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ABSTRACT

The MapReduce framework for parallel processing of massive data
sets has attracted considerable attention recently, mainly due to
its salient features that include scalability, simplicity, and fault-
tolerance. However, despite its merits, MapReduce follows a brute-
force approach, which often results in performing redundant work.
This is particularly evident in the case of rank-aware queries, such
as top-k, where a bounded set of k tuples comprise the result set.
To process such queries in MapReduce, the input data needs to be
accessed in its entirety, in order to produce the correct result set. To
address this limitation of lack of early termination, in this paper, we
investigate on different techniques that allow efficient processing of
rank-aware queries, without accessing the input data exhaustively.
‘We present various individual approaches that can be combined and
demonstrate their advantages and shortcomings. Thus, we provide
the first steps towards integrating efficient rank-aware processing
in MapReduce.
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1. INTRODUCTION

The advent of cloud computing infrastructures has made feasible
the ad-hoc analysis of massive data sets by means of parallel pro-
cessing. Data analytics constitute a primary candidate application
for the cloud due to the complex query processing involved and
the vast size of input data to be processed. Rank-aware query pro-
cessing, e.g., top-k queries, is an essential tool for data analytics,
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Figure 1: Map and reduce tasks for top-k and top-k join
queries.

especially for business analysis, as it allows inspection only of the
most useful data, rather than overwhelming data sets.

Currently, the most prominent framework for parallel query pro-
cessing in the cloud is MapReduce [7], mainly due to its merits that
include scalability, fault-tolerance, load-balancing, and simplicity.
In summary, there exists a map phase where input data is scanned,
filtered and the produced intermediate results are given as input to
the reduce phase, which usually performs some kind of aggrega-
tion. Despite its advantages and popularity, MapReduce has been
criticized for its lack of efficiency [17]. This is particularly evident
in the case of top-k query processing, where the result to the query
consists of a bounded set of & tuples only, which can be orders of
magnitude smaller than the size of input data. For such queries,
efficient processing would be equivalent to accessing only a subset
the input data of small size in order to produce the correct result,
instead of scanning the complete input data.

A baseline MapReduce algorithm for top-k processing would be
to scan all data during the map phase, and send to the reduce phase
only k objects from each partition. The reduce phase would then
collect the local top-k tuples from each partition, as depicted in
Figure 1(a), and keep only the top-k tuples of this set. In the case
of top-k join, where the data come from more than a single re-
lation, multiple reducers can be used, as depicted in Figure 1(b),
with each reducer responsible for a different set of values of join
attributes. Unfortunately, this baseline technique requires access-
ing the complete input data, and fails to provide early termination
in the case that sufficient data for producing the correct result have
been accessed. Thus, support for early termination is a key prop-
erty for efficient processing of rank-aware queries, and this topic
has not been addressed effectively by the research community yet.



In this scenario, the main challenge for top-k queries is to restrict
the redundant work done at DataNodes, where megabytes of data is
read even though only k objects suffice to be reported to the reduce
phase. Ideally, only one chunk of data (typically 64MB) should be
read from each DataNode, and this chunk should contain the local
top-k result.

In this paper, we describe for the first time approaches for rank-
aware query processing using MapReduce that are being developed
as part of the CloudIX (cloud-based indexing and query processing)
project, where the aim is to improve the performance of advanced
query processing in the cloud. For simplicity, we restrict the dis-
cussion to basic top-k and top-k join queries, although many of
the techniques are also applicable for more advanced rank-aware
query operators. Thus, the challenge of our research is how to per-
form top-k and top-k join queries as efficient as possible utilizing
the scalability provided by the MapReduce framework.

The rest of this paper is structured as follows: Section 2 reviews
the related work in the field. In Section 3, we provide the neces-
sary background. In Section 4 we describe sort-based and synopse-
based methods for rank-aware query processing using MapReduce.
Finally, in Section 5, we conclude and outline promising new di-
rections for rank-aware query processing using MapReduce.

