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Abstract Computational science applications performing distributed computations
using grid networks are now emerging. These applications have new and demanding
requirements for efficient query processing. In order to meet these requirements,
we have developed the DASCOSA-DB distributed database system. In this chapter,
a detailed overview of the architecture and implementation of DASCOSA-DB is
given, as well as a description of novel features developed in order to better support
typical data-intensive applications running on a grid system: fault-tolerant query
processing, dynamic refragmentation, allocation and replication of data fragments,
and distributed semantic caching.

1 Introduction

During the recent years, there has been a trend towards applications deployed on
increasingly larger distributed systems with need for advanced data management.
A prime example of such applications is computational science applications that
uses advanced computing capabilities to understand and solve complex problems.
Such applications frequently requires powerful computing resources, for example
delivered through grid computing services.

While grid computing has gained maturity through the recent years, manage-
ment of data in grid systems is less mature. Data storage and access is still mostly
file oriented, and it is mostly left to users to manage files and their locations as
needed. Although some support has emerged for metadata management, more ad-
vanced database features are not widely supported.

Department of Computer and Information Science, Norwegian University of Science and Technol-
ogy (NTNU), 7491 Trondheim, Norway
{joh,ryeng,noervaag}@idi.ntnu.no
http://research.idi.ntnu.no/dascosa/

1



2 J. O. Hauglid, N. H. Ryeng, K. Nørvåg

The goal of our research is a reliable database grid, with location-transparent
storage, i.e., users/applications do not have to care about where data is stored and
where queries are processed. The aim is sites cooperating on data storage and pro-
cessing while retaining autonomy, i.e., a grid-wide database system. It is important
to note how our context differs from more traditional approaches. The focus is on
applications where large amounts of data is created and used on the same site, and
where parts of the data, in particular summary data, are accessed by other grid par-
ticipants.

An example of such applications is weather forecasting, where the national
weather forecasting institutions have large amounts of locally collected data, do
forecast, and make the resulting data available. They also store historical data. Both
the summary data and historical data will be of interest to, and used by, other weather
forecasting institutions and environmental researchers.

In this chapter we describe DASCOSA-DB, a distributed database system, which,
in addition to providing location-transparent storage and querying, also includes
novel features like efficient partial restart of queries and redistribution of query oper-
ators in the context of failure, dynamic refragmentation, allocation and replication of
data fragments, and distributed semantic caching. A detailed overview of the archi-
tecture and the implementation of DASCOSA-DB is given, as well as a description
of some of the features developed in order to better support typical data-intensive
applications running on a grid.

The rest of this chapter is organized as follows: In Sect. 2 we give a short
overview of other similar systems. In Sect. 3 we present the system architecture of
DASCOSA-DB. Sect. 4 describes how data and metadata management is handled,
and Sect. 5 explains query processing, including semantic caching and partial restart
of failed queries. Our distributed monitoring and management tool is described in
Sect. 6. An experimental evaluation of the system is provided in Sect. 7. Finally, we
summarize our work and describe future research directions in Sect. 8.

2 Overview of Related Systems

Distributed databases and query processing is not a new field. For an introduction to
distributed databases, we refer to [15]. A survey of distributed query processing is
given in [12]. In this section, we will give an overview of systems that are similar to
DASCOSA-DB. This includes both storage systems without query capabilities and
query systems without storage capabilities, as well as complete database systems.

Much of the more recent work is based on peer-to-peer (P2P) networks, both un-
structured and structured. Especially distributed hash tables (DHTs) have received
much attention. A number of papers deal with focused issues such as query process-
ing in DHT networks, including [2, 7].

OceanStore [13] is one of the storage systems without query capabilities. It pro-
vides an infrastructure for permanent storage and replication of objects, but no query
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system. Objects are accessed based only on their globally unique ID, and this ID has
to be known in order to retrieve or update the object.

BigTable [5] is a large-scale distributed storage system with a model closer to
relational databases. The storage model is similar to the relational model, but tuples
are not stored or accessed as one unit. Instead, a row key and column key is used for
both read and write operations. It does not provide more advanced query languages.

