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ABSTRACT
Traditional routing indices in peer-to-peer (P2P) networks
are mainly designed for document retrieval applications and
maintain aggregated one-dimensional values representing the
number of documents that can be obtained in a certain direc-
tion in the network. In this paper, we introduce the concept
of multidimensional routing indices (MRIs), which are suit-
able for handling multidimensional data represented by min-
imum bounding regions (MBRs). Depending on data distri-
bution on peers, the aggregation of the MBRs may lead to
MRIs that exhibit extremely poor performance, which ren-
ders them ineffective. Thus, focusing on a hybrid unstruc-
tured P2P network, we analyze the parameters for building
MRIs of high selectivity. We present techniques that boost
the query routing performance by detecting similar peers
and grouping and reassigning these peers to other parts of
the hybrid network in a distributed and scalable way. We
demonstrate the advantages of our approach using large-
scale simulations.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION AND MOTIVATION
One of the most prominent applications areas of peer-

to-peer (P2P) systems is content sharing and distribution.
Nowadays, most of the existing systems for content distri-
bution are P2P file-sharing networks (eMule, KaZaA) that
rely on a super-peer architecture [13]. Super-peer systems
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are emerging as a powerful model for organizing and search-
ing huge amounts of data, made available by independent
and distributed sources. Even though there are several im-
portant applications, such as distributed image search and
query processing over distributed collaborative scientific
databases, which would benefit from a super-peer architec-
ture, this has not been exploited yet. For example, con-
sider scientists (peers) that collect massive datasets of as-
tronomical observations or biological data and upload their
descriptions to dedicated servers (super-peers), in order to
share it with other scientists. Unlike plain file-sharing plat-
forms, these applications handle multidimensional data and
require advanced query types, such as nearest neighbor or
range queries, in order to provide the desired functionality.

In super-peer networks, queries are typically routed first in
the super-peer backbone and afterwards, if necessary, they
are distributed to the peers. Routing indices [1] have been
proposed for improving the performance of search in un-
structured P2P networks. Traditional routing indices in P2P
systems are mainly designed for document retrieval applica-
tions and maintain aggregated one-dimensional values, rep-
resenting the number of documents that can be obtained in
a certain direction in the network. The challenge that needs
to be addressed is supporting advanced query types for ap-
plications that handle multidimensional data. Moreover, in
many potential applications, it is necessary to retrieve the
exact and complete result set, in contrast to typical rout-
ing indices for document retrieval, where retrieving only a
fraction of the relevant data is sufficient.

Multidimensional indexing techniques have been exten-
sively studied in centralized settings [5] for query operators
like nearest neighbor, range and top-k queries. Recently,
there is a trend towards supporting advanced query pro-
cessing in P2P networks as well [3, 8, 12], using multidi-
mensional summary information for directing queries in the
network in a deliberate way. Similar to centralized multi-
dimensional indices, data stored on peers is described by
representative (multidimensional) data descriptors, realized
as minimum bounding regions (MBRs). These can be, for
example, hyper-rectangles that enclose all data points on a
peer, however other types of MBRs, such as spherical MBRs,
can be supported.

Multidimensional routing indices (MRIs) are composed by
different local multidimensional indices stored at each super-
peer. We can note the distinct difference between a MRI and
a distributed multidimensional index [4]. In the latter case,
the nodes of a single index are themselves distributed on
different servers. In contrast, the data objects stored by the



MRIs on a super-peer are MBRs that summarize the data
available through each neighboring super-peer. The sim-
plest form of a MRI at a super-peer, is a list of MBRs for
each neighboring super-peer. Each super-peer maintains its
own MRI and utilizes it in order to efficiently route a query
through the super-peer network. The MRIs are constructed
in a distributed manner. A neighbor is informed about a
super-peer’s content by receiving a set of MBRs, represent-
ing the data that can be retrieved if a query is forwarded
in that direction. This information is then aggregated with
its own MBRs and forwarded to the rest of the super-peer
network.