2. RELATED WORK

Despite its merits, MapReduce processing may entail signifi-
cant amounts of redundant work, when applied for complex query
processing tasks. Guided by this observation, recent papers have
appeared that try to improve some features of MapReduce pro-
cessing. CoHadoop [10] tries to place data on data nodes inten-
tionally and exploit locality, so that similar data are stored on the
same datanode. This approach greatly improves the performance
of query processing, since data that need to be accessed together
are usually placed on the same data node. Hybrid systems, such as
HadoopDB [1], have been recently proposed, aiming to exploit the
best features of MapReduce and parallel DBMSs. In HadoopDB,
each datanode hosts a DBMS and uses its query processing and op-
timization features during local processing. Other approaches that
employ indexing techniques at local level on datanodes have also
been proposed including B-tree indexing [20] and Hadoop++ [8]
that injects indexing information in data files. RanKloud [4] is
the only existing work that addresses rank-aware queries (top-k
joins) in a MapReduce context. RanKloud follows an interesting
approach that computes statistics (at runtime) during scanning of
records, and uses these statistics to compute a threshold for termi-
nation of query processing. However, one important limitation is
that it cannot guarantee the retrieval of k results, i.e., may retrieve
fewer results, which is completely different to our approach that
aims on correctness and completeness of result.

Several papers have dealt with the issue of top-k query process-
ing in centralized database management systems [5, 6, 13]. In dis-
tributed systems, approaches for distributed top-k query processing
can be classified in two main categories based on data partition-
ing: horizontal where each server stores a fraction of the avail-
able data but all attribute values, and vertical where each server
stores only some attributes of all available data. Most approaches
using vertical partitioning try to improve some limitations of the
Threshold Algorithm [11]. In the following, we focus on the case
of horizontal partitioning, as it is more close to the philosophy of
MapReduce, whereas vertical partitioning requires coordinated ac-
cess (sorted and/or random) to the data, which would impede the
parallel and independent processing of map jobs.

Balke et al. [3] try to minimize the data object traffic induced
by top-k processing, but the approach is optimized for reoccurring

identical queries, which is unlikely as there is an infinite number
of potential queries posed by different users. A similar approach
for unstructured P2P systems is presented in [2], where the main
technique is a variant of flooding, followed by a merging score-list
step at intermediate peers. Zhao et al. [21] rely on result caching
to prune network paths and answer queries without contacting all
peers. Ryeng ef al. [16] studied caching of top-k results and the
use of remainder queries to answer future top-k queries. The appli-
cability of the skyline operator for efficiently routing top-k queries
over a super-network was studied in [19]. In [14], an approach
is proposed that tries to minimize the users’ waiting time of top-
k results, at the expense of multiple phases of data transmission.
Recently, in [9], distributed statistics are exploited for supporting
top-k joins efficiently.

3. PRELIMINARIES

In this section we give a brief overview of MapReduce and HDFS,
and define the type of queries we will focus on.

3.1 MapReduce and HDFS

Hadoop is an open-source implementation of MapReduce [7],
providing an environment for large-scale fault-tolerant data pro-
cessing. Hadoop consists of two main parts: the HDFS distributed
file system and MapReduce for distributed processing.

Files in HDFS are split into a number of large blocks which are
stored on DataNodes, and one file is typically distributed over a
number of DataNodes in order to facilitate high bandwidth and par-
allel processing. The maintenance of mapping from file to block,
and location (DataNode) of block, is handled by a separate Name-
Node. One important aspect of HDFS important for this paper, is
that HDFS is optimized for streaming access of large files, and as a
result random access to parts of files is significantly more expensive
than sequential access.

A task to be performed using the MapReduce framework has
to be specified as two steps: the Map step as specified by a map
function takes input (typically from HDEFS files), possibly performs
some computation on this input, and distributes it to worker nodes,
and the Reduce step which processes these results as specified by
a reduce function. An important aspect of MapReduce is that both
the input and output of the Map step is represented as Key/Value
pairs, and that pairs with same key will be processed as one group
by the reducer. It is important to note that since Reduce simply
processes incoming data until end of the stream, approaches for
limiting the amount of data to be read have to be performed during
the Map step.

3.2 Top-k Queries

A top-k query q(k, f) returns the k& most interesting query re-
sults, based on a monotone scoring function f. The most important
and commonly used case of scoring functions is the weighted sum
function, also called linear. This function has an associated query-
dependent weight w[i] for each of the n scoring attributes 7[i] of
the database object 7, and the score of an object (or tuple) T is the
sum of the individual scores given by fo, (7) = D7, wli] - T[4].

