
Learning to Rank Search Results for
Time-Sensitive Queries

Nattiya Kanhabua
L3S Research Center

Leibniz Universität Hannover
Hannover, Germany

kanhabua@L3S.de

Kjetil Nørvåg
Dept. of Computer Science

Norwegian University of Science and Technology
Trondheim, Norway

noervaag@idi.ntnu.no

ABSTRACT
Retrieval effectiveness of temporal queries can be improved by tak-
ing into account the time dimension. Existing temporal ranking
models follow one of two main approaches: 1) a mixture model
linearly combining textual similarity and temporal similarity, and
2) a probabilistic model generating a query from the textual and
temporal part of document independently. In this paper, we pro-
pose a novel time-aware ranking model based on learning-to-rank
techniques. We employ two classes of features for learning a rank-
ing model, entity-based and temporal features, which are derived
from annotation data. Entity-based features are aimed at capturing
the semantic similarity between a query and a document, whereas
temporal features measure the temporal similarity. Through exten-
sive experiments we show that our ranking model significantly im-
proves the retrieval effectiveness over existing time-aware ranking
models.

Categories and Subject Descriptors H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval
General Terms Algorithms, Experimentation
Keywords temporal queries, time-aware ranking models

1. INTRODUCTION
Searching in temporal collections such as news and web archives

is not straightforward, because relevant documents are dependent
on time. More precisely, documents are about events that hap-
pened at a particular time period, and also accesses to the contents
are time-sensitive, i.e., time is part of information needs as rep-
resented by temporal queries (e.g., Illinois earthquake 1968 or
Iraq 2001). As shown previously by analyzing real-world query
logs, 1.5% of queries are explicitly provided with temporal crite-
ria [19], i.e., containing temporal expressions, while about 7% of
web queries have temporal intent implicitly provided [18].

As shown in previous work, taking the time dimension into ac-
count in ranking can significantly improve the retrieval effective-
ness of temporal queries [2, 7, 5, 14, 16, 18]. The existing time-
aware ranking models follows one of two main approaches: 1) a
mixture model linearly combining textual similarity and temporal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29-November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

similarity, and 2) a probabilistic model generating a query from the
textual and the temporal parts of documents independently.

In this paper, we present a new approach for the above task: a
time-aware ranking model based on learning-to-rank techniques.
A fundamental issue in learning to rank, is the selection of features
to be used in learning a ranking model. In this paper, we employ
two classes of features that are derived from annotated documents:
entity-based and temporal features. Thus, the main contributions
of this paper are: 1) a new time-aware ranking model learned using
two classes of features, 2) identification of appropriate features to
be used, and 3) extensive experiments for evaluating the proposed
time-aware ranking model and the features, using the New York
Times Annotated Corpus in combination with temporal queries and
relevance assessments from [2].

The organization of the rest of the paper is as follows. In Sec-
tion 2, we give an overview of related work. In Section 3, we out-
line the models for documents, annotated documents, and temporal
queries, and present the ranking model. In Section 4, we propose
two classes of features for learning a time-aware ranking model. In
Section 5, we evaluate the proposed ranking model by comparing
with existing time-aware ranking methods. Finally, in Section 6,
we conclude the paper.

2. RELATED WORK
A number of ranking models exploiting temporal information

have been proposed, including [2, 7, 16, 18]. In [16], Li and
Croft incorporated time into language models, called time-based
language models, by assigning a document prior using an exponen-
tial decay function of a document creation date. They focused on
recency queries, where the more recent documents obtain higher
probabilities of relevance. In [7], Diaz and Jones also used docu-
ment creation dates to measure the distribution of retrieved docu-
ments and create the temporal profile of a query. They showed that
the temporal profile together with the contents of retrieved docu-
ments can improve average precision for the query by using a set
of different features for discriminating between temporal profiles.
Berberich et al. [2] integrated temporal expressions into query-
likelihood language modeling, which considers uncertainty inher-
ent to temporal expressions in a query and documents, i.e., tem-
poral expressions can refer to the same time interval even if they
are not exactly equal. Metzler et al. [18] considered implicit tem-
poral information needs. They proposed mining query logs and
analyze query frequencies over time in order to identify strongly
time-related queries. Moreover, they presented a ranking concern-
ing implicit temporal needs, and the experimental results showed
the improvement of the retrieval effectiveness of temporal queries
for web search.