DASCOSA-DB does not provide its own storage infrastructure, but relies on an
existing relational DBMS to store data. In that way, it is somewhat similar to the
pure query engines that only provide a query processing service and no persistent
storage.

Astrolabe [16] is one such system. Astrolabe is a distributed, hierarchical aggre-
gation system designed for system monitoring. Astrolabe provides an interface that
is similar to a database system, i.e., it provides SQL queries and standard database
programming interfaces like ODBC and JDBC. To achieve scalability, updates are
spread using a gossip protocol that guarantees eventual consistency. There is no
guarantee that a client reads the most recent data, but if updates stop, all clients will
eventually agree on the most recent value.

PIER [11] is a middleware query engine built on top of a DHT. PIER does not
permanently store its data. Data sources publish their data in the DHT and update
them regularly, and data that are not refreshed are removed. Typically, a PIER net-
work will contain only object metadata (e.g., filenames, sizes, tags) and a reference
to the original data object. Clients will query the network to get the references to the
objects of interest and retrieve the objects separately.

The difference between these query engines and DASCOSA-DB is that, although
DASCOSA-DB has a middleware architecture like PIER, it provides persistent stor-
age by using a local database on each site. It is not necessary to constantly republish
data, as is the case with PIER.

Among the systems that provide a full DBMS, with both query processing and
storage, are Hyperion [17], Orchestra [22] and Piazza [6]. All these systems allow
each site to have its own schema, and use schema mediation techniques to allow
cross-site querying. PeerDB [14] also falls into this category of systems with het-
erogeneous schemas, but the approach to schema mediation is different. Instead
of relying on schema mediators, information retrieval techniques are used to find
matching relations.

DASCOSA-DB does not use schema mediation. The systems mentioned above
are meant to connect existing databases and provide a common query interface.
Although DASCOSA-DB is a distributed database system with a high degree of site
autonomy, it still behaves as one system, not many different systems with a common
interface.

Other systems based on a common schema include APPA [1], Mariposa [21] and
ObjectGlobe [4]. APPA provides a multilayered solution on top of a structured or
super-peer P2P network, where the bottom layer is a simple key/value-store and the
top level provides advanced services such as schema management, replication and
query processing.
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Mariposa is a distributed database system that uses economic models to solve
optimization problems. Mariposa sites buy and sell fragments and bid for the execu-
tion of queries. The trading and bidding makes sure queries are answered efficiently
and that data are moved closer to where they are needed.

ObjectGlobe is a distributed query processing infrastructure that allows users
to combine data sources and query operators from different providers at different
sites to perform queries. Sites can sell data, query operators, computing power or a
combination of these. The client combines these resources to a full query pipeline.

AmbientDB [3] is probably the system that bears the closest resemblance to
DASCOSA-DB. AmbientDB is a system designed to provide full relational database
functionality for stand-alone operation in autonomous devices that may be mobile
and disconnected for long periods of time, while enabling them to cooperate in an
ad hoc way with (many) other AmbientDB devices. A DHT is used both as a means
for connection peers in a resilient way as well as supporting indexing of data.

Like AmbientDB, DASCOSA-DB is also constructed as a combination of mid-
dleware and federated databases, connecting the local databases of each site. The
key difference is that AmbientDB is a system for mobile devices, which have low
computational power and may frequently be disconnected from the network, while
DASCOSA-DB is designed for sites that have the computational power necessary to
do query processing and more stable network connections. DASCOSA-DB is also
based on a DHT, like AmbientDB and PIER. However, the DHT is only used as
a metadata catalog. Query processing uses point-to-point links following the query
tree, more like Mariposa and ObjectGlobe. This is different from PIER, where the
DHT is used extensively in query processing.

In terms of query capabilities, all sites of DASCOSA-DB are equal. There is
no buying or selling of query operators or data. Data is fragmented, allocated and
replicated according to the needs of the combined load of all sites, trying to keep
the costs of network communication low. Query operators are shipped out to sites
in order to minimize network costs by trying to perform most query operations on
local data.

