-distributed/random-words:A method that will create a document collection that
follow Heaps’ law and has a Zipfian distribution, is to first createn = nu random
words with an average word lengthL. The number ofn can be determined based on
Heaps’ law with appropriate parameters. Then, each word is assigned an occurrence
probability bases on Zipfian distribution. This can be done as follows: As described
in Section 4.1, the Zipfian distribution can be approximatedto Pn = P1

n
. The sum of

probabilities should be 1, so that:∑nu

i=1
Pi = 1 ⇒

∑nu

i=1

P1

i
= 1 ⇒ P1

∑nu

i=1

1

i
= 1 ⇒ nPn

∑nu

i=1

1

i
= 1

⇒ Pn = 1

n
∑

nu

i=1

1

i

In order to select a new word to include in a document, the result r from a random
generator producing values0 ≤ r ≤ 1 are used to select the word rankedk that satisfies
∑k−1

j=1
Pj ≤ r <

∑k

j=1
Pj

Using this method will create a collection with nice statistical properties, but still have
the problem of not including the aspect of lexicographically close words as described
above.
Zipf-distributed/real words:This actually the approach we use in TDocGen, and is an
extension of the Zipf-distributed/random-words approach. Here areal-world vocabu-
lary is used instead of randomly created words. In order to make any improvement,
these words need to have the same properties as in real documents, including occur-
rence probability and ranking. This is achieved by first making a histogram of word
frequency (i.e., frequency/word tuples) based on real texts and rank words according
to this. The result will be documents that include the aspectof lexicographically close
words as well as following Heaps’ law and having a Zipfian distribution of words.

7 This is typically the case for web search engines/web warehouses.



5.2 Creating Temporal Documents

The first event in a system containing the document collection, for example a document
database, is to load the initial documents. The number of documents can be zero, but it
can also be a larger number if an existing collection is stored in the system. The initial
collection can be made from individual documents created asdescribed above.

During later events, a random number of documents are deleted and a random num-
ber of new documents are inserted. The next step is to simulate operations to the docu-
ment collection: inserting, deleting, and updating documents.
Inserting documents.New documents to be inserted into the collection are createdin
the same way as the initial documents.
Deleting documents.Documents to be deleted are selected from the documents existing
at a particular time instant.
Updating documents.The first task is to decidewhichdocuments to be updated. In gen-
eral, the probability of updates to files will also in generalfollow a Zipfian distribution.
A commonly used approximation is to classify files into dynamic and static files, where
the most updates will be to dynamic files, and the number of dynamic size is smaller
than the number of static files. A general rule of thumb in databases is that 20% of the
data is dynamic, but 80% of the updates are applied to this data. This can be assumed to
be the case in the context of document databases as well, and in TDocGen documents
are characterized as being static or dynamic, and which category a document belongs
to is decided when it is created. When updates are to be performed, it is first decided
whether the update should be to a dynamic or static file, and which document in the
category that is actually updated, is chosen at random (i.e., uniform distribution).

After it is decided what documents to update, the task is to perform the actual up-
date. Since we do not care about structure of text in the documents, we simply delete a
random number of lines, and insert a random number of new lines. The text in the new
lines are created in the same way as the text to be included in new documents.

One of the goals of TDocGen is that it should be able to create temporal document
collections that can have characteristics for chosen application areas. This is achieved
by having a number of parameters that can be changed in order to generate collections
with different properties. The table on the next page summarizes the most important
parameters. Some of them are given a fixed value, while other parameters are given
as average value and standard deviation. The table also contains the values for two
parameter sets in our experiments which are reported in Section 7.

6 Implementation and practical use of TDocGen

TDocGen has been implemented according to the previous description, and consists
of two programs: one to create histograms from an existing document collection, and
a second program to create the actual document collection. Creating histograms is a
relatively time-consuming task, but by separating this into a separate task this only
have to be performed once. Histograms are stored in separatehistogram files that can
also be distributed, so that it is it is not actually necessary for every user to retrieve a
large collection. This is a big saving, because a histogram file are much smaller than the



document collection it is made from, for example, the compressed size of the document
collection we use is 1.8 GB, while the compressed histogram file is only 10 MB.