A frequent operation in rank-aware processing is the combina-
tion of join followed by selecting the top-k results from the join.
For efficiency reasons this should be executed as one operator, which
interleaves the join with ranking, and this is named a top-k join
query. We focus on binary many-to-many joins, where the rela-
tions Ry and Ry are joined on a join attribute and a combination
of scoring attributes of both relations is used as input to the scoring
function f in order to produce the top-k ranking.
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Figure 2: Data placement on DataNodes.

4. RANK-AWARE QUERY PROCESSING

In this section we describe various constituent blocks of efficient
rank-aware processing in a MapReduce context and discuss their
advantages and disadvantages. The efficiency of the different ap-
proaches depends on a number of parameters, including availability
of sorted access, data partitioning to servers, and which one(s) to
use can be decided by user/application or automatic tools.

4.1 Sorting

In centralized databases, efficient processing of top-k queries is
accomplished by means of sorted access to data. In sorted access,
the tuples are accessed sequentially ordered by some scoring pred-
icate. This sorted access is accomplished either directly by storing
the data sorted on disk or indirectly by means of a secondary index.

In the case of parallel processing with MapReduce, there exist
two alternative ways of providing sorted access. The straightfor-
ward way for a MapReduce programmer to sort data is to perform
sorting right before the actual data processing. This approach fol-
lows the spirit of MapReduce, where all processing takes place as
part of the job execution at hand. In this case, each time a top-
k query q(k, f) is issued, a MapReduce task is initiated that sorts
data based on the query function f. MapReduce provides ways to
sort data. After having a global sorted data set based on f, the result
to the top-k query is easily obtained by reporting the first k tuples.
The main limitation of this technique is that each incoming top-k
query q(k, f) causes sorting of the input data based on f. Clearly,
this overhead imposed for each query is high, and it is important to
find a more efficient solution.

An alternative technique is to store data sorted on each DataNode
based on a monotone function f’, which in the general case is dif-
ferent from f. It can be easily shown [12] that the top-k local tuples
to a query q(k, f) from a DataNode can be retrieved by accessing
only a bounded set of the first &’ tuples of the stored data, where
k' > k. Storing the data sorted on DataNodes can be achieved ei-
ther at load time or by a separate MapReduce program that needs
to be executed once.

Query Processing. When data is sorted based on the query func-
tion f, the top-k result consists of the first k tuples. In the case that
a different function f’ is used for sorting, the correct top-k result
is retrieved when the following condition holds: the best possible
score based on f of the next tuple in the sorted order is worse than
the score of the k-th best tuple retrieved so far.

The advantage of using sorting is the cheap cost of query pro-
cessing, as the top-k result of each DataNode will be (with high
probability) in the first chunk of data. Its disadvantage is that the
cost that sorting entails may be important, especially in the case of
massive data sets.

4.2 Intelligent Data Placement

Data placement to DataNodes is carried out transparently in
Hadoop, without taking into account the data content. However,
the way data is placed significantly affects load balancing and the
performance of query processing. With respect to load balancing,
it is important to balance the useful work to DataNodes and avoid
redundant processing that will not produce any top-k results.

Existing partitioning schemes used for data placement are obliv-
ious to the nature of top-k queries. Therefore, we propose the use
of an intuitive partitioning method, termed angle-based partition-
ing [18], which can improve query processing, especially if com-
bined with sorted access. The partitions produced by angle-based
partitioning are illustrated in Figure 2(a). The advantage compared
to the built-in partitioning of Hadoop is clear. In addition, this
partitioning method offers advantages over the proposed partition-
ing in [4], shown in Figure 2(b), since it splits the useful work
to DataNodes fairly. As illustrated, intuitively, the angle-based
scheme splits the region near the axes to all partitions, assuming
minimum values are preferable. In contrast, the partitioning shown
in Figure 2(b) will assign more work to partition 1 with high prob-
ability. In addition, the angle-based partitioning can be general-
ized in higher dimensions (i.e., number of scoring attributes) in a
straightforward way.

Moreover, the angle-based partitioning can be combined with
sorting on DataNodes to improve the performance of local query
processing further. Each partition needs to be split and stored to
multiple chunks on each DataNode. It is beneficial to split the parti-
tion in such a way that the best tuples for any incoming top-k query
are located at the first chunk. Then, the remaining chunks can be
pruned from further processing. The splits are defined based on the
distance of a tuple to the origin of the data space. Graphically, this
is depicted in Figure 2(a) by means of arcs with increasing radius
centered at the origin of the axes. The radius of each arc is set so
that the corresponding split contains as many tuples as can fit in a
chunk.