Many of the systems mentioned above support SQL-like querying and presents
data similar to a normal relational database system. DASCOSA-DB is fully a rela-
tional database system that supports standard SQL.

A brief description of a DASCOSA-DB demonstration is given in [9].

3 System Architecture

In this section, the architecture of DASCOSA-DB is described. DASCOSA-DB con-
sists of a number of autonomous sites connected to form a distributed database sys-
tem. First is described how sites are connected, how data is distributed and how
sites cooperate to execute queries and updates, and then the internal architecture of
a single site is presented in more detail.
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3.1 Distributed Architecture

DASCOSA-DB is designed as a middleware layer that binds together local DBMSs
running on different sites to make a distributed DBMS providing location trans-
parency. Fig. 1 shows the distributed architecture of DASCOSA-DB, as a middle-
ware connecting local databases and applications to provide access to a large, dis-
tributed database. All sites are autonomous. There is no single site that controls the
distributed DBMS. In this way, the sites act together as a peer-to-peer network.

Fig. 1 Distributed architecture of DASCOSA-DB.

All sites connect to form a DHT. This DHT is used to store the distributed catalog,
which contains information on all tables, table fragments, replicas and cache entries
in the system. Currently, FreePastry1 is used, but any other DHT may be used.

A new site wishing to join a running DASCOSA-DB system only needs to know
the address of one connected site in order to join the DHT and thus be a part of
the distributed database. When it has joined, it publishes information about its local
metadata in the distributed catalog in order to make its local tables available to the
rest of the system.

Sites communicate using messages. These messages can either be sent directly
to a site if the address is known, or routed to the target site using the DHT routing
mechanism. The latter method is used for catalog lookups and updates.

DASCOSA-DB supports the relational model and bases its storage on a local re-
lational database management system. The current implementation uses JavaDB, 2

but any relational database management system may be used. The back-end database
system can be chosen freely at each site.

1 http://freepastry.org/
2 http://www.oracle.com/technetwork/java/javadb/overview/
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Fig. 2 High-level overview of the architecture of a DASCOSA-DB site.

The relational tables can be horizontally fragmented over a subset of the sites
in the system. Each fragment can also be replicated. The distributed catalog main-
tains information about tables, fragments and their replicas. Creation and removal of
fragments and replicas can be done using DASCOSA-DB’s automated refragmenta-
tion method. Based on logging of read and write accesses, fragments can be split or
joined, or replicas can be created and removed. This is done to reduce overall com-
munication costs by making more data available locally where it is used and scale
the number of replicas by the amount of writes. For example, a site doing heavy
reads on a table fragment will get a local replica once this pattern is detected.

When executing queries, DASCOSA-DB utilizes query shipping. After query
optimization, different query operators are allocated and distributed to sites in the
system. This allows different operators to be executed by different sites in parallel.
DASCOSA-DB also includes support for distributed semantic caching to speed up
query execution. During updates, replicas are kept up to date using synchronous
replication and transactions are handled using the two-phase commit protocol.

3.2 Site Architecture

The overall architecture of a DASCOSA-DB site is illustrated in Fig. 2. As described
above, sites communicate using direct messages or using the DHT. Together with
modules handling broadcasting of messages to the network and request-response
pairs of messages, these constitute the communication subsystem in DASCOSA-
DB.
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Local storage on a site consists of three parts. First, there is the relational data.
Relational tables can have one or more fragments and each fragment has one or
more replicas. Therefore, the unit of local storage is a table fragment replica. The
second part of local storage is the indices for these replicas. Finally, each site stores
a part of the distributed metadata catalog. Which part of the catalog a given site
stores, is determined by the distributed hashing algorithm and the site’s position in
the DHT.

Which replicas a site stores locally can change at runtime. Based on an analysis of
logged reads and writes, the local Table Fragment Handler can dynamically decide
to change the fragmentation and allocation of replicas in one of four ways:

• Coalesce two fragments into one fragment. This means that all replicas of both
fragments will have to be altered.