In addition to the work above, there is also work that has fo-

cused on recency ranking [4, 8, 9, 10]. That work is different to
our work in term of a search scenario, since in our case a user can
issue time as part of a query, so-called temporal criteria. There
has also been work on analyzing queries over time, e.g., Kulkarni
et al. [15] studied how users’ information needs change over time,
and Shokouhi [21] employed a time series analysis method for de-
tecting seasonal queries. For an entity-ranking task, Demartini et
al. [6] analyzed news history (i.e., past related articles) for identi-
fying relevant entities in current news articles.

3. PRELIMINARIES
In this section, we outline the models for documents, annotated

documents and temporal queries, and then present a model for rank-
ing documents.

3.1 Annotated Document Model
Our document collection is composed of unstructured text doc-

uments: C = {d1, . . . , dn}. A document d is represented as a
bag-of-words or an unordered list of terms: di = {w1, . . . , wk},
where its publication date is denoted PubTime(di). Since the two
classes of features are extracted from annotation data of documents,
we present a model of annotated documents as follows.

For each document di, its associated annotated document d̂i is
composed of 3 parts. First, d̂i contains a set of named entities
{e1, . . . , en}, where a named entity can be a person, location, or
organization. The second part is a set of temporal expressions or
event dates {t1, . . . , tm}. Finally, d̂i contains a set of sentences
{s1, . . . , sz}, where each sentence sy consists of tokens (terms),
the part-of-speech and position information of each token.

A key aspect is that we distinguish between two temporal di-
mensions associated with a document di: 1) publication time (i.e.,
when a document was published), and 2) content time (i.e., what
time a document refers to). The content time of a document (de-
noted ContentTime(di)) or temporal expressions mentioned in di

will be automatically extracted using a time and event recognition
algorithm. The algorithm extracts temporal expressions mentioned
in a document and normalizes them to dates so they can be an-
chored on a timeline. As explained in [1], temporal expressions
can be explicit, implicit or relative. Examples of explicit tempo-
ral expressions are May 25, 2012 or June 17, 2011 that can be
mapped directly to dates months, or years on the Gregorian cal-
endar. An implicit temporal expression is an imprecise time point
or interval, e.g., Independence Day 2011 that can be mapped
to July 04, 2011. Examples of relative temporal expressions are
yesterday, last week or one month ago.

3.2 Temporal Query Model
A temporal query qj is composed of two parts: keywords qtext,

and temporal expressions qtime. Recall that a temporal expression
can be explicitly provided as a part of temporal query, or implicitly
provided. An example of the first type is Illinois earthquake 1968
where the user is interested in documents about Illinois earthquake
in 1968. Queries of the second type can be implicitly associated
with particular time especially queries related to major real-world
events, or seasonal queries[21]. Examples of a real-world event
query and a seasonal query are Thailand tsunami associated with
the year 2004 and U.S. presidential election, which can be as-
sociated with the years 2000, 2004, and 2008. When qtime is not
given explicitly by the user, it has to be determined by the sys-
tem [14]. In this paper, we assume that qtime is explicitly provided.

3.3 Ranking Model
A ranking model h(d, q) is obtained by training a set of labeled

query/document pairs using a learning algorithm. A learned rank-

ing model is essentially a weighted coefficient wi of a feature xi.
An unseen document/query pair (d′, q′) will be ranked according
to a weighted sum of feature scores:

score(d′, q′) =
NX

i=1

wi × xq′
i

where N is the number of features. Many existing learning al-
gorithms have been proposed, and can be categorized into three
approaches: pointwise, pairwise, and listwise approaches. For a
more detailed description of each approach, please refer to [17]. In
this work, we employ different learning-to-rank algorithms, such
as, RankSVM [11], SVMMAP [22], and three stochastic gradient
descent algorithms: SGD-SVM [23], PegasosSVM [20], and PA-
Perceptron [3].