4.3 Use of Synopses

In the case that sorted access to data is not provided, our premise
is to create and exploit data synopses about the stored data that will
allow to identify when the accessed data suffice to produce the cor-
rect top-k result set. Then, we can cease accessing the remaining
underlying data, thus achieving performance gains.

4.3.1 Construction

Different types of synopsis can be employed to maintain sum-
mary information about the underlying data. The synopsis should
satisfy some requirements, such as being compact in size, concise,
and should be easy to build, i.e., using at most a single pass of
the data. To this end, we propose the use of multidimensional
histograms as data synopsis, where dimensions are defined by the
scoring attributes.  Each histogram bin is described by two
n-dimensional values, the lower boundary and the upper boundary
of the bin, which determine the range of scores for all database ob-
jects enclosed in that bin. In addition, the number of such database
objects is stored in the bin. Furthermore, a bin maintains the chunks’
addresses where the enclosed objects are stored. Figure 3 depicts
an example of a 2-dimensional histogram stored on a DataNode
and summarizing the locally stored data.

The histograms are built seamlessly during the loading phase of
data to HDFS in a single pass, e.g., using techniques such as [15].
Each histogram corresponds to the data stored at one DataNode,
and the histogram is also stored at the DataNode. Essentially, the
histogram serves as a local index to the DataNode, indicating which
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Figure 3: Storage of data synopses on DataNodes.

chunks of data are potentially useful for producing the query result.
The representation of the histogram is much smaller than the data,
so the storage overhead imposed is minimal.

4.3.2  Query Processing and Optimization

Prior to the initiation of the mappers, processing of the histograms
takes place in order to identify which chunks contain useful tuples
that will produce the top-k result. Then, these chunks can be ac-
cessed with random access, instead of accessing all chunks sequen-
tially. In this process, some chunks will be eliminated and will not
be accessed, as they cannot contribute to the final result set. The
output of histogram processing is a set of chunk IDs that are guar-
anteed to contain the correct top-k tuples. However, it should be
noted that as the cost of random access is higher than sequential
access in HDFS, a cost model is necessary to estimate when it is
beneficial to use random access (query optimization).

The remaining question is how to use the histogram to produce
the desired chunk IDs. To achieve this goal, the histogram bins are
accessed progressively, starting from the best (minimum) scores
to the worst (maximum), until it is guaranteed that k tuples are
enclosed in the accessed bins. When this occurs, we collect the
chunk IDs contained in the accessed bins, and these correspond to
the chunks that are guaranteed to contain the top-k tuples. In the
example of Figure 3, assume a top-k query has been posed with k=5
and let the dashed line over the bins define which area contains the
top-k result. The algorithm will access the two dimensions until
di3 and d2; respectively. In the six produced bins, 34 tuples are
contained (more than 5), and only chunks with IDs 1,2 and 3 need
to be accessed.

Several optimizations are possible under this framework. One
possibility is to use histograms of varying width, e.g. equi-depth,
to have more detailed information about score values that have a
higher probability to appear in the top-k. Another possibility is to
explore different methods for computing the score bounds for each
dimension, e.g., by examining more bins from the dimension that is
most promising to produce the top-k results faster. Also, as already
mentioned, cost-based optimization needs to be employed to decide
which is the most cost-effective access method.

On a final note, the data synopses can also be combined with
the aforementioned approaches (sorting and deliberate data place-
ment), in order to boost the performance of query processing.

S.  CONCLUSIONS AND OUTLOOK

In this paper, we described techniques for efficient execution
of top-k queries using MapReduce. We are currently implement-
ing and evaluating these techniques, and will in future work re-
fine the methods as well as support other flexible query opera-
tors. Several interesting research directions open up for rank-aware
query processing in MapReduce. First, devising analytical cost
models that determine which strategy will lead to smaller process-
ing cost. Then, finding a provably optimal partitioning scheme
for top-k queries and top-k joins. Other interesting directions in-
clude support for more complex functions (non-linear or even non-
monotonic), and single pass algorithms for computing data syn-
opses with accuracy guarantees. Last, but not least, we plan to
extend our techniques to be applicable for intermediate results pro-
duced by other query operators as part of a query plan. This will
enable treating top-k processing as a first-class citizen in the cloud.
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