• Split a fragment into two fragments. As with coalesce, this will have global effect
for all replicas of the fragment.

• Send a copy of a local replica to another site so that this site can get its own local
replica to speed up local accesses.

• Delete a local replica. This will reduce the effort needed to keep all replicas of a
fragment up to date and will therefore make sense in periods with many updates.

The Fault Detector and Fault Handler are used to implement partial restart of
failed queries. If a site detects that another site designated to execute a subquery
has failed, it can handle this fault transparently from the rest of the query execution.
This is done by relocating the failed subquery to other sites. In many cases, this can
be done efficiently by not having the new sites restart the subquery completely, but
rather continue where the failed site stopped.

Each site in the system can receive SQL queries and updates, for example using
the provided user interface or using API calls. A received SQL statement is first
parsed and transformed into relational algebra. If it is a query, a lookup in the dis-
tributed catalog is done to find location information about all involved tables. This
information is then used by the Planner and Optimizer modules to generate a dis-
tributed query plan, including allocating the individual query operators to individual
sites in the system. The operators are distributed to the involved site where the Query
Execution module is responsible for the actual execution.

In order to facilitate easy interactive access to the system, as well as study config-
uration, distribution of data and query execution, DASCOSA-DB includes a mon-
itoring tool that gives a live view of table fragments, replicas, catalog entries and
cache entries. It also provides a live view of query execution, including network
traffic and currently running query operators.

4 Distributed Data and Metadata Management

Tables in DASCOSA-DB may be horizontally fragmented based on the primary
key, and DASCOSA-DB provides an adaptive fragmentation and replication sys-
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tem [10] that automatically moves data between sites as needed. In this section,
the fragmentation process and then the replication of the fragments are described.
Then it is described how metadata about fragments and replicas are retrieved from
the local database when a site connects to the system and how it is published and
subsequently retrieved from the global distributed catalog.

4.1 Fragmentation

A table may be stored in its entirety on one site, or it can be fragmented over a num-
ber of sites. An unfragmented table is treated as a table having a single fragment.
Tables are fragmented horizontally based on the primary key. Each fragment of a ta-
ble is given a fragment value domain (FVD) that defines which range of the primary
key domain has been allocated to the fragment. The fragments are non-overlapping,
and the FVDs of all fragments of a table cover the whole primary key domain.

The FVD of a fragment may cover a much larger range than the range of actual
tuples in the fragment. E.g., a newly created table consists of one fragment with the
whole primary key domain as its FVD, even though it does not store any tuples yet.
As tuples are inserted, updated, read and deleted, a larger part of the FVD is actually
used, and the table may split into more fragments

The traditional way of fragmenting and replicating tables in distributed database
systems has been to use fixed value ranges or rules defined by database administra-
tors. In DASCOSA-DB, fragments and replicas are created and migrated automati-
cally by the system to accommodate the current query load. Based on access pattern
monitoring, DASCOSA-DB will try to keep the number of accesses to remote sites
as low as possible. The FVDs and fragment placements are not fixed, so fragments
can be split, coalesced and migrated automatically to adapt to changing workloads.
Fig. 3(a) shows a simple example of how two sites with different access patterns
access the same table. Site S2 has a few hotspots, while site S1 accesses the whole
table uniformly and infrequently. In this case, DASCOSA-DB will split (or merge
if the table is already split) the table into 6 fragments, F1,F2, . . . ,F6. F1, F3 and F5

will be allocated to site S2, while F2, F4 and F6 will be allocated to site S1.
In order to make informed decisions about useful fragmentation and replica

changes, future accesses have to be predicted. As with most online algorithms, pre-
dicting the future is based on knowledge of the past. In our approach, this means de-
tecting access patterns, i.e., which sites are accessing which parts of which fragment.
This is done by recording accesses in order to discover access patterns. Recording of
accesses is a continuous process. Old data is periodically discarded so that statistics
only include recent accesses. In this way, the system can adapt to changes in access
patterns.