4. FEATURES
In this section, we present the two classes of features (temporal

and entity-based) that are used for learning a time-aware ranking
model.

4.1 Temporal Features
Temporal features represent the temporal similarity between a

query and a document. In this work, we employ five different meth-
ods for measuring temporal similarity: LMT and LMTU [2], TS and
TSU [14], and FuzzySet [12].

The time-aware ranking methods we study differ from each other
in two main aspects: 1) whether or not time uncertainty is con-
cerned, and 2) whether the publication time or the content time of
a document is used in ranking. LMT ignores time uncertainty and it
exploits the content time of d. LMT can be calculated as:

P (tq |td)LMT =

(
0 if tq �= td,

1 if tq = td.

where td ∈ ContentTime(d), and the score will be equal to 1 iff a
temporal expression td is exactly equal to tq . LMTU concerns time
uncertainty by assuming equal likelihood for any time interval t′q
that tq can refer to, that is, tq =

˘
t′q|t′q ∈ tq

¯
. The simplified

calculation of P (tq|td) for LMTU is given as:

P (tq|td)LMTU =
|tq ∩ td|
|tq| · |td|

where td ∈ ContentTime(d). The detailed computation of |tq ∩ td|,
|tq | and |td| is described in [2].

TS ignores time uncertainty. P (tq|td)TS can be computed sim-
ilar to P (tq|td)LMT, but td corresponds to the publication time of
d instead of the content time as computed for LMT. TSU exploits
the publication time of d as done for TS, but it also takes time-
uncertainty into account. P (tq|td)TSU is defined using an exponen-
tial decay function:

P (tq|td)TSU = DecayRate
λ· |tq−td|

μ

|tq − td| =
|tbq

l
− tbd

l | + |tbq
u − tbd

u| + |teq
l
− ted

l | + |teq
u − ted

u|
4

where td = PubTime(d), DecayRate and λ are constant, 0 <
DecayRate < 1 and λ > 0, and μ is a unit of time distance.
The main idea is to give a score that decreases proportional to the
time distance between tq and td. The less time distance, the more
temporally similar they are.

FuzzySet measures temporal similarity using a fuzzy member-
ship function and it exploits the publication time of d for determin-
ing temporal similarity. P (tq|td)FuzzySet is given as:

P (tq |td)FuzzySet =

8>>>>><
>>>>>:

0 if td < a1,

f1(td) if td ≥ a1 ∧ td ≤ a2,

1 if td > a2 ∧ td ≤ a3,

f2(td) if td > a3 ∧ td ≤ a4,

0 if td > a4.

where td = PubTime(d). f1(td) is
“

a1−td
a1−a2

”n

if a1 �= a2, or 1 if

a1 = a2. f2(td) is
“

a4−td
a4−a3

”m

if a3 �= a4, or 1 if a3 = a4. The

parameters a1, a4, n, m are determined empirically.

4.2 Entity-based Features
In addition to the temporal features presented above, we also use

ten entity-based features aimed at measuring the similarity between
a query and a document. The intuition is that a traditional term-
matching method that use only statistics, e.g., TFIDF, ignores the
semantic role of a query term. For example, consider the temporal
query Iraq 2001. A statistics-based model will rank a document
having many occurrences of the terms Iraq or 2001 higher than
a document with less frequency of the same terms without taking
into account a semantic relationship between query terms, which
can be determined by, e.g., a term distance in a sentence.

Entity-based features are computed for each entity ej in an an-
notated document d̂i, and the proposed features includes querySim,
title, titleSim, senPos, senLen, cntSenSubj, cntEvent, cntEventSubj,
timeDist, and tagSim [13]. The first feature querySim is the term
similarity score between qj and an entity ej in d̂i. Here, we use
Jaccard coefficient for measuring term similarity. Feature title in-
dicates whether ej is in the title of di. Feature titleSim is the term
similarity score between ej and the title. Feature senPos gives a
normalized score of the position of the 1st sentence where ej oc-
curs in di, while the feature senLen gives a normalized score of
the length of the 1st sentence of ej . Feature cntSenSubj is a nor-
malized score of the number of sentences where ej is a subject.
Feature cntEvent is a normalized score of the number of event sen-
tences (or sentences annotated with temporal expressions) of ej ,
while the feature cntEventSubj a normalized score of the number
of event sentences that ej is a subject. Feature timeDist is a nor-
malized distance score of ej and a temporal expression within a
sentence. Feature tagSim is the term similarity score between ej

and an entity tagged in di. Note that the last feature is only appli-
cable for a document collection provided with tags (e.g., the New
York Times Annotated Corpus).