Pattern I Pattern II
Parameters Avg. or Avg. or

FixedStd. dev. FixedStd. dev.
Number of files that exist the first day 1000 - 10 -
Percentage of documents being dynamic 20 - 20 -
Percent of updates applied to dynamic documents 80 - 80 -
Number of new documents created/day 200 5 2 1
Number of deleted documents/day 100 2 1 1
Number of updated documents/day 500 20 5 2
Number of words in each line in document 10 - 10 -
Number of lines in new document 150 10 150 10
Number of new lines resulted from update 25 5 25 5
Number of deleted lines resulted from update 20 5 20 5

The result of running TDocGen is a number of compressed archive files. There is
one file for each day/generation, and the file contains all document versions that existed
during that particular time instant. The words in the documents will follow Heaps’ and
Zipf’s laws, but because the vocabulary/histogram has a fixed size, Heaps’ law will only
be obeyed as long as the size of a the documents in a particulargeneration is smaller
than the data set which the vocabulary was created from.

7 Evaluation of TDocGen

The purpose of the output of a document generator is to be usedto evaluate other al-
gorithms or system, and it is therefore important that the created documents have the
quality in terms of statistical properties as expected. It is also important that the docu-
ment generator has sufficient performance, so that the process of creating test document
does not in itself become a bottleneck in the development process. In this section, we
will study the performance of TDocGen, and the quality of thecreated document col-
lection.

TDocGen creates documents based on a histogram created froma base collection. In
our measurements we have used several base collections. Theperformance and quality
of results when using these is mostly the same, so we will herelimit our discussion to
the largest collection we used. This collection is based on adocument collection that
is available from Project Gutenberg8. The collection contains approximately 10,000
books, and our collection consists of most of the texts there, except some documents
that contain contents we do not expect to be typical for document databases., e.g., files
contains list of words (for crosswords), etc.
Cost: In order to be feasible in use, a dataset generator has to provide results within
“reasonable time”. The total run time for creating a collection using the actual parame-
ters in this paper is close to linear wih respect to number of days.

8 http://www.gutenberg.net
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Fig. 1. Comparison of ideal Zipf distribution and the words in the actual created docu-
ment collections.

The total collection created in this experiment is quite large, a total of 1.6 million
files are created, containing 13.3 GB of text. The size of the last generation is 159MB
of text in 18,000 files. The elapsed time is less than half an hour, which should be low
for most uses of such a generator.
Quality of Generated Document Collections:We will study the quality of the generated
document collections with respect to word distribution andnumber of unique words.

The first study is word distribution in the created collections, and we perform this
study on the first and last snapshot collections created during the tests using the two
patterns in the previous table. As Figure 1 show, words distribution is Zipfian in the
created collections. It should also be mentioned that an inspection of the highest ranked
words shows that the most frequently occurring words are “the”, “of”, “and”, and “to”.
This is as expected in a document collection that is based on documents that are mostly
in English.



We also studied the valueK for the created collections. We saw thatK is between
60 and 70 which is well within reasonable bounds, and hence confirmed that the docu-
ment collections are according to Heaps’ law.

8 Conclusions and further work

In research in web archiving, different algorithms and approaches are emerging, and in
order to be able to compare these good test collections are important. In this paper we
have described how to make temporal document collections, how this is realized in the
TDocGen temporal document generator, and we have provided astudy of the quality of
the document collections that are created by TDocGen.

TDocGen have been shown to meet the requirements for a good temporal docu-
ment collection generato. Also available are ready-made histograms, including the one
used for the experiments in this paper, based on 4 GB of text documents from Project
Gutenberg.

If users want to generate temporal document collections especially suited for their
own domain, it is possible to use own existing documents as basis for building the
histograms used to generate the temporal document versions. It should also be noted
that the generator can also be used to create non-temporal document collections when
collections with particular characteristics are needed.
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