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ABSTRACT

In most current database systems, data is updated in-place.
In order to support recovery and increase performance, write-
ahead logging is used. This logging defers the in-place up-
dates, however sooner or later, the updates have to be ap-
plied to the database. This often results in non-sequential
writing of lots of pages, creating a write bottleneck. To
avoid this, another approach is to eliminate the database
completely, and use a log-only approach. The log is writ-
ten contiguously to the disk, in a no-overwrite way, in large
blocks. The log-only approach is particularly interesting for
transaction-time object database systems (TODBs). While
previous approaches to TODBs have been page based, i.e.,
when an object has been modified, the whole page the ob-
ject resides on has to be written back, our approach is object
based. One of the objections against operating at object
granularity is that the read cost will be prohibitively high.
We will in this paper show that this is not necessarily true.
We use analytical cost models to compare the performance
of log-only and in-place update TODBs, and the analysis
shows that with the workload we expect to be typical for
future TODBs, the log-only approach is highly competitive
with the traditional in-place update approach.

1. INTRODUCTION

Object database systems (ODBs) are an attractive alter-
native to relational database systems, especially in applica-
tion areas where the modeling power or performance of re-
lational database systems is insufficient. These applications
typically maintain large amounts of data, and additionally,
often want to manage temporal data. For the temporal data,
the whole history of the individual objects is kept, and data
is never deleted.

As disks gets cheaper, larger amounts of data is stored
in databases. Because the increase in disk speed is much
lower than the memory and CPU speed, we have an in-
creasing secondary memory access bottleneck. This is not a
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new situation. Minimizing the effects of this bottleneck has
been the motivation behind much of the database related
research. However, the advent of very large main memory
buffers makes it necessary to revise previous work and solu-
tions.

In most current database systems, data is updated in-
place. In order to support recovery and increase perfor-
mance, write-ahead logging can be used. This logging defers
the in-place update, but sooner or later, the update has to
be done. This often results in the writing of lots of small
objects, creating a write bottleneck. To avoid this, another
approach is to eliminate the database completely, and use
a log-only approach. The log is written contiguously to the
disk, in a no-overwrite way, in large blocks. This is done by
writing many objects and index entries, possibly from many
transactions, in one write operation. This gives good write
performance, but possibly at the expense of read perfor-
mance. Figure 1 illustrates the most important differences
between a traditional ODB, and a log-only ODB.

The log-only approach is particularly interesting for trans-
action-time object database systems (TODB). In a TODB,
object updates do not make previous versions unaccessible.
On the contrary, previous versions of objects can still be
accessed and queried, and a system maintained timestamp
(commit time of the transaction that created this version
of the object) is associated with every object version. In
a TODB, we want to keep previous versions of object, a
feature that comes for free when the TODB is based on the
log-only approach.

The log-only approach has many features that makes it
interesting. This includes fast recovery and flexibility in
chunk size for large objects (for example multimedia data
and large multidimensional arrays, like OLAP data cubes).
The log-only approach also benefits more from using RAID
technology than traditional systems. The reason for this
is that it writes large blocks, which is necessary to achieve
high write bandwidth in RAID. Support for efficient han-
dling of large objects is more important than ever, as more
and more applications store large objects in the database
systems, rather than in separate files.

Previous log-only object database systems have been page
server based. While this works well in many contexts, it is
not ideal. By operating on page granularity you get many of
the disadvantages of traditional pager servers. For example,
if clustering is bad, and only a small part of a page has been
updated, it is still necessary to write back the whole page.
With bad clustering, main memory buffer utilization will be
bad as well. A page based log-only ODB also makes trans-
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Figure 1: In-place update page server vs. log-only
object database system.

action management difficult. To avoid page level locking,
you essentially need to have 1) a separate log anyway, or 2)
use ad-hoc techniques to solve the problem. Both solutions
are likely to hurt performance and increase complexity, and
have convinced us that an object based log-only ODB is the
way to go.

It is important to note that one of the main reasons why
previous approaches to log-only systems have not been able
to achieve significant speedup compared to traditional sys-
tems, is that except shorter recovery time, they have not
tried to benefit from any of the potential benefits described
above.

We are currently developing a TODB, the Vagabond!
TODB [7]. The Vagabond TODB is based on the log-only
approach, and operate on object granularity.

One of the objections against operating on object granu-
larity, has been that the read cost will be prohibitively high.
We will in this paper show that this is not necessarily true
for a log-only TODB. We will show this by using analytical
modeling to do a performance analysis of a log-only TODB
(LO-TODB) versus a TODB based on traditional in-place
update techniques (IPU-TODB). We will show that with the
workload we expect to be typical for TODBs, the LO-TODB
is highly competitive with the traditional approach.

The organization of the rest of the paper is as follows.
In Section 2 we give an overview of related work. In Sec-
tion 3 we give an overview of LO-TODBs. In Section 4 we
outline the assumptions behind our analytical models. In
Section 5 and Section 6 we present analytical models for an
IPU-TODB and an LO-TODB. In Section 7 we compare the
performance of IPU- and LO-TODBs. Finally, in Section 8,
we conclude the paper.

2. RELATED WORK

No-overwrite strategies have been used in shadow-paging
recovery strategies earlier, e.g., in System R [2], but with
the limited buffer size at that time, the performance was not
satisfactory. POSTGRES [11] also employed a no-overwrite
strategy, but had also its performance problems, for several

'From Webster’s Encyclopedic Unabridged Dictionary:
Vagabond: “a person, usually without a permanent home,
who wanders from place to place; nomad”. Quite similar to
our objects!

reasons, the most important being the buffer force strategy
used.

Vagabond is based on the same philosophy as log-struct-
ured file systems (LFS), which was introduced by Rosenblum
and Ousterhout [9]. LFS has been used as the basis for two
other object managers: the Texas persistent store [10], and
as a part of the Grasshopper operating system [3]. Both
object stores are page based, i.e., when an object has been
modified, the whole page it resides on has to be written back.

To our knowledge, there has been no publications on log-
only ODBs operating on object granularity as in the Vaga-
bond approach. However, the log-structured history data
access method [4] uses some of the same ideas, The LHAM
is based on the log-structured merge-tree, which is an hier-
archy of indexes. Inserts and updates are only done to the
first level index, and the contents of one level in the index is
asynchronously migrated to the next level. As a result, all
data inserted or modified during a certain time period will
be in the same level. Search for data written at a certain
time is efficient, but searching for the most recent version of
some data can be costly.

A preliminary report of some of the results presented in
this paper appeared in [6].

3. THE LOG-ONLY APPROACH

With the log-only approach, already written data is never
modified, new versions of the objects are just appended to
the log. Logically, the log is an infinite length resource, but
the physical disk size is, of course, not infinite. This problem
is solved by dividing the disk into large, equal sized, physical
segments. When one segment is full, writing is continued in
the next available segment. As data is vacuumed, deleted
or migrated to tertiary storage, old segments can be reused.
Dead data, in a TODB most often old index nodes, will
leave behind partially filled segments, the data in these near
empty segments can be collected and moved to a new seg-
ment. This process, which is called cleaning, makes the old
segments available for reuse. By combining cleaning with
reclustering, we can get well clustered segments. In a tradi-
tional system with in-place updating, keeping old versions
of objects, which is required in a transaction-time temporal
database system, usually means that the previous version
has to be copied to a new place before update. This doubles
the write cost. With the log-only approach, this is not nec-
essary. Keeping old versions comes for free, except for the
extra disk space.

Because each new version of an object is written to a new
place, logical object identifiers (OIDs) are needed. When
using logical OIDs, an OID index (OIDX) is needed to do
the mapping from logical OID to physical location when
retrieving an object. The index entries in the OIDX, the
object descriptors (OD), contains the physical address for
an object and the commit timestamp.?

In a non-temporal ODB with in-place updating of ob-
jects, the OIDX needs only to be updated when objects are
created, not when they are updated. In a log-only ODB,
however, the OIDX needs to be updated on every object

*The ODs that are written together with the objects to the
log contain transaction identifiers (TIDs), and the mapping
from TID to commit time is written to the log as part of the
commit operation. The ODs in the OIDX however, contains
commit timestamps.



update. This might seem bad, and can indeed make it diffi-
cult to realize an efficient non-temporal ODB based on this
technique. However, in the case of a temporal ODB, the
OIDX needs to be updated on every object update also if
using in-place updating, because either 1) the previous or
2) the new version must be written to a new place. Thus,
when supporting temporal data management, the indexing
cost is the same in these two approaches. We have in previ-
ous work developed several techniques that can be used to
reduce the OIDX access cost [5, 8].

Using the log-only approach also gives new opportunities
to improve performance. In order to reduce storage space
and disk bandwidth, objects can be compressed before they
are written. With the log-only approach, objects are written
to a new location every time, so that we only use as much
disk space as the size of the current version written. In a
system employing in-place updating, it is difficult to bene-
fit from object compression, because the compression ratio
will very from version to version, and it is difficult to know
how much space to reserve. Another important advantage
with the log-only approach is fast crash recovery. Only one
pass through the log is necessary. This is very important to
achieve high availability.

It should also be noted that some of the problems in previ-
ous no-overwrite database systems have been solved in the
Vagabond system. For example, algorithms for steal/no-
force buffer management, fuzzy checkpointing and fast com-
mit have been developed [7].

4. ANALYTICAL MODELING

Analytical modeling in database research has mostly fo-
cused on disk costs. This has been the most significant cost
factor, and the CPU processing has gone in parallel with
disk transfer, making the CPU cost “invisible”. With in-
creasing amounts of main memory available, this is not nec-
essarily correct. In that context, CPU cost, and memory-
to-memory transfer would be important as well. Therefore,
using the analytical model presented in this paper, the re-
sults for the case when all data in the database fits in main
memory should be taken with a large grain of salt. There-
fore, we only provide results for memory sizes smaller than
half the database size. However, even if the actual perfor-
mance would not be as high as indicated by the model, the
performance would still be much higher using the log-only
approach, because we in this case can use the maximum disk
write bandwidth.

As mentioned previously, OIDX access costs can be high.
However, in the analysis here, we limit the discussion to stor-
age and retrieval of the objects only, under the assumptions
that:

1. We have enough disks available to avoid the OIDX
operations becoming a bottleneck.

2. In a traditional IPU-TODB, the OIDX will be based
on in-place updating. In an LO-TODB, the OIDX
can either be stored log-only, or it can be stored sep-
arately, and updated in-place. By not including the
OIDX in the analysis, we assume that OIDX opera-
tions in an LO-TODB will have the same costs as in
an IPU-TODB, even though it is very possible that
the costs can be less if using the log-only approach on
the OIDX as well.

For both models, we assume the total amount of buffer
memory to be M. In the case of the IPU-TODB, this mem-
ory is used for buffering object pages, OIDX nodes, and ob-
ject descriptors (OD cache). In the case of the LO-TODB,
this memory is used for buffering objects, OIDX nodes, and
object descriptors (OD cache). Because we in this analysis
do not consider index performance, we will only consider
the memory available for objects and object pages, which
we denote as Mopy .

For both systems modeled here, performance can be in-
creased by adding more disks. Both the objects and the
OIDX can be partitioned over several disks. To simplify the
analysis, we assume that only two disks are available for ob-
ject storage in our model. This is the smallest number of
disks needed to be able to recover from media failures. For
the IPU-TODB, one of the disks is used for data, and the
other one is used for the log. For the LO-TODB, we use
the two disks in a RAID 1 configuration (mirroring). This
means that we get the write performance of one disk, but
the read performance of two disks.

The main purpose of the models developed in this paper,
is to compare the LO-TODB and IPU-TODB approaches.
Therefore, we do a conservative analysis, always trying to
err on the right side. In practice, this means that we make
a very optimistic analysis for the IPU-TODB, and similarly
pessimistic analysis for the LO-TODB. For example, com-
pression as described previously, is not included in the an-
alytical model. Also, we restrict this analysis to objects
smaller than one disk page. Larger objects can be written
and read more efficient with the log-only approach, because
of larger flexibility with respect to object sizes and sizes of
subobjects in large objects. In general, the performance of
an LO-TODB relative to an IPU-TODB will increase with
increasing object sizes.

4.1 Disk Model

We use a traditional disk model, where the cost of reading
a block from disk is the sum of the start up cost Tstart and
the transfer cost Tiranster- In our model, the average start
up cost is fixed, and is set equivalent to ¢,, the time it takes
to do one disk revolution. The transfer cost is directly pro-
portional to the block size, and is equivalent to reading disk
tracks contiguously, i.e., transfer cost is equal to V%t,, where
b is the block size to be transferred, and V; is the amount
of data on one track. For very large blocks, it is likely that
several tracks and also tracks in different cylinders are read
contiguously. This implies positioning, but we assume that
the time used for this is insignificant compared to transfer
time. A sector, typical 512 bytes, is the smallest address-
able unit on a disk, and this implies that this is the smallest
amount of data that can be read. Thus, the total time it
takes to transfer one block of size b is Ts(b) = t,(1 + Vis)

4.2 Buffer PerformanceModel

Our buffer model is based on the Bhide, Dan and Dias
LRU buffer model (BDD) [1]. A database in the BDD model
has a size of NV data granules (e.g., pages or objects), parti-
tioned into p partitions. Each partition contains a fraction

3By adding more disks and using these in a RAID configu-
ration with one parity disk, the performance improvement
would be higher in an LO-TODB than an IPU-TODB, be-
cause only the LO-TODB would be able to efficiently exploit
the write bandwidth of a RAID system.



Bi of the data granules, and «; of the accesses are done to
each partition. The distributions within each of the parti-
tions are assumed to be uniform, and all accesses are as-
sumed to be independent. We denote a particular partition-
ing set II = (ao,... ,ap—1,0P0,.-. ,Bp—1). For example, for
the 80/20 model, TIgg/99 = (0.8,0.2,0.2,0.8).

In the BDD model, the steady state average buffer hit
probability is denoted Pyous(B, N,II), where B is the num-
ber of data granules that fits in the buffer. The BDD model
can also be used to calculate the total number of distinct
data granules accessed after n accesses to the database,
Ndistinct(na N’ H)

4.3 Workload Model

The size of the database in this analysis is Sp g, excluding
overhead. The number of objects is Nop;, which is dependent
of the object size.

We assume accesses to objects in the database system to
be random, but skewed (some objects are more often ac-
cessed than others). We assume it is possible to (logically)
partition the objects into partitions, where each partition
has a certain size and access probability. Each partition
contains a fraction f; of the data granules, and «; of the ac-
cesses are done to each partition. We will in the comparison
use two partitioning sets:

Set | Bo b1 B ap |1 |2
3P1(0.01 |0.19 |0.80|0.64|0.16 | 0.20
3P2 | 0.001 | 0.049 | 0.95 | 0.80 | 0.19 | 0.01

In the first partitioning set, we have three partitions. This
is an variant of the 80/20 model, but with the 20% hot spot
partition further divided, into a 1% hot spot area, a 19%
less hot area, and a 80% relatively cold area. The second
partitioning set resembles the access pattern close to what
we expect it to be in future TODBs, with a large cold set,
consisting of old versions.

Unless otherwise noted, results from the analysis are based
on calculations using default parameters as summarized in
Table 1. Note that even though some of the parameter com-
binations in the following sections are unlikely to represent
the average over time, they can occur in periods, e.g., more
write than read operations. In situations like this, when
parameter sets differs from the average, which systems tra-
ditionally have been tuned against, cost functions can be
very helpful to make adaptive self tuning systems.

5. IPU-TODB

In a temporal database system, it is usually assumed that
most accesses will be to the current versions of the objects
in the database. To keep these accesses as efficient as pos-
sible, and benefit from object clustering, the database is
partitioned, with current objects in one partition, and the
previous versions in the other partition, in the historical
database.

When an object is updated in a TODB, the previous ver-
sion is first moved to the historical database, before the new
version is stored in-place in the current database.

We assume that clustering is not maintained for historical
data, so that all objects going historical, i.e., being moved
because they are replaced by a new current version, can be
written sequentially, something which reduces update costs
considerably.

Param./ | Definition Default
Function Value
Vs Disk track size 50 KB
tr Disk revolution time ﬁs
SpB Database size 8 GB
Sobj Average size of an object 208
Pyrite Object write probability 0.2
Prew Prob. that a write creates

a new obj. 0.2
Pgrc Prob. that a read is for

the current version 0.9
Sp Page size in page server 4 KB
Mopuf Buffer size
Tr Cost (time) of transfer of one block
Naistinet | # of distinct object/pages
Py ¢ Buffer hit probability
Treadobj | Average time to read an object
Twriteobj | Average time to write an object
Nopj Number of objects in the database %
Ts Cost of writing b bytes sequentially Vitr
No page | Avg. 7 of objects on each page Si;
C Data clustering factor 0.2
Tp Cost of random read/write a page
Pyt opagel Page buffer hit prob.
Treadpage | Average cost of reading a page
Pyuyobj | Object buffer hit prob.
Sod Size of object descriptor 32

Table 1: Summary of system parameters and func-
tions. The horizontal lines separate the general pur-
pose parameters and functions from those specific
for IPU-TODB and LO-TODB.

Not all the data in a TODB is temporal, for some of the
objects, we are only interested in the current version. To
improve efficiency, the system can be made aware of this. In
this way, some of the data can be defined as non-temporal.
Old versions of these are not kept, and objects can be up-
dated in-place as in an one-version ODB.

In a traditional page server system, a dedicated disk is
usually used for the log. In this way, disk seek is avoided
when writing the log, and the log writing can be done effi-
ciently. Having a separate disk is also necessary to handle
media failures. We assume the log writing costs are less than
the other costs involved, so that when a separate log disk is
used, we do not have to consider the cost of log operations
in the analysis.

5.1 Clustering

In general, one or more objects are stored on each disk
page. To reduce the object retrieval cost, objects are often
placed on disk pages in a way that makes it likely that more
than one of the objects on a page that is read, will be needed
in the near future. This is called clustering.

In our model, we define the clustering factor C as the frac-
tion of an object page that is relevant. If there are Ny page
objects on each page, and n of them will be used, the clus-
tering factor (when No page >=1) is C = =

No_page ’



5.2 Object ReadCost

Even with several page requests at a time, and employing
an elevator algorithm, the seek time will be significant. The
cost of reading or writing a page of size Sp to/from the disk
is equal to Tp = T(Sp). When reading a page, the page
may already be resident in the page buffer. The probability
for this is:

Mopuy Sps
Sp + Sove’rhead’ Sp ’

The average cost of reading a page when taking the buffer
into account is:

Pbuf_opage = Pbuf( H)

Treadpage = (]- - Pbuf_opage)TP

Assuming a clustering factor of C, the average object re-
trieval cost from the current partition is:

1
T eadobj = ——Tread
j-cur readpage
CNo_pa.ge

The average object retrieval cost from the historical parti-
tion, where we can not assume any clustering is:

Treadobj _hist — Treadpage

We denote the probability that a read operation is for the
current version as Prc. The average object retrieval cost is:

T’readobj = PRcTreadobj_cur + (1 - PRC)Treadobj_hist

5.3 Object Update Cost

Updating can be done in-place, with write-ahead logging.
In that case, a transaction can commit after its log records
have been written to disk. Modified pages are not written
back immediately, this is done lazily in the background as a
part of the buffer replacement and checkpointing. Thus, a
page may be modified several times before it is written back,
and update costs will be dependent of the checkpoint inter-
val. The checkpoint interval is defined to be the number of
objects that can be written between two checkpoints. This
number of written objects, Nop, includes created as well as
updated objects. We assume that the buffer is large enough
to hold pages written to several times during one check-
point interval, i.e., we always use a value of Ngp where this
is true. This is already true in many configurations, and will
certainly be valid for future system with large amounts of
main memory. Ncr = PpewNcp of the written objects dur-
ing a checkpoint period are creations of new objects. Of the
objects written during a checkpoint period, (Ncp — Ncr)
are updates of existing objects, and the number of distinct
updated objects is:

Npvu = Naistinet(Nep — Nor, Nobv; )

With a sufficiently large checkpoint interval, there will be
several writes to a page. The average number of times each
object is updated is:

_ Ncp — Ncr
Npu

During one checkpoint interval, the number of pages in the

current partition of the database that is affected is Np =
Npu
No.pagecl

This means that during one checkpoint interval, new ver-
sions must be inserted into Np pages. C'No_page Objects on
each of these pages have been updated, and each of them

Ny

has been updated an average of Ny times. To maintain the
constraint in the model that all affected pages during one
checkpoint interval fits in the buffer, Np must always be less
than the number of pages that fits in the buffer.

For each of the Np pages, we need to write Ny CNoy_page

objects to the historical partition (this includes objects from
the page and objects who was not installed into the page
before they went historical), install the new current version
to the page, and write it back. This will be done in batch,
to reduce disk arm movement, and benefit from sequential
writing of the historical objects. It is possible to compress
historical objects before they are written to the historical
partition. The cost of writing b bytes sequentially to disk,
assuming the amount of data is large enough to ignore seek
time is T's(b) = V%t,.
When creating a new object, a new page will, on average, be
allocated for every Ny_page Object creation. We assume these
pages can be written efficiently, in a mostly sequential way.
The total object write related cost during one checkpoint
interval is write to historical partition, and write modified
and new pages:

TT = TS(NPNUCNo_pageSobj)
+NpTp
+Ts (22— Sp)

No_page

The average object update cost is Tyriteob; = NTC—TP

6. LO-TODB

The LO-TODB modeled in this section operates according
to the description in Section 3.

6.1 Object ReadCost

Similarly to the IPU-TODB, we need two disks to be able
to handle media failures. In the log-only system, we can
use the disks in a mirroring configuration, which doubles the
read bandwidth. The average cost of reading an object from
disk when we have parallel, independent read operations
from the two disks:

Treadobj-disk = (TB(Sob5))/2

When reading an object, the object may already be resi-
dent in the object buffer. The probability of this is Ppy f_op;:

M,
Pyys obj = lef(s buf

Sr b )
H I 00)
obj overhead

Taking into account the object buffer, the average object
read cost is:

Treadobj = (]- - Pbuf_obj)Treadobj_disk

The assumption that only one object is read from the
disk between each disk seek is actually a very conservative
estimate. It does not take into account prefetching, and
more important, it does not take into account disk read-
ahead. In practice, dynamic reclustering will also improve
read performance considerably. Without doing a thorough
analysis of this aspect, we can get an idea of how much we
can gain from this by using the previous cost functions, and
assuming that from each random read operation to retrieve
an object, we can get n additional objects “cheaply”. We
assume that the disk employs read-ahead, so that when we
do a read operation, some of the following data will also be
read. If doing a disk read shortly after, this data will still



be in the cache on the disk, and can be retrieved without an
additional disk seek operation. In this way, the TODB does
not even has to do any implicit prefetching. If we assume n
to be small, so that the total data D = nS,p; is small enough
to expect it to be cached by read-ahead, we can approximate
the read cost in this case to be:

T’readobj-’reclustered(n) = T’readobj/n

In this paper we will in general assume the worst case, with
n = 1, but we will in Section 7.4 see how a more realistic
value of n will affect performance.

6.2 Object Update Cost

When writing to the log, this is done sequentially, with
large blocks (segments). The object write operation in an
LO-TODB is to put the object into the log, together with
its OD (Section 3):

Twriteobj = Ts(Sod + Sobj)

Writing the OD together with the object is done to avoid
synchronous updates of the OIDX, because in an LO-TODB
we do not have a separate log to write this information.

7. A COMPARISON OF PERFORMANCE

We have now derived the cost functions necessary to cal-
culate the average object storage and retrieval costs with
different system parameters and access patterns. We will in
this section study how different values of these parameters
affects the access costs. Optimal parameter values are de-
pendent of the mix of updates and lookup, and they should
be studied together. If we denote the probability that an
operation is a write as Pyrite, the average access cost is the
average of the cost of all object read and write operations:

Taccess = (1 - Pwrite)Treadobj + PwriteTwriteobj

We will also use speedup as a metric. If we denote the
average object access time for an IPU-TODB as Tat o, and

the average object access time for an LO-TODB as TQus,
IPU

we can calculate speedup as Speedup = %. A speedup

access

less than 1.0 means that with the given parameters, an IPU-
TODB will perform best. A speedup greater than 1.0, means
that an LO-TODB will perform best. On the figures, we
have plotted the 1.0 line to make it easy to see under which
conditions each of the two approaches have the best perfor-
mance.

The memory size on the figures in this paper, is the mem-
ory size relative to database size.

7.1 Object AccessCost

Figure 2 shows the average object access costs with dif-
ferent access patterns. We see here that the access pattern
affects very much under what conditions the different ap-
proaches perform best.

7.2 The Effect of Differ ent Object Sizes

The average object size is an important parameter. In
this study, we used a default object size of 208 bytes, which
is close to size which we have observed used in many other
ODB performance studies, for example at the University of
Wisconsin, where they have typically use an object size of
200 bytes.

Figure 3 illustrates the speedup with different object sizes.
It shows very well what can be expected, and it is important
to note that even the largest object size used here, 512 bytes,
is not really a very large object! The average object size is
increasing as a result of new application areas and cheaper
storage, which means that we can expect a better speedup
from using an LO-TODB in the future.

7.3 The Effect of Differ ent Clustering Factors

In most page server ODBs, it is possible to advice the
system on how to cluster objects on the pages. Unfortu-
nately, usually only the initial clustering can be specified,
reclustering is often impossible. In a multiuser system, with
complex and dynamic workloads, it is commonly difficult to
find a good clustering. The default clustering factor in our
analysis is 0.2, which favors the IPU-TODB approach.

Figure 4 shows how the clustering factor in IPU-TODBs
affect their performance, and their relative performance to
LO-TODBs. This shows well how much IPU-TODBs de-
pend on good clustering. This is an important point. In
practice, with different applications accessing a database, it
is difficult to get a good clustering factor. In a study by
Tsangaris and Naughton [12], all practical clustering algo-
rithms results in an average clustering which is less than
this value, for the clustering algorithms and workloads in
this study, C had values between 0.25 and 0.1.* In a real
world application, clustering will often be worse. That study
was done with a 4 KB page size. With a larger page size, C
would probably decrease because of a higher degree of false
sharing.

As is evident for the figure, if we consider a more likely
clustering factor less than 0.20, an LO-ODB will perform
better than an IPU-TODB for both access patterns, even
with a much smaller amount of main memory available.

7.4 Effect of Reclusteringand Read-Ahead

Until this point, we have assumed no clustering in the LO-
TODB, with only one read object on each disk access. It
is very likely that it is possible to achieve better than this.
This can be achieved by writing related objects at the same
time, and by “intelligent” cleaning and reorganization of the
segments.

By using a relatively high default value for the cluster-
ing factor in an IPU-TODB, we have already assumed it is
well clustered. By using the modified read cost in the LO
read object cost function with different values of n, we get
an indication of how much can be gained. Figure 5 shows
speedup with different values of n with the different access
patterns.

7.5 Impact of Cleaning and Reorganization

The major disadvantage of the log-only approach has been
reported to be segment cleaning cost. Normally, the cleaner
is running in the background, and only employing idle re-
sources. However, under certain conditions, its cost will be
significant, for example in a system with no idle periods, or
when the disk utilization is too high. As a result, the clean-
ing cost can be devastating in a non-temporal LO-ODB.
In an LO-TODB, on the other hand, we expect the clean-
ing cost to be much lower, because we keep old versions of

4Tsangaris and Naughton used the metric ezpansion factor
(EF), where EF =1/C.
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most objects. Additionally, the gain from reclustering dur-
ing cleaning might well outweight the disadvantages of the
cleaning.

8. CONCLUSIONS

The log-only approach is particularly interesting for trans-
action-time ODBs. We have shown by the use of analytical
cost models that with the workload we expect to be typi-
cal for TODBEs, the log-only approach is highly competitive
with the traditional in-place update approach. We expect
the benefits of the log-only approach to be even more inter-
esting in the future, with increasing amounts of main mem-
ory available and increasing object sizes. We should also
again emphasize that the cost model for the log-only TODB
that has been developed in this paper is very conservative.
We expect both clustering and buffer hit ratio to be better
in practice, resulting in a better performance.

In addition to good performance on small objects, which
have been shown by the analysis in this paper, there are
other features in a log-only system that makes it even more
interesting. This includes fast recovery and flexible large
object chunk size. The importance of this should not be
underestimated.

The work presented in this paper has been done in the
context of a TODB, but it should be equally applicable in
the context of an object-relational database system.
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