These features, except querySim, can be computed off-line be-
cause they are query-independent. In order to represent di by a
feature vector, we have to select a representative entity ej in d̂i, by
choosing the ej that is the most similar to a query qj , or ej that
maximizes querySim. As a rule, a typical feature that is used for
learning to rank is a retrieved score of a traditional ranking func-
tion [17]. We also employ a retrieved score retScore(qj , di) as
one of the features for learning a ranking model. This score must
be normalized (to have a value between 0 and 1) by dividing by
maxdi∈Dq retScore(qj , di) where Dq is a set of retrieved docu-
ments. The detailed computation of the entity-based features can
be found in [13].

5. EXPERIMENTS
In this section, we evaluate different time-aware ranking models

based on learning-to-rank algorithms. We first describe the exper-
imental setting. Then, we show the experimental results as well as
perform a feature analysis.

5.1 Experimental Setting
We used the New York Times Annotated Corpus (containing

over 1.8 million news articles published between January 1987 and
June 2007) as a temporal document collection, and the 40 tempo-
ral queries and crowdsourced relevance assessments from [2]. We
employed a series of language processing tools for annotating doc-
uments, including OpenNLP (for tokenization, sentence splitting

and part-of-speech tagging, and shallow parsing), the SuperSense
tagger (for named entity recognition) and TARSQI Toolkit (for an-
notating documents with TimeML). The result of this is for each
document: 1) entity information, e.g., all of persons, locations and
organizations, 2) temporal expressions, e.g., all of event dates, and
3) sentence information, e.g., all sentences, entities and event dates
occurs in each sentence, as well as position information. For tem-
poral features, an exponential decay rate DecayRate = 0.5, and
λ2 = 0.5 are used. The fuzzySet parameters are n = 2, m = 2,
a1 = a2− (0.25× (a3−a2)), and a4 = a3+(0.50× (a3−a2)).
The smoothing parameter λ1 is varied, and only the results of those
performed best will be reported.

For learning a time-aware ranking model, we employed differ-
ent learning-to-rank algorithms, where default parameters of each
learner were used. We performed five-fold cross validation by ran-
domly partitioning 40 temporal queries into five folds (8 queries
per fold): F1, F2, F3, F4, and F5. For each fold, four other folds
(4*8=32 queries) are used for training a ranking model. In order
to evaluate ranking models, the Apache Lucene search engine ver-
sion 2.9.3 was employed. We have five competitive baselines. The
first baseline is Lucene’s default similarity function (a variant of
TFIDF). The four other baselines are proposed in [2]: LMT-IN,
LMT-EX, LMTU-IN, and LMTU-EX, where suffixes IN and EX re-
fer to inclusive and exclusive mode respectively (whether query’s
temporal expressions are also included as a part of query keywords
qtext or are excluded). The baseline TFIDF treats query’s temporal
expressions as a part of qtext, i.e., the inclusive mode. The retrieval
effectiveness of time-aware ranking is measured by the precision at
1, 5 and 10 documents (P@1, P@5 and P@10 respectively), Mean
Reciprocal Rank (MRR), and Mean Average Precision (MAP). The
average performance over the five folds is used to measure the over-
all performance of each ranking model. For all experiments, we
measured statistical significance using a t-test with p < 0.05. In the
tables of results, bold face is used to indicate statistically significant
difference from the respective baselines.

5.2 Experimental Results
The ranking performance of the baselines and learned ranking

models are displayed in Table 1. The results among the baselines
are similar to those reported in [2]. In general, the exclusive mode
performed better than the inclusive mode for both LMT and LMTU,
and LMTU-EX gained the best performance over the other baselines.

Comparing different ranking models, RankSVM did not gain
a significant improvement over the baselines, while PegasosSVM
performed worse than the baselines and other learned ranking mod-
els. SGD-SVM and PegasosSVM achieved the improvement over
the baselines in all measurements. Finally, the listwise ranking
SVMMAP performed better than the pairwise models, and also out-
performed all the baselines significantly. Using P@1, SVMMAP

achieved the improvement over TFIDF and LMTU-EX up to 27.5%
and 15% respectively. Using MAP, SVMMAP achieved the improve-
ment over TFIDF and LMTU-EX up to 13.1% and 8.2% respectively.

In order to understand the importance of each feature, we per-
formed feature analysis and the results are shown in Table 2. x̄i is
the average of each feature’s values. wi is a feature’s weight ob-
tained from the learning method SVMMAP. The top-5 features with
highest weights are querySim, TS, FuzzySet, retScore and senPos.
Entity-based features, i.e., querySim, retScore and senPos, received
high weights because they are well represented the importance of
query terms within a document. It is interesting that TS and Fuzzy-
Set gained higher weights than other temporal features, although
they exploited publication time instead of the content time of a
document, whereas TS did not consider time uncertainty. More-

Table 1: Effectiveness of different ranking models.
Model P@1 P@5 P@10 MRR MAP

TFIDF .375 .435 .410 .562 .486

LMT-IN .500 .370 .373 .625 .428
LMT-EX .425 .395 .385 .588 .447
LMTU-IN .475 .450 .433 .635 .475
LMTU-EX .500 .520 .520 .670 .535

RankSVM .500 .550 .515 .661 .578
SGD-SVM .575 .610 .540 .706 .595
PegasosSVM .550 .610 .543 .690 .595
PA-Perceptron .500 .455 .433 .630 .496
SVMMAP .650 .605 .565 .753 .617

Table 2: Feature analysis results.
Feature x̄i wi add1 add2 remove

retScore .49 1.65 0.00 0.00 -0.25

querySim .52 6.29 6.45 5.50 4.55
title .05 -0.94 0.77 0.85 0.00
titleSim .08 -0.77 0.95 0.78 1.16
senPos .74 1.60 1.93 0.50 1.05
senLen .64 -0.66 2.78 1.80 1.88
cntSenSubj .02 0.08 0.12 -0.05 0.00
cntEvent .14 0.23 -0.02 0.79 0.01
cntEventSubj .02 0.14 0.04 -0.03 0.02
timeDist .19 0.27 -0.12 0.38 -0.03
tagSim .18 1.37 1.78 1.06 0.87

LMT .30 -1.92 1.56 0.92 0.15
LMTU .83 -0.33 -0.32 0.15 0.16
TS .25 2.86 4.04 4.82 0.62
TSU .26 0.95 1.13 1.15 1.21
FuzzySet .29 2.37 4.00 4.53 0.27

over, the results show that LMT and LMTU received negative weights
indicating a negatively correlation with the retrieval effectiveness.

In order to observe the performance of individual features, we
conducted 3 additional experiments and measure the improvement
in (%)MAP. First, we trained a ranking model with SVMMAP us-
ing only retScore and selected one additional feature at each time
to observe how the selected feature contributes to a ranking model.
A baseline in this case is the model trained using retScore only
with MAP of 0.483. The column add1 shows the improvement in
(%)MAP that each feature could produce on its own compared to
the baseline. The top-5 features contributes in MAP for this anal-
ysis are querySim, TS, FuzzySet, senLen, and senPos, while adding
cntEvent, timeDist, or LMTU results in the decreased performance.

We then inspected how a single feature contributed to a rank-
ing model when trained using retScore and another feature class.
There are two baselines in this case: 1) the model trained only with
retScore and all temporal features with MAP of 0.537, and 2) the
model trained only with retScore and all entity-based features with
MAP of 0.557. The column add2 shows the improvement that each
of entity-based features contributed to the first baseline model, and
on the contrary, its shows the improvement that each of temporal
features contributed to the second model. In summary, the top-2
best entity-based features are querySim and senLen, and the top-2
best temporal features are TS and FuzzySet.