Given the available statistics, our algorithm examines accesses for each replica
and evaluates possible refragmentations and reallocations based on recent history.
The algorithm runs at given intervals, individually for each replica. Each site bases
its decisions only on information available at that site, requiring no synchronization
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Fig. 3 (a) Access pattern and desired fragmentation. (b) Reduction in communication costs relative
to static fragmentation.

with other sites. With master-copy based replication, all writes are made to the mas-
ter replica before read replicas are updated. Therefore, write statistics are available
at all sites with a replica of a given fragment. On the other hand, reads are only
logged at the site where the accessed replica is located. This means that read statis-
tics are spread throughout the system. In order to detect if a specific site has a read
pattern that indicates that it should be given a replica, it is required that each site
reads from a specific replica so that each site’s read pattern is not distributed among
several replicas.

There is a great potential for cost savings by improving fragmentation. Fig. 3(b)
shows the reduction in number of tuples transferred over the network in DASCOSA-
DB for two different workloads. In the general workload, all sites access tuples
uniformly across a selected range of the whole table. 80% of the accesses are read
accesses and 20% are write accesses. The reduction in tuple transfers is more than
40%. In the grid application workload, each site alternates between read phases
and write phases, changing hotspots for each phase. The grid application workload
has more clearly separated phases, and the savings are more than 50%. The results
clearly show that the cost of splitting, migrating and replicating fragments pays off.

4.2 Replica Management

A table fragment is considered to be a logical entity. The physical entities stored in
the local DBMSs are table fragment replicas. All fragments must therefore have at
least one replica.

Replicas are kept up to date using synchronous replication. Every statement that
changes the state of a fragment is sent to all sites with replicas. All replicas must
be updated in order for a transaction to commit, and a two-phase commit proto-
col is used to ensure that all replicas agree on the decision to abort or commit the
transaction.
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Similar to the way fragments can be split or coalesced, replicas can be automat-
ically created and deleted. Each site logs reads and updates to the locally stored
replicas. A new replica is created at a given site if this site does a lot of reads. The
idea is that the cost of transferring the replica to the site is less than having a con-
stant stream of remote read requests. A local replica is deleted if there are few local
accesses compared to the number of updates received. For both these mechanisms,
the idea is to reduce the overall network traffic.

Not all replicas are treated equally. One replica is designated as the master
replica. In order to ensure that automatic replica deletion does not delete all repli-
cas, this replica is not eligible for deletion. The site containing the master replica
has two special functions. First, it is the site where refragmentation decisions are
made. This prevents two sites from independently and simultaneously deciding to,
e.g., split the same fragment. Only the site with the master replica is able to do this.
Second, the site with the master replica acts as a lock manager for the table frag-
ment. This allows us to not have a centralized lock manager, which could become
a bottleneck in a large system. When the system first boots, the catalog site storing
the catalog entry for a table decides for each fragment of the table which replica be-
comes the master replica, and thus also which site becomes the master replica site.
A new master replica site can be selected if the current master replica site crashes.
It is also possible for the current master replica site to transfer this status in case of
refragmentation.

4.3 Metadata Management

DASCOSA-DB uses a DHT to store and access the metadata catalog. The DHT pro-
vides a reliable and robust routing and lookup mechanism. Due to the DHT routing,
catalog lookups are fault tolerant. The DHTs hashing function also distributes re-
sponsibility for metadata storage. All sites in the system participate in the DHT, and
when a metadata object is published in the DHT, the DHT places it on one of the
sites according to a hash of the object. Using a uniform hashing function, metadata
objects are uniformly distributed among the catalog sites.

When a site joins the DHT, it scans its local database and inserts information on
local objects into the DHT. Catalog objects will time out if they are not renewed,
and sites periodically republish their information before the objects time out and are
removed. This is done to ensure that erroneous information that may appear due to
sites crashing after publishing their metadata is cleaned up regularly.

The catalog keeps track of tables and their schemas. For each table, