
PROQID: Partial Restarts of Queries in Distributed
Databases

Jon Olav Hauglid
Dept.of Computer Science

Norwegian University of Science and Technology
Trondheim, Norway
joh@idi.ntnu.no

Kjetil Nørvåg
Dept.of Computer Science

Norwegian University of Science and Technology
Trondheim, Norway

noervaag@idi.ntnu.no

ABSTRACT
In a number of application areas, distributed database systems can
be used to provide persistent storage of data while providing ef-
ficient access for both local and remote data. With an increasing
number of sites (computers) involved in a query, the probability
of failure at query time increases. Recovery has previously only
focused on database updates while query failures have been han-
dled by complete restart of the query. This technique is not always
applicable in the context of large queries and queries with dead-
lines. In this paper we present an approach for partial restart of
queries that incurs minimal extra network traffic during query re-
covery. Based on results from experiments on an implementation
of the partial restart technique in a distributed database system, we
demonstrate its applicability and significant reduction of query cost
in the presence of failures.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing

General Terms
Algorithms, Reliability, Performance

Keywords
Distributed querying, fault-tolerance, query restart

1. INTRODUCTION
In a number of application areas, distributed database systems

can be used to provide a combination of persistent data storage and
efficient access to both local and remote data. Traditionally, both
updates and queries have been characterized by short transactions
accessing only small amounts of data. This has changed with the
emergence of application areas such as Grid databases, distributed
data warehouses and peer-to-peer databases. In these areas, time-
consuming queries involving very large amounts of data can be ex-
pected. With an increasing number of sites (computers) involved
in a query, the probability of failure increases. The probability also

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

increases with longer duration of queries and/or higher churn rate
(unavailable sites).

Previously, failure of queries has been handled by complete query
restart. While this is an appropriate technique for small and medium-
sized queries, it can be expensive for very large queries, and in
some application areas there can also be deadlines on results so
that complete restart should be avoided. An alternative to complete
restart is a technique supporting partial restart. In this case, queries
can be resumed on new sites after failures, utilizing partial results
already produced before the failure. These results can be both re-
sults generated at non-failing sites as well as results from failing
sites that have already been communicated to non-failing sites.

In this paper we present an approach to partial restart of queries
in distributed database systems (PROQID) which is based on de-
terministic tuple delivery and caching of partial query results. The
proposed approach has been implemented in a distributed database
system, and the applicability of the approach is demonstrated from
the experimental results which shows that query cost in the pres-
ence of failures can be significantly reduced. The main contri-
bution of our work is a technique for partial restart that: 1) Re-
duces query execution time compared to complete restart, 2) In-
curs only marginal extra network traffic during recovery from query
failure, 3) employs decentralized failure detection, 4) supports non-
blocking operators and 5) handles recovery from multi-site failures.

While we in this paper focus on using our technique for reduc-
ing query cost in the context of failure during execution of large
queries, we also note that the technique can be applied to solve a
related problem: distributed query suspend and resume, where on-
going low-priority queries can be suspended when higher-priority
queries arrive. In this case our approach can be used to efficiently
store the current state of the query with subsequent restart from the
current state.

The organization of the rest of this paper is as follows. In Sec-
tion 2 we give an overview of related work. In Section 3 we outline
the assumed system model and query execution. In Section 4 we
discuss how failures can be detected, which sites can fail and differ-
ent times of failure. In Section 5 we describe how to support partial
restart. In Section 6 we describe how to handle partial restart in the
context of updates during the query processing. In Section 7 we
evaluate the usefulness of our approach. Finally, in Section 8, we
conclude the paper and outline issues for further work.

2. RELATED WORK
Previously in database systems, only fault tolerance with respect

to updates has been considered. This has been solved through the
concepts of atomic transactions, usually supported by logging of
operations which can be used in the recovery process. Recently,
in particular in the context of internet applications, persistent ap-

plication and application recovery has received some attention [2,
18].

Much of the previous work on distributed database systems is
obviously relevant. For a survey of state of the art in this area we
refer to [13]. Recent work in this area includes query processors
for Internet data sources, for example ObjectGlobe [4], and query
execution in Grid databases [9].

A related work that directly addresses the issues regarding query
restart, is the work of Smith and Watson on fault-tolerance in dis-
tributed query processing [17]. Their work is based on GSA-DQP [1],
a distributed query processing system for the Grid. Smith and Wat-
son describe how they have extended this system to support fault-
tolerance during query execution. Each site executing a query oper-
ator, stores tuples produced in a recovery log before sending them
towards the query initiator. When a failure is detected by the global
fault detector, a new site is selected to replace the failed site. Re-
covery logs from upstream sites are then replayed so that the new
site can restart the failed operation. This assumes that the opera-
tions produce tuples in deterministic order, however, how this can
be achieved is not described. In contrast to our approach, the new
site will produce duplicate tuples in cases where the failed oper-
ation was partially completed. These are afterwards discarded at
downstream sites by using a system of checkpoint marker identi-
fiers. Our approach improves on the approach of Smith and Watson
by avoiding duplication of tuples, employing decentralized failure-
detection, supporting pipelined hash-join, and handling multi-site
failures.

A similar approach is presented by Hwang et. al. [10, 11]. Their
focus is on recovery from failures in a distributed stream process-
ing setting. Three alternatives are presented, two which focus on
having standby sites for all sites participating in the query. The
third, upstream backup, is related to our tuple cache. In contrast to
our work, their focus is on fast recovery at the expense of increased
network load during execution and failure handling.

While our approach relies on the DBMS to make use of repli-
cation in order to handle failures, an alternative is returning partial
results [3]. The authors present an approach where the partial re-
sult can be resubmitted by the application at a later time in order
to hopefully access previously unavailable data sources. The pre-
sented solution does not handle failures during query processing, a
data source is assumed to either be available or unavailable for the
entire query execution.

Related to query restart because of failures, is suspend and re-
sume, typically done because of the arrival of a higher-priority
query. In [5] the problem is discussed in context of a central-
ized system, where variants of lightweight checkpointing are used
to support resume. A similar centralized approach is described
in [6]. Here restart cost is minimized by saving a bounded num-
ber of tuples produced by filter operators (intermediate or final re-
sults). These tuples are chosen so that they maximize the number of
source tuples that can be skipped during restart of scan operations.
In contrast to our work, these approaches deal with restarts caused
by planned suspend rather than site failures. Also, they don’t look
at restart of complete queries where our methods can also handle
restart of (unfinished) subqueries.

Several approaches to restart loading after failure during loading
of data warehouses have been presented, for example [14]. In con-
trast to our work, the same source sites are restarted after failure,
only failing sources sites are considered, and which source tuples
can be skipped have to be computed after failure.

Using stored results are also done in a number of other con-
texts, for example in semantic caching [8, 15], use of materialized
views in queries [7], query caching [16], and techniques particu-

Symbol Description
Si Site
ti Tuple
T Table T
Ti Fragment i of table T
Ti(j) Replica j of fragment i of table T
ni Algebra node
Ni Algebra tree

Table 1: Symbols.

larly useful for large and long-running queries, for example reopti-
mization [12].

Traditionally, also various checkpoint-restart techniques have been
employed to avoid complete restart of operations. However, these
techniques have been geared towards update/load operations, and
assuming the checkpointing information is stored locally, the query
will be delayed until the failed site is online again.

3. PRELIMINARIES
In this section we outline the system model that provides the

context for the rest of the paper and basic assumptions regarding
query execution. We also introduce symbols to be used throughout
the paper, summarized in Table 1.

3.1 System Model
The system consists of a number of sites, Si. Each site has a

DBMS, and a site can access local data and take part in the exe-
cution of distributed queries, i.e., the DBMSes together constitute
a distributed database system. The distribution aspects can be sup-
ported directly by the local DBMS or can be provided through mid-
dleware.

The degree of autonomy is orthogonal to the techniques pre-
sented in this paper, i.e., the sites can be completely autonymous or
managed by a single entity. The only requirement is that they have
a common protocol for execution of queries and metadata manage-
ment.

Our approach assumes that data can be represented in the rela-
tional data model, i.e., tuples ti being part of a table T . A table can
be stored in its entirety on one site, or it can be horizontally frag-
mented over a number of sites. Fragment i of table T is denoted
Ti. Vertical fragmentation can be considered as redesign of tables
and require no special treatment in our context.

In order to improve both performance as well as availability,
fragments can be replicated, i.e., a part of a table can be stored
in more than one site. Replica j of fragment Ti is denoted Ti(j).

3.2 Query Execution
We assume queries are written in some language that can be

transformed into relational algebra operators, for example SQL.
During query planning the different algebra nodes ni are assigned
to sites. This requires catalog lookups in order to transform logical
table accesses into physical localization programs (for example a
set of accesses to horizontal table fragments). We assume that sites
can be assigned more than one algebra node so that one site can
be assigned a subquery. As all sites have the capability to execute
operators, sites containing table fragments used in the query are
typically also assigned query operations on these fragments during
planning. This tends to reduce network traffic as tuples can be pro-
cessed locally. Detailed algorithms for assigning nodes to sites are
beyond the scope of this paper. Example algebra with site assign-
ment is shown in Figure 1.

 Ss1 Ss2

 Sr Sf Sx

St

nt

nf nf nx

ns1 ns2

Normal communication

Failed communication

New after recovery

Down-
stream

Figure 1: Algebra example.

After planning, query execution begins by transmitting the alge-
bra tree Ni from the initiator site to the different sites involved, as
will be described in more detail in the next section.

Results of query operators are transferred between sites in tu-
ple packets. These packets are atomic, i.e., incomplete packets are
discarded. Our approach supports stream-based processing of tu-
ples, for example joins performed by pipelined hash-join [19]. This
means that an algebra node can start producing tuples before the
all tuples are available from its operand node(s). This makes it
possible for nodes downstream to start processing as soon as pos-
sible and therefore lets more nodes execute in parallel. This re-
quires each site to be able to accept and buffer yet unprocessed
packets, but it allows data transfers to be made without explicit re-
quests, thereby improving response time. In case of limited buffer
availability, flow control can be used to temporarily halt sending of
packets.

4. FAILURES AND FAILURE DETECTION
Obviously, a precondition for failure recovery is failure detec-

tion. In this section we describe how failures can be detected, which
sites can fail and different times of failure.

In our setting, a site will be considered failed if it cannot be con-
tacted by other sites, i.e., failure can be both network and actual site
failure. Observed from the outside the result is the same.

We propose an approach to decentralized failure detection and
handling where each site is responsible for detecting failures in sites
that are supposed to produce its input tuples. The site responsible
for discovering failure of a site Si is called the failure detector site
of Si. The result is that failures in two separate branches of the
algebra tree are detected and handled separately. It also removes
a global failure detector as a single point of failure. Note that the
status of sites not participating in any query does not have to be
maintained.

Since a failure detector site expects tuples from sites it is watch-
ing, detection can be implemented as timeouts on these tuples as
this incurs no extra overhead. Note that blocking operations (e.g.
aggregation), can result in timeouts even if the site is alive. There-
fore a timeout is followed by a special alive check message to ver-
ify that a site (or connection) has indeed failed. Timeout on the
response of this message constitutes a suspected failure and failure
handling should be started.

Decentralized failure handling depends on each site being able
to replan a (sub-)query after it detects failures. In order to do this
each algebra node must be aware of its algebra subtree(s). This can
be achieved by a stepwise transmission of the algebra tree from the
initiator site to the different sites involved in a query. This process
is described in Algorithm 1. A site assigned a given algebra node
transmits this node’s subtree(s) to the site(s) assigned the root(s)

of these, all while maintaining a local copy of the subtree(s). The
local copies are then used during failure handling, as described in
the next section.

Algorithm 1 Stepwise transmission of algebra tree.
At site Si, after receiving Ni:

ni ← root(Ni)
for all nc ∈ children(ni) do

Nc ← subtree(nc)
Sc ← getAssignedSite(nc)
Send(Nc, Sc)

end for
The initiator site starts by executing the algorithm with the whole
algebra tree as Ni.

For a given query, involved sites can fail either during transmis-
sion of the algebra tree or during query execution. During exe-
cution, there are essentially three different types of sites that can
fail: sites containing 1) the initiator node, 2) table fragment access
nodes, and 3) operator nodes.

4.1 Failure During Transmission of Algebra
Tree

A site can fail before it receives its algebra node(s). This will
be detected by its failure detector site during the stepwise transmis-
sion of the algebra tree. The detector site starts failure handling
by replanning the failed subtree and transmits it to the replacement
site.

Note that the stepwise transmission of the algebra tree makes
handling of this kind of failure easier compared to a parallel trans-
mission of all algebra nodes directly from the initiator site. This
is because failure detection and handling is decentralized and that
no sites upstream from a failed site will receive their algebra nodes
before the failed site has been replaced and the query plan updated.

4.2 Failure of Site Containing Initiator Node
If the site with the initiator node fails, the query should simply

abort as the result is now of no interest. Initiator failure is detected
when sites with algebra nodes directly upstream from the initiator
site try to send their results. This is the only failure which is de-
tected by a site upstream rather than downstream. After detection,
an abort message is sent upstream to the other sites participating in
the query.

4.3 Failure of Site Containing Table Fragment
Access Node

A site assigned a table fragment access node could fail. When
this is detected by the site with the algebra node that should get the
results, the detector site should find a different site with a replica of
the same fragment and send the table fragment access operator to
the new site for restart.

4.4 Failure of Site Containing Operator Node
A site responsible for an operator node nf can fail. In these kinds

of failures, four types of sites are involved (Cf. Table 2 and Figure
1).

When failure of an operator is detected, the detector site must
find a replacement site and send it the relevant algebra subtree. This
is made possible by each site storing the subtree(s) for its assigned
algebra node as described above. The replacement site must in-
form sites upstream about its existence and do a complete or partial
restart of the operation depending on time of failure. This process
is described in the next section.

Symbol Description
Sf Failed site, assigned the algebra node nf .
Ss Site(s) with the source algebra node(s) ns (i.e., pro-

ducing tuples for nf).
Sr Site replacing Sf . Will restart nf .
St Site with the algebra node receiving the results from

nf . Is failure detector for Sf .

Table 2: Sites involved in a failure.

5. RESTART AFTER FAILURE
By supporting partial restart of queries, one site is able to pick up

and continue an operation after the site that originally executed the
operation has failed. We now give a brief overview on how to per-
form query restart before we delve into the details in the following
sections.

For now we assume that each site only has a single algebra node.
This node, as described in Section 4, can be either a local table
fragment access or an operator node. This restriction is lifted in
Section 5.5 where we look at handling multiple failures.

With local table fragment access, restarting is independent of
other sites. After Ss detects a failure of Sf , it must locate a suit-
able Sr using catalog lookup and transmit the table fragment access
operation to it so that the operation can be restarted.

In the case of operator failure, the failed node had one or more
operands located on source site(s) Ss. As part of the restart, it is
necessary to inform these of the new Sr so that operand tuples can
be sent there. The amount of tuples that must be sent from Ss de-
pends on the failed operation and will be discussed in Section 5.2.

In the worst case, all tuples that Ss ever sent to Sf must be resent
to Sr . If no measures were taken to prevent it, Ss would then be
required to completely restart its/their operation(s). If these oper-
ations were not local table fragment accesses, restarting Ss would
require resending of its operand tuples and so on. To prevent this
cascading effect to lead to a complete restart of the algebraic sub-
tree to node nf , each site can use a tuple cache. This cache stores
tuples produced by the algebra node furthest downstream on each
site. In this way tuples can be resent after site replacement with-
out recomputation and without involving sites further upstream.
Caching will of course require storage at each site, but depending
on operator this cost can be marginal compared to network cost of
a complete restart of the algebraic subtree.

Assuming a failed operation was partially completed, restarting
it can produce duplicates. Our approach is to prevent these dupli-
cates from being sent rather than later removing them downstream.
Details are given in Section 5.2.

In this section we will assume that operations are mostly read-
only, with updates only done in batch at particular times (i.e., simi-
lar to assumption doen in previous work as e.g. [6]). This assump-
tion fits well with our intended application areas. In Section 6 we
will describe how partial restart can be supported also in the context
of updates.

In the rest of this section, we present in more detail the approach
for partial restarts of queries.

5.1 Determining Replacement Site
After St detects a failure in Sf , it must find a replacement site Sr

(denoted findReplacementSite() in the following algorithms).
How this is done depends on whether one or more of the algebra
nodes at Sf were table/fragment access operations or not.

After Sr has been selected, sites downstream must be notified of
the selection so that they can update their local copy of the algebra

tree. This is necessary to ensure that handling of subsequent fail-
ures are done using an algebra tree with correct node assignment.

Site with no table/fragment access: If nf is an operator, any
site can potentially be selected as replacement (we assume equal
capabilities of all sites). Because St knows its algebraic subtree(s)
and assigned sites, it has enough information to select an Sr that
limits network traffic (i.e., the same site as one of Ss).

Site with table/fragment access: If nf is a local table fragment
access, the replacement site must be selected among other sites with
replicas of the same fragment. If no live replicas exist, the detector
site notifies the initiator site. Application dependent, the initiator
can chose to abort or continue with incomplete data.

5.2 Algebra Node Restart
This section describes in detail how different algebra nodes can

be restarted. We first discuss the simple case of table access op-
erations. We then turn to operators, which can be categorized into
two categories: stateless and stateful operators. In the case of state-
less operators, each tuple is processed completely independent of
other tuples. Examples of such operators are select and project. In
the case of stateful operators, a result tuple is dependent on several
operand tuples. Examples of such operators are join and aggrega-
tion.

5.2.1 Table/Fragment Access
Restarting local table fragment access can be performed inde-

pendent of other sites. After Ss detects a failure of Sf , it must lo-
cate a suitable Sr using catalog lookup and transmit the table frag-
ment access operation to it so that the operation can be restarted. To
avoid sending duplicates, Ss notifies Sr of the number of tuples it
received from Sf before the failure. By assuming deterministic or-
der of sent tuples (for example by acessing the table in the “natural
order”, either based on row identifier or primary key), this number
is enough to ensure that Sr can restart exactly where Sf failed.

5.2.2 Stateless Operators
In the case of stateless operators like select and project, each

operand tuple can be processed independently, and the tuple is not
needed after it has been processed as long as the results are not lost.
Therefore, a full resend of tuples from source nodes is not needed
when partially restarting such operators.

For example, if ti was the last operand tuple processed by a
project node before it failed, the replacement project node must
start processing on operand tuple ti+1. To know how many operand
tuples an operation has consumed, each produced tuple packet is
tagged with the last operand tuple(s) used to produce the result tu-
ples in the packet. This can be more than one number if the operand
was a fragmented table (one operand tuple number per fragment).
This algorithm is shown in Algorithm 2 and explained below.

Algorithm 2 Restart of select or project.
At site St, after detecting failure of Sf :

Sr ← findReplacementSite()
tns ← tupleNumbers(lastPacket)
Send(Nf , Sr) {Algebra subtree}
Send(tns, Sr)

At site Sr , after receiving Nf and tupleNum:
nf ← root(Nf)
ns ← children(nf) {May be more than one node}
Ss ← getAssignedSites(ns)
Send(Sr, Ss) {Ss may be more than one site}
Send(tns, Ss)

After Sf fails, St selects Sr and transmits the relevant algebra
subtree (with nf as root). In order to do a partial restart, Sr must
resume select/project where Sf failed. To do this, tuple packets
produced by nf are tagged by the last source tuple number(s) tns

from ns used to produce the packet. During recovery, tns is trans-
mitted from St to Sr and then to Ss. This makes it possible for
Ss to resend tuples from tns+1 to Sr . In order for this to work,
nf must produce tuples in a deterministic order (cf. Section 5.3 on
how this can be achieved).

When nf is restarted at Sr it must continue the tuple numbering
where Sf left off. I.e., the first packet received at St from Sr must
have a number higher than tns. This is necessary to ensure that
subsequent failures of nf is restarted from the correct point.

5.2.3 Stateful Operators
For stateful operators like join and aggregation, each result tuple

is dependent on more than one operand tuple. For example, when
joining two operands A and B, each tuple from A is matched with
each tuple from B. This means that as long as not all tuples from
A has been received, all tuples from B are needed. Thus when
restarting join, all tuples from B must be resent if the join crashed
before all tuples from A had been processed (and vice versa).

Aggregation has similar properties: no results can be produced
before the operand has been completely received (at least if we as-
sume no grouping and unsorted tuples). Also, all result tuples are
dependent on all operand tuples. So regardless of when aggrega-
tion fails (before/during transfer of the result), all operands must be
resent to the replacement node.

What can be done when restarting operators such as join and ag-
gregation, is to prevent Sr from sending tuples already sent by Sf

before it failed. In order to do this, St sends Sr the number of tu-
ples it has received, tnf . During processing at Sr , these tuples are
discarded. This is possible if tuples are produced in a determinis-
tic order – so that the tnf first tuples from Sr are the exact same
tnf tuples Sf produced first. The algorithms for restart of join and
aggregation are presented formally in Algorithm 3 and 4.

We assume a pipelined hash-join algorithm in order to have the
join node produce results as early as possible. This allows opera-
tors further downstream to start processing as soon as possible and
therefore lets more operators execute in parallel.

Algorithm 3 Restart of join.
At site St, after detecting failure of Sf :

Sr ← findReplacementSite()
tnf ← numberOfTuplesReceived(nf)
Send(Nf , Sr) {Algebra subtree}
Send(tnf , Sr)

At site Sr , after receiving Nf and tnf :
nf ← root(Nf)
ns ← child(nf)
Ss1 ← getAssignedSite(ns)
Ss2 ← getAssignedSite(ns)
Send(Sr, Ss1)
Send(Sr, Ss2)

For joins, it is possible to optimize the algorithm if the failed
join node had processed all tuples from one of the sources. Then
the processed tuples from the other source do not have to be resent.
This is because one can be certain that these tuples have already
been joined with all tuples from the first source.

Algorithm 4 Restart of aggregation.
At site St, after detecting failure of Sf :

Sr ← findReplacementSite()
tnf ← numberOfTuplesReceived(nf)
Send(Nf , Sr) {Algebra subtree}
Send(tnf , Sr)

At site Sr , after receiving Nf and tnf :
nf ← root(Nf)
ns ← child(nf)
Ss ← getAssignedSite(ns)
Send(Sr, Ss)

5.3 Achieving Deterministic Delivery of Tuples
For the algorithms described above, deterministic order of tuples

produced by operations is vital. It allows us to use a single tuple
number to describe the restart point for the transmissions from the
replacement site. Note that deterministic order does not imply that
the tuples have to be sorted.

For table fragment accesses, deterministic order can be ensured
by, for example, sorting tuples on primary key or by having a lo-
cal DBMS with deterministic table access operations (which is the
general case). For operator nodes, we require that all sites use the
same algorithms and that these give deterministic results if they
process operand tuples in a deterministic order.

Two issues have to be taken care of in order to achieve deter-
ministic order of operand tuples. First, a single operand can have
multiple sources (for example due to table fragmentation). Second,
an operator node can have two operands (e.g., join). Both these
issues are handled by processing tuple packets from the various
source sites in an alternating manner — pausing if a packet from
the next source is not yet received. The first packet is taken from the
source site with the lowest ID. These IDs are assigned during query
planning. Assuming sources can supply tuples with equal rates, al-
ternating between sources rather than processing unordered, should
only incur a minor overhead.

5.4 Tuple Caching
After a replacement site Sr has been selected and sent the alge-

bra node nf , it must notify any sites Ss with source nodes about
its existence and request sending of operand tuples. As explained
above, the extent tuples have to be resent depends on which opera-
tion nf is. Regardless, Ss may be asked to send tuples produced by
algebra nodes long since completed. If means are not taken to pre-
vent it, this can cause a cascading restart of the entire subtree as Ss

will have to retrieve its source operand tuples in order to produce
the tuples that are to be sent to Sr .

In order to prevent this cascading restart, each site can use a tu-
ple cache where produced tuples are stored until the query is com-
pleted and there is no risk of restart. This cache is optional as there
is always an option to restart the subtree completely, but as will be
shown in Section 7, savings can be large — especially for opera-
tions that produce far fewer tuples that they consume (aggregation
is a good example). It is therefore possible to have tuple caching
of results from some operations and not for others — this can for
example be decided during query planning.

Only tuples produced by the most downstream algebra node as-
signed to a specific site, need to be cached. A tuple cache between
two nodes assigned to the same site would in any case be lost when
the site fails and would thus be of no use during query restart. Fur-
ther, tuples from table fragment access operations should not be
cached as it can be assumed that they can equally well be retrieved

from the local DBMS. Finally, sites directly upstream from the ini-
tiator site need not cache tuples. Such cached tuples would only be
of use in case of initiator site failure, but then the query is aborted
anyway.

After a query completes, the initiator site notifies all involved
sites so they can purge their tuple cache of any tuples belonging to
the query. Generally, purging tuple caches during query execution
is difficult because of stateful operators such as join and aggre-
gation that upon failure generally requires a full resend of source
operands to be restarted.

Since the tuple cache is assumed to be main-memory based, its
size will be limited. This means that it is possible that during a
query it fills up. When this happens, it simple stops caching new
tuples. In this case, we have partial tuple caching. During a subse-
quent failure, the contents in the cache will be used, but the tuples
that could not fit needs to be re-created by the upstream operators.
Thus the efficieny of the tuple cache during restart depends on the
amount of tuples that could fit.

5.5 Handling Multiple Failures
So far, we have assumed that each site participating in a query

is assigned only one algebra node and that only a single site fails.
In reality, a failed site would likely have been assigned more than
one algebra node as this tends to reduce network traffic by having
operators use local data. It is also possible, though not as likely, that
more than one site could fail. How multiple algebra node failures
is handled, depends on whether they occur simultaneously or not.

5.5.1 Non-simultaneous Failures
A new failure after a recovery has completed, requires no ex-

tra effort. It only requires that information about the replacement
node Sr had been sent downstream so sites could update their al-
gebra trees with the revised site assignment. This makes sure that
replacement nodes for later failures get sent a correct algebra sub-
tree.

5.5.2 Simultaneous Failures
If several algebra nodes fail simultaneously (or another fails dur-

ing recovery), the failed nodes’ relative positions in the algebra tree
have consequences. With the use of a tuple cache, decentralized
failure detection and handling, the effect of a failure is limited to
the detector site, the replacement site and its source sites (St, Sr

and Ss respectively). This makes it possible to handle failures fur-
ther apart in the algebra tree independently.

When a failed site has two or more directly connected algebra
nodes, only the furthest downstream node can be partially restarted
as it is the only node where information about results generated
before failure, is available. The upstream nodes will therefore have
to be completely restarted. This is illustrated in Figure 2. Note
that Ss can resend from its tuple cache (if available), limiting the
consequences of the failure.

If two sites with directly connected algebra nodes fail at the same
time, the upstream failure will not be detected until the downstream
failure has been recovered from (due to downstream failure detec-
tion). The two failures will therefore be handled one after the other.
Because of the upstream failure, its tuple cache will be lost so the
upstream node will have to do a complete restart. Again, tuple
caches on sites upstream from the upstream failure can be used to
reduce network traffic during recovery.

5.6 Cost During Normal Operation
An important aspect of PROQID is a very low overhead during

normal operation. The extra cost incurred by using PROQID comes
from a few different sources.

 Ss

 Sf Sr

 St

nt

nf1 nf1

nf2

ns

nf2

Partial restart

Complete restart

Complete resend

Figure 2: Partial restart with two-node failure.

Operators must produce tuples in a deterministic order. This is
achieved by 1) having table scans by rowID (or similar) to retrieve
tuples from local storage in a deterministic order (which will in
general only incur a minor, if any, overhead), and 2) forcing oper-
ators to process input tuples in a deterministic order (whether from
the one source or several), and in that way producing tuples in de-
terministic order. In case of different arrival rates or packets re-
ceived out of order, processing may be delayed.

There is some network overhead from sending tuple numbers
with tuple packets. However, this overhead is minimal if packets
contain a few hundred tuples, typically less than 0.1% (depending
on tuple size).

Overhead in failure detection is kept low by only detecting fail-
ures in active sites and by using regular messages as “I’m alive”-
messages as much as possible . It should be noted that any system
that supports failure handling has to accept a minor overhead from
failure detection.

Tuple caching is an optional part of our approach. Sites can opt
to use available memory resources to (partially) cache produced
tuples to reduce processing needed in event of partial restart. Since
the use of memory for tuple caching can affect other queries, it
can incur a significant extra cost. However, use and size of the
tuple cache is optional (no cache, partial cache, full cache), and it
is trivial to let the user enable the tuple cache for individual queries
or query operators when desired.

6. DYNAMIC DATA
The approach presented in the previous section will perform cor-

rectly as long as no operations are performed on the databases that
can change tuples’ ordering in a subsequent restart. Updates are as-
sumed to not change tuples’ order, but inserts and deletes of tuples
can change the order.

So far, we have assumed a context of read-mostly databases where
partial restart can be performed if no inserts or deletes have been
performed during the execution of a query. In the case of inserts or
deletes between query start and failure, complete restart will have
to be performed to get a correct result. Assuming inserts/updates
will only be performed occasionally, most failed queries can be
handled by partial restart. This can be expected to be the case for
typical data warehouse scenarios and also for most of the data to be
queried in computational science applications.

In some cases, we also want to be able to support partial restart in
application areas where inserts and deletes occur more frequently.
Correct results can be achieved in a number of ways:

• Locking: Tables participating in the queries are read-locked
so that no updates can be performed. This will delay update
transactions performed concurrently with queries, and will

in general only be acceptable with infrequent updates, typ-
ically only performed in batch (i.e., no interactive response
expected).
• Logging: Inserts/deletes are logged, so that during partial

restart the same tuples, and in the same order, as was deliv-
ered before restart can be delivered. This solution will essen-
tially provide a snapshot of the database as of the start of the
query.
• Tuple cache: As processed tuples can be stored in a site’s tu-

ple cache, inserts and deletions in source operands will have
no effect unless the contents of the tuple cache are lost. In
essence, this works similarly to logging so logging need only
be used in sites with no tuple cache (typically local table frag-
ment access).

The methods described above for ensuring correct results have
all certain associated costs or they limit concurrency. It is thus
important to note that many applications, for example data ware-
houses, can tolerate a slightly inaccurate results and therefore use
partial restart even in case of some inserts and deletions. Inserts can
cause duplicate tuples in the result as a tuple numbered tn− 1 be-
comes tn after insert and a resend from tn also will include tn− 1
previously sent. Similarly, deletions can cause missing tuples.

7. EVALUATION
In order to demonstrate the feasibility and query restart cost re-

duction of using PROQID, we have implemented the approach as
described in this paper in the DASCOSA-DB distributed database
system. We will in this section describe results from experiments.
Each experiment is a distributed query where one of the participat-
ing sites fails.

We will first describe the experimental setup, including the im-
plemented prototype and the data set used for evaluation. Two sets
of experiments were performed and results are presented in the sub-
sequent sections. The first set contains simple queries that together
highlight different aspects of our approach. In order to evaluate
PROQID with more realistic queries, the second set contains sev-
eral complex TPC-H queries. For all queries, we compare the per-
formance of 1) partial restart and 2) complete restart, compared to
execution without failures.

Using PROQID instead of complete query restart, we achieve
savings in both network communication and query execution time.
In order to demonstrate this, we measure savings in terms of trans-
ported tuples for the simple queries, while we measure time savings
for the TPC-H queries.

It should also be noted that using PROQID also gives substan-
tial savings in use of CPU as only affected subqueries have to be
restarted. This will result in further query time savings in a mul-
tiuser environment.

7.1 Experimental Setup
We have implemented a Java-based prototype, DASCOSA-DB,

and extended it with the partial query restart techniques described
in this paper. The prototype acts as a middleware on top of Apache
Derby running as the local DBMS on each site. DASCOSA-DB
accepts queries in standard SQL, transforms them into relational
algebra and distributes the algebra nodes to the participating sites
after query planning. The catalog service for indexing tables was
implemented using the FreePastry DHT.

In our experiments we use data with a schema based on the one
used in the TPC-H benchmark (TPC-H). TPC-H is a decision sup-
port benchmark reflecting a database scenario similar to our as-
sumed context. The first set of query experiments use the part of

Nation
(N)

Customer
(C)

Orders
(O)

Supplier
(SU)

PartSupp
(PS)

Part
(P)

25 tuples 10 000 tuples 800 000 tuples

150 000 tuples 1 500 000 tuples 200 000 tuples

Figure 3: Subset of the TPC-H database.

Site N SU PS C O P
S0 P S1(1) C1(1) O1(1) P1(1)
S1 N1(1) P S2(1) C2(1) O2(1) P2(1)
S2 SU1(1) P S3(1) C3(1) O3(1) P3(1)
S3 SU2(1) P S4(1) C4(1) O4(1) P4(1)
S4 P S5(1) C5(1) O5(1) P5(1)
S5 P S1(2) C1(2) O1(2) P1(2)
S6 N1(2) P S2(2) C2(2) O2(2) P2(2)
S7 SU1(2) P S3(2) C3(2) O3(2) P3(2)
S8 SU2(2) P S4(2) C4(2) O4(2) P4(2)
S9 P S5(2) C5(2) O5(2) P5(2)

Table 3: Table fragments and site distribution.

the TPC-H schema illustrated in Figure 3, while the second set of
queries use the entire TPC-H schema.

The queries are performed on a dataset created using the data
generator provided at the TPC-H web site. The number of tuples
for each table is also shown in Figure 3. The tables used in the
queries were fragmented into equally sized parts and distributed
to 10 sites as summarized in Table 3. Note that all fragments are
replicated on two sites.

Unless otherwise stated, tuple caches were used for all exper-
iments. Caches were made large enough to contain all produced
tuples, so cache size was not considered.

In order to crash sites in a deterministic manner, a special crash
algebra node was inserted into the generated algebra trees before
they were distributed and query execution started. The crash node
would let a predetermined number of tuples pass through and then
crash the site — stopping the execution of any other algebra nodes
assigned to the site.

7.2 Simple Query Results
In this section we present the results from the first part of our ex-

periments. Three different queries were executed; each designed
to illustrate different aspects of our approach for partial restart.
Each query was executed by DASCOSA-DB and we measured how
many transported tuples were needed to complete the query with
varying time of failure.

The baseline we compare against is the traditional solution where
a query is aborted after failure of one of the sites participating in the
query and then completely restarted.

7.2.1 Query 1: Distributed Select
The objective of this test was to investigate the restart perfor-

mance of stateless operators. We used select, but project could
equally well have been used. The query used was:
SELECT * FROM part WHERE p_size < 21

This query was transformed to the algebra tree illustrated in Fig-
ure 4 (left). Note that we used distributed select, i.e., each site with
a fragment of part performed select on its local data. The effects of
a centralized select are investigated in the next section. The results
from the execution of this query are shown in Figure 4 (right).

The x-axis is time of failure computed as TC/T where T is the
number of tuples sent from S2 during execution without failure and
TC is the number of tuples sent from S2 before failure. The y-axis

 S10

 S0

I · Each fragment contains 40000 tuples

· S2 fails and is replaced by S7

· Total result size is 80332 tuples

P1

σ

 S1

P2

 S2

P3(1)

 S3

P4

 S4

P5

 S7

P3(2)

σ σ σ σ σ

0 %

20 %

40 %

60 %

80 %

100 %

0 % 20 % 40 % 60 % 80 % 100 %

N
e

tw
o

rk
 o

v
e

rh
e

a
d

Point of failure
Partial restart Complete restart - best case

Complete restart

Figure 4: Query 1 and results.

· C1 – C5 contain 30000 tuples each, N contains 25

· S1 fails and is replaced by S6

· Total result size is 150000 tuples

 S2 S3

C3 C4

 S10

I

 S0

C1

 S4

C5

 S6

N(2)

⨝

C2(2)

 S1

N(1)

⨝

C2(1)

0 %

20 %

40 %

60 %

80 %

100 %

0 % 20 % 40 % 60 % 80 % 100 %

N
e

tw
o

rk
 o

v
e

rh
e

a
d

Point of failure
Partial restart Complete restart

Figure 5: Query 2 and results.

is the extra network traffic needed to handle the failure as NC/N
where N is the number of tuples sent by all sites during execution
without failure, while NC is the number of tuples sent by all sites
during execution with failure.

With complete restart of the query, all data generated before
the failure is removed from the participating sites and discarded.
Therefore the percentage of extra tuples with complete restart is
simply the amount of tuples transmitted before failure. In our ex-
ample, each select produced only 16000 tuples so due to overhead
with detecting failure of S2 (message timeout and alive check) the
other sites had sent all their tuples when S2 was crashed. With
larger amounts of data, this overhead would have been reduced and
made it possible to stop other sites before they had sent all their tu-
ples. We have therefore plotted two cases of complete restart: The
measured values and an estimated best case. The best case assumes
that all all sites S0 . . . S4 have equal rate of tuple transmission and
that all stop as soon as S2 fail.

With partial restart, S7 can continue right where S2 stopped as
described in Section 5.2. Nodes S0, S1, S3 and S4 were unaffected
by the failure. Therefore no extra tuples were transmitted for partial
restarts compared with no failure.

7.2.2 Query 2: Join
As argued in Section 5.2, stateful operators such as join are fun-

damentally different from select. This test case is a simple join
designed to highlight these differences:
SELECT * FROM nation JOIN customer

The resulting algebra tree is illustrated in Figure 5 (left). We see
that nation has two fragments while customer has five. Site 1 was
selected for the join operator during planning to minimize network
traffic as it has a fragment of both involved tables. The results from
the execution of this query are shown in Figure 5 (right).

Since join is a stateful operator, all source operands must be re-
transmitted to the replacement site. The only way partial restart is
able to improve on complete restart in this case, is to prevent the
new join node from transmitting tuples already sent from the failed

site. These tuples make up the difference between the two lines in
the graph.

In this query, the crashed operator has operands on other sites.
Tuples that are received from these sites but not processed before
crash, cause the graph lines to deviate slightly from a straight line.

7.2.3 Query 3: Multiple Operators
After investigating the properties of stateless and stateful of op-

erators separately, we made a more complex test case containing a
combination of operators:

SELECT * FROM supplier JOIN (
SELECT ps_suppkey, COUNT(*)
FROM part JOIN partsupp
WHERE ps_availqty < 1000
AND p_size < 21
GROUP BY ps_suppkey).

This query was transformed into the algebra tree illustrated in
Figure 6. After select each fragment of part and partsupp was
reduced to about 16000 tuples. Aggregation produced 9624 tuples
which was joined with two fragments of supplier, each 5000 tu-
ples. The final result was 9624 tuples as well.

With this query it made sense to vary which site we crashed. S0,
S3 and S4 all have stateless operators and no external operands and
can therefore be treated the same. We first evaluated a crash of S4.
As S4 has a similar role to S2 in Query 1, it is not surprising that
we got similar results. Partial restart can be done without any extra
tuples transferred.

If S1 is the failing site, all operands to its join must be resent. Un-
fortunately, as aggregation does not send anything until it is com-
pleted, this is an example where the partial restart in effect provides
negligible benefits. Beyond avoiding duplicates from the aggrega-
tion node, the only saving in our example is that tuples sent from
the second supplier fragment on S3 will not have to be resent.

The last site to evaluate failure for is S2. Execution of algebra
nodes on this site has two separate phases. The first phase is local

 S10
I

 S0

P1 PS1

σ/π σ/π

 S1

P2 PS2

σ/π σ/π

 S2

P3 PS3

σ/π σ/π

SU1

 S3

P4 PS4

σ/π σ/π

 S4

P5 PS5

σ/π σ/π

⨝

γ

⨝

SU2

Figure 6: Query 3.

table fragment accesses and select/project on the results. Then the
site has to wait for the completion of aggregation on S1 before its
join can start (phase two). Figure 7 (left) shows results where the
site fails during phase one, while Figure 7 (right) shows results with
failure during phase two.

In phase one S2 acts as a site without external operands (the
join has not started). The results therefore match closely, but not
perfectly, what we got for Query 1. The reason why partial restart
is not optimal is the 5000 tuples transferred from S3. Depending
how early S2 crash, most/all of these tuples have been received.
Since the join has not started in phase one, all tuples received from
S3 are unprocessed and must be retransmitted after recovery.

A crash in phase two is a crash during join processing on S2. As
join is a stateful operator, it requires sending of source operands on
partial restart. One of the source operands is from the aggregation
on S1. Restarting this operator has great consequences as the join at
S1 requires the transfer of about 128000 tuples from S0, S2, S3 and
S4. This is a good example of where the tuple cache can be used to
great effect. Caching the result of the aggregation just requires the
storage of 9624 tuples and prevents recomputing aggregation/join
and resending of their operand tuples. The graph therefore shows
partial restart both with and without tuple cache on S1.

After failure of S2 during phase two and with the use of the tu-
ple cache, the only tuples that must be resent on partial restart is
the contents of the cache and the 5000 supplier tuples from S3.
Without the cache, everything must be resent with the exception of
tuples already received at the initiator site (S10).

7.3 TPC-H Query Results
In order to valildate our approach in a more realistic setting, we

also executed the test queries defined in the TPC-H benchmark. For
each query, we measured three execution times:

• T1: Query without failures.

• T2: Query with failure and partial restart.

• T3: Query with failure and complete restart.

Using on these executions times, we calculated restart cost as
(T2-T1)/(T3-T1) to represent the improvement with partial com-
pared to complete restart. The results from a representative selec-
tion of ten TPC-H queries are shown in Figure 8. For six of these
queries, the site crashing was executing scan, select and project op-
erators. For the remaing four, the crashing site were also executing
more complex operators such as join and aggregation. In two of the
queries, the failing site had multiple unconnected algebra nodes.

On average, our approach for partial restart reduces the restart
cost of these queries by 50 %. The two queries with least gain (Q13
and Q2) were also the two shortest queries. This is explained by the
constant overhead in detecting site failure — which of course plays

0 %

20 %

40 %

60 %

80 %

100 %

2 3 4 6 8 9 10 12 13 14

R
e

st
a

rt
 c

o
st

TPC-H Query Number

Figure 8: TPC-H query test results.

a larger role for short queries than for long queries. The opposite
was also true: the most gain was generally from the longest queries.
Finally, restart cost is higher if the site that crashes has blocking
operators (aggregation, sorting) rather than non-blocking operators
(select, project, pipelined hash-join).

7.4 Summary
The results from the evaluation can be summarized as follows:

• If the crashed site had algebra nodes with no external operands,
partial restart can be done without any extra transported tu-
ples compared to query execution without failures.

• For crashed sites with external operands, very few extra tu-
ples must be transported if the failed algebra nodes are state-
less operators.

• If failed algebra nodes are stateful operators, partial restart is
still better than complete restart.

• For complex queries tuple caching can greatly reduce net-
work traffic during partial restart.

• Partial restart reduces both query execution time and network
traffic compared to complete restart.

8. CONCLUSIONS
Distributed database systems are of interest in many contexts

where large and time-consuming queries (e.g., Grid databases) or
high churn rate (e.g., peer-to-peer databases) are common. To-
gether with a large number of participating sites, this results in an
increased probability of failure during query execution. In this pa-
per, we have presented the PROQID approach for partial restart of
queries which reduce the overall cost of queries in the presence of
failures. The reduction in query cost has been confirmed by ex-
periments using PROQID implemented in a distributed database
system.

Future work include the development of cost functions describ-
ing the fault-tolerant operators, making it possible for database sys-
tems to automatically choose fault-tolerant operators only when
conditions in the system (for example network problems) or large
queries make it beneficial.

9. REFERENCES
[1] M. N. Alpdemir et al. OGSA-DQP: a service for distributed

querying on the Grid. In Proceedings of EDBT’2004, 2004.
[2] R. S. Barga et al. Recovery guarantees for internet

applications. ACM Trans. Internet Techn., 4(3):289–328,
2004.

[3] P. Bonnet and A. Tomasic. Partial answers for unavailable
data sources. In Proceedings of FQAS’98, 1998.

0 %

20 %

40 %

60 %

80 %

100 %

0 % 20 % 40 % 60 % 80 % 100 %

N
e

tw
o

rk
 o

v
e

rh
e

a
d

Point of failure
Partial restart Complete restart - best case

Complete restart

0 %

20 %

40 %

60 %

80 %

100 %

0 % 20 % 40 % 60 % 80 % 100 %

N
e

tw
o

rk
 o

v
e

rh
e

a
d

Point of failure
Partial restart, cache Partial restart, no cache

Complete restart

Figure 7: Query 3 results.

[4] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann,
A. Kreutz, S. Seltzsam, and K. Stocker. ObjectGlobe:
ubiquitous query processing on the Internet. VLDB Journal,
10(1):48–71, 2001.

[5] B. Chandramouli, C. N. Bond, S. Babu, and J. Yang. Query
suspend and resume. In Proceedings of the SIGMOD’2007,
2007.

[6] S. Chaudhuri, R. Kaushik, R. Ramamurthy, and A. Pol.
Stop-and-restart style execution for long running decision
support queries. In Proceedings of VLDB’2007, 2007.

[7] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views. In
Proceedings of ICDE’1995, 1995.

[8] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and
M. Tan. Semantic data caching and replacement. In
Proceedings of VLDB’1996, 1996.

[9] A. Gounaris et al. Adapting to changing resource
performance in Grid query processing. In Proceedings of
DMG’05, 2005.

[10] J.-H. Hwang et al. High-availability algorithms for
distributed stream processing. In Proceedings of ICDE’2005,
2005.

[11] J.-H. Hwang et al. A cooperative, self-configuring
high-availability solution for stream processing. In
Proceedings of ICDE’2007, 2007.

[12] N. Kabra and D. J. DeWitt. Efficient mid-query
re-optimization of sub-optimal query execution plans. In
Proceedings of SIGMOD’1998, 1998.

[13] D. Kossmann. The state of the art in distributed query
processing. ACM Computing Surveys, 32(4):422–469, 2000.

[14] W. Labio et al. Efficient resumption of interrupted warehouse
loads. In Proceedings of SIGMOD’2000, 2000.

[15] Q. Ren, M. H. Dunham, and V. Kumar. Semantic caching
and query processing. IEEE Trans. on Knowl. and Data
Eng., 15(1):192–210, 2003.

[16] A. N. Saharia and Y. M. Babad. Enhancing data warehouse
performance through query caching. SIGMIS Database,
31(3):43–63, 2000.

[17] J. Smith and P. Watson. Fault-tolerance in distributed query
processing. In Proceedings of IDEAS’2005, 2005.

[18] R. Wang, B. Salzberg, and D. B. Lomet. Log-based recovery
for middleware servers. In Proceedings of SIGMOD’2007,
2007.

[19] A. N. Wilschut and P. M. G. Apers. Dataflow query
execution in a parallel main-memory environment.
Distributed and Parallel Databases, 1(1):103–128, 1993.