An important factor that influences the performance of
multidimensional routing indices is the underlying data dis-
tribution to peers (and super-peers). Although data on peers
is usually clustered into a few thematic areas that reflect the
user’s interests, when peers join the network by connecting
to a randomly chosen super-peer, the super-peers end-up in-
dexing MBRs spread all over the data space. This leads to
what we call near-uniform data distribution at super-peer
level, which degrades query processing performance, since
a query may – in worst case – have to contact all super-
peers. It is therefore necessary to change the data uniformity
at the super-peer level, by detecting and reassigning peers
with similar content to the same super-peer, thus generating
an overlay network that reflects a clustered data distribu-
tion at super-peer level. Then, MRIs of better quality are
constructed and queries can be directed to specific super-
peers only, thus improving query processing performance.
An equally important parameter that affects query process-
ing is having neighboring super-peers maintain similar data.
Again, this should occur in a self-organizing way, without
explicit intervention from the P2P system designer.

The main topic of this paper is how to generate efficient
multidimensional routing indices for query processing in P2P
systems. Focusing on a super-peer network, we outline tech-
niques for the identification of peers with similar content
and reassignment to the same super-peer. Our approach
is self-organizing, in that there is no prior assignment of
space partitions or data to each super-peer, but we aim to
dynamically capture the data distribution and reassign peer
MBRs to different super-peers. This reassignment takes into
account the super-peer topology, so that neighboring super-
peers index peers with similar content. We propose a dis-
tributed and scalable approach that boosts the query rout-
ing performance since the multidimensional routing indices
built on the new clustered network topology have a higher
selectivity and fewer super-peers are contacted during query
processing.

2. RELATED WORK
Routing indices [1] have been originally proposed in the

context of unstructured P2P systems, as a search-enabling
technique that provides a direction to routing, instead of
blind forwarding. Hose et al. use distributed data summaries
as routing indices [8]. They propose a tree-based structure,
named QTree, for summarizing data and discuss require-
ments that need to be fulfilled by such routing structures.
P2P data summaries have also been proposed in [7]. SIM-
PEER [3] is a state-of-the-art approach for exact query pro-
cessing over multidimensional data distributed in a super-
peer network. Sharing similar goals to this paper, such as

exactness of retrieval, SIMPEER relies on the construction
of routing indices to process similarity search queries.

Content addressable network (CAN) [10] was the first ap-
proach for P2P multidimensional indexing. Space partition-
ing, based on distributed tree structures, has been also con-
sidered. In [6], the authors identify two primary components
for multidimensional query processing, namely partitioning
and routing. They propose an adaptation of the kd-tree
for partitioning and use of skip pointers for routing. VBI-
Tree [9] is a framework for multidimensional indexing in P2P
networks. Peers are organized in a balanced tree structure
based on the data partitions assigned to them.

3. ROUTING INDICES
In the following we assume a super-peer network [3, 13],

that consists of Nsp super-peers, each connected to a lim-
ited set of at most DEGsp other super-peers. Super-peer
networks consist of many simple peers and few enhanced
super-peers, in terms of processing power, storage capacity
or network connectivity. Each super-peer SPi is responsible
for DEGp simple peers, which connect to SPi directly. The
initial assignment of peers to super-peers is random with
respect to peers’ contents [3, 13]. Each peer Pi holds ni

d-dimensional points, denoted as a set Oi (1 ≤ i ≤ Np). As-
suming horizontal data distribution to the Np peers, the size

of the complete set of points is n =
PNp

i=1 ni and the dataset
O is the union of all peers’ datasets Oi (O = ∪Oi). Each
peer maintains its own data objects, while the d-dimensional
points are features extracted from the objects. In Figure 1
(left) we depict for example the two-dimensional data stored
by peers PA and PB , which are connected to super-peer SPC .

We are interested in supporting exact query processing on
top of the super-peer network, which means that we would
like to process a query in a distributed manner, but the
answer set should be the same as if the query had been ex-
ecuted on the dataset O in a centralized setting. In the rest
of the paper, we describe how range queries are processed,
merely as a showcase example, although other query types
can be supported as well.
Range query R(q, r): Given a query object q and a radius
r, a point p ∈ O belongs to the result set of the range query
if dist(q, p) ≤ r.