Finally, we trained a ranking model using training data that con-
sisted of all features except one at each time to see how a rank-
ing model is dependent on that feature. The baseline is the model
trained with all features, and its performance (MAP) is 0.617. The
column remove shows the decrease of performance compared to the
baseline, which is obtained by removing each feature. The top-5
features that made a significant drop in performance are querySim,
senLen, TSU, titleSim, and senPos.

6. CONCLUSIONS
In this paper, we have proposed a time-aware ranking approach

based on learning-to-rank techniques for temporal queries. In order
to learn the ranking model, we employed two classes of features de-
rived from annotation data, namely, entity-based and temporal fea-
tures. Through extensive experiments we have shown that the pro-
posed learning-to-rank model significantly improves the retrieval
effectiveness over existing time-aware ranking models.

Acknowledgments
We would like to thank Klaus Berberich for providing the temporal
queries and relevance judgments used in this paper.

7. REFERENCES
[1] O. Alonso et al. Clustering and exploring search results using

timeline constructions. In Proceedings of CIKM’2009, 2009.
[2] K. Berberich et al. A language modeling approach for temporal

information needs. In Proceedings of ECIR’2010, 2010.
[3] K. Crammer et al. Online passive-aggressive algorithms. J. Mach.

Learn. Res., 7:551–585, 2006.
[4] N. Dai, M. Shokouhi, and B. D. Davison. Learning to rank for

freshness and relevance. In Proceeding of SIGIR’2011, 2011.
[5] W. Dakka, L. Gravano, and P. G. Ipeirotis. Answering general

time-sensitive queries. In Proceeding of CIKM’2008, 2008.
[6] G. Demartini et al. TAER: time-aware entity retrieval-exploiting the

past to find relevant entities in news articles. In Proceedings of
CIKM’2010, 2010.

[7] F. Diaz and R. Jones. Using temporal profiles of queries for precision
prediction. In Proceedings of SIGIR’2004, 2004.

[8] A. Dong et al. Time is of the essence: improving recency ranking
using twitter data. In Proceedings of WWW’2010, 2010.

[9] J. L. Elsas and S. T. Dumais. Leveraging temporal dynamics of
document content in relevance ranking. In Proceedings of
WSDM’2010, 2010.

[10] A. Jatowt, Y. Kawai, and K. Tanaka. Temporal ranking of search
engine results. In Proceedings of WISE’2005, 2005.

[11] T. Joachims. Optimizing search engines using clickthrough data. In
Proceedings of KDD’2002, 2002.

[12] P. J. Kalczynski and A. Chou. Temporal document retrieval model
for business news archives. Inf. Process. Manage., 41, 2005.

[13] N. Kanhabua, R. Blanco, and M. Matthews. Ranking related news
predictions. In Proceeding of SIGIR’2011, 2011.

[14] N. Kanhabua and K. Nørvåg. Determining time of queries for
re-ranking search results. In Proceedings of ECDL’2010, 2010.

[15] A. Kulkarni et al. Understanding temporal query dynamics. In
Proceedings of WSDM’2011, 2011.

[16] X. Li and W. B. Croft. Time-based language models. In Proceedings
of CIKM’2003, 2003.

[17] T.-Y. Liu. Learning to rank for information retrieval. Found. Trends
Inf. Retr., 3(3):225–331, 2009.

[18] D. Metzler et al. Improving search relevance for implicitly temporal
queries. In Proceedings of SIGIR’2009, 2009.

[19] S. Nunes, C. Ribeiro, and G. David. Use of temporal expressions in
web search. In Proceedings of ECIR’2008, 2008.

[20] S. Shalev-Shwartz et al. Pegasos: Primal estimated sub-gradient
solver for SVM. In Proceedings of ICML’2007, 2007.

[21] M. Shokouhi. Detecting seasonal queries by time-series analysis. In
Proceeding of SIGIR’2011, 2011.

[22] Y. Yue et al. A support vector method for optimizing average
precision. In Proceedings of SIGIR’2007, 2007.

[23] T. Zhang. Solving large scale linear prediction problems using
stochastic gradient descent algorithms. In Proceedings of
ICML’2004, 2004.