Efficient query processing over high-dimensional data, dis-
tributed in a super-peer network, is accomplished using mul-
tidimensional routing indices at super-peer level. Local in-
dexing of peer MBRs at a super-peer is performed in the
following way. Assume that each peer’s Pi data is described
by a list of ki MBRs, which enclose all data objects on peer
Pi. Each super-peer gathers the MBRs of its DEGp as-
sociated peers and stores them locally using any available
centralized multidimensional indexing data structure, such
as an R-Tree. In addition, each super-peer creates a list
of aggregated MBRs1, based on the collected MBRs of its
peers.

The aggregated MBRs are exchanged between the super-
peers and used for constructing multidimensional routing in-
dices. The routing index MRI at super-peer SPi is a set
of DEGsp entries MRI = {S1, . . . , SDEGsp}, one for each
neighboring super-peer. Each entry Sj consists of kj MBRs
and is associated with a super-peer SPj that is a neighbor of

1Any technique proposed in centralized settings for creating
MBRs that enclose multidimensional data may be used.
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Figure 1: Super-peer network and MRI at SPE.

SPi. Any peer MBR that is accessible through super-peer
SPj is enclosed by an MBR of entry Sj . Efficient storage
and querying of the entries Sj of an MRI can again be per-
formed using an R-Tree. As an example, consider Figure 1
(right), where the MRI stored at SPE is depicted, assuming
that kj=1.

At query time, each super-peer is able to decide if a neigh-
boring super-peer can contribute to the final result set, by
using its multidimensional routing index. Consider again the
example depicted in Figure 1 (right). Assume a range query
R(q, r) initiated at a super-peer SPE , also called the query-
ing super-peer. SPE decides which neighbor to forward the
query to, based on the MBRs stored in its multidimensional
routing index. The query is forwarded to all neighbors, for
which at least one MBR overlaps with the query. This con-
stitutes the query routing mechanism.

Furthermore, by storing its peers’ MBRs, SPE is able to
determine during query processing at least those peers that
contribute to the query result set. Thus, SPE processes the
query based on its peers MBRs and this process is called
local query processing at SPE . SPE contacts only peers
responsible for MBRs that overlap with the query. These
peers process the query based on their local data, and return
their results to SPE .

In our running example, after examining the MBRs of its
neighbors, SPE decides to forward the query to its neighbors
SPC and SPD, while SPF is not contacted, since its MBRs
do not overlap with the query. Notice, that SPC neither
processes the query locally nor forwards it to another super-
peer, because neither SPC nor SPA can contribute to the
query. Actually, SPC is contacted because of the enlarge-
ment of the MBR, due to the MBRs aggregation process.
On the other hand, SPD will both process the query locally
and forward the query to SPB .

This simple example demonstrates how the aggregation of
dissimilar MBRs affects the quality of MRIs. Therefore, ef-
fective algorithms are required that reassign peers to super-
peers, in such a way that similar MBRs are aggregated, thus
leading to construction of qualitative MRIs. Towards this
goal, we introduce two techniques for peer reassignment,
which are applied prior to the actual construction of MRIs.

1. Changing the data distribution. The first chal-
lenge that needs to be addressed effectively is to change
the distribution of peers to super-peers based on the
stored data. For this purpose, each local MBR com-
puted by a peer is reassigned to a super-peer based on
similarity, in order to generate a clustered data distri-
bution at super-peer level. Therefore, prior to the con-
struction of the multidimensional routing indices, data

aggregation is necessary, as a means to identify similar
peers across the entire network. This distributed ag-
gregation process is achieved using a content-aggregation
hierarchy [2]. The super-peers are organized in a hier-
archical overlay, aggregating MBRs of super-peers (or
peers) of the level below. In the end, NR top-level
MBRs are created at the root of the hierarchy, which
describe the data available in the entire network. In
the next step, the NR MBRs are dynamically decom-
posed to eventually form Nsp (Nsp > NR) groups (i.e.
sets) of MBRs, essentially one group for each super-
peer. The similarity between MBRs is quantified by
appropriate measures and the decomposition aims to
maximize the similarity of the MBRs assigned to each
group, while minimizing the similarity of MBRs that
belong to different groups.

2. Mapping of MBRs to super-peers. After the
issue of discovering similar peer data has been effi-
ciently resolved, peer MBRs are clustered into Nsp

groups based on their similarity. The remaining chal-
lenge is to assign the Nsp groups to the super-peers,
in such a way that is beneficial for query processing.
A naive way is to pick for each group a super-peer
randomly. However, this approach can result in a sit-
uation where neighboring super-peers index dissimilar
MBRs of peers. This influences the aggregated MBRs
of neighboring super-peers, and hence, the selectivity
of the multidimensional routing indices. Therefore, the
aim is to assign groups to super-peers, in such a way
that neighboring super-peers index peers with similar
content. The problem of group assignment to super-
peers can be modeled in the following way. The super-
peer network topology is an undirected graph that con-
sists of Nsp vertices and having the super-peer con-
nections as edges. We also define an undirected fully-
connected, weighted graph, mentioned also as similar-
ity graph, that expresses the similarity between the
groups. Then, the problem of group assignment to
super-peers can be mapped to a weighted graph match-
ing problem [11] defined based on the network topology
graph and the similarity graph.

As soon as the peer reassignment is completed, the hierar-
chy is not maintained anymore, and MRIs are constructed at
super-peer level, using the exact same construction method
as in the case that no peers are reassigned.

4. EXPERIMENTAL STUDY
In this section we study the efficiency of the proposed ap-

proach using a simulator prototype implemented in Java. In
our experiments, we used the GT-ITM topology generator2

to create well-connected random graphs of Nsp super-peers
with average connectivity DEGsp=4. In order to evaluate
the scalability of our approach we experimented with syn-
thetic clustered data collections. For the clustered dataset
generation, we randomly pick Nsp d-dimensional points and
each peer obtains k distinct centroids from them at ran-
dom. Obviously, two peers may share the same centroid.
Thereafter, the peers’ objects are generated inside a radius
R from one of the centroids, selected in a way, such that the
total volume of the data capture 10% of the data space. We

2Available at: http://www.cc.gatech.edu/projects/gtitm/
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Figure 2: Scalability study of multidimensional routing indices quality.

conduct experiments varying the dimensionality (2-6d). We
keep the number of objects per peer (n/Np) constant and
equal to 500. Peer data are represented by spherical MBRs,
and they are determined using the k-means clustering algo-
rithm. MBR aggregation is performed using the k-means al-
gorithm on the MBRs centroids. Our default setup consists
of a network of 2000 peers, 200 super-peers, 1M data objects,
DEGp=10 and k=10. All experiments were repeated using
10 different synthetically generated datasets and the aver-
age number of the measurements is depicted in all cases.
For comparative purposes, we use SIMPEER [3] as query
processing mechanism, which is a state-of-the-art approach
for multidimensional query processing over a super-peer ar-
chitecture. We study the improvement in query processing
performance achieved by the MRI approach, compared to
SIMPEER without peer reassignment.

In Figure 2 (left), we evaluate the routing ability of the
MBRs by simulating range queries. We select randomly 20
MBRs out of the original peer MBRs, and consider them as
range queries that follow the data distribution. We measure
the average number of groups that contain an overlapping
MBR with the queries or, equivalently, the minimum num-
ber of super-peers that have to be contacted during query
evaluation. The chart shows that MRI requires only 24 to
43 super-peers out of 200 to be contacted, in order to re-
trieve the exact result. However, SIMPEER requires many
more super-peers, ranging from 57 to 130, depending on
the selected value of k. Figure 2 (right) depicts the num-
ber of super-peers with results, while we increase the super-
peer network size from 200 to 600 super-peers. We present
the number of super-peers with results, compared to SIM-
PEER. MRI is always much better than SIMPEER, as fewer
super-peers need to be contacted, and more importantly this
gain is maintained as the number of super-peers increases,
demonstrating the scalability of MRI.

5. CONCLUSIONS
In this paper, we introduced the concept of multidimen-

sional routing indices in P2P networks and we addressed the
challenging problem of improving their performance and se-
lectivity. We identified an important factor that affects the
performance of query routing and processing, namely the
uniformity of data distribution at super-peer level. We pro-
posed efficient and scalable techniques for changing the data
distribution at super-peers in a self-organizing manner, so
that peers with similar content connect to the same super-
peer and neighboring super-peers index similar content. The
experimental results show that our approach improves P2P
similarity search.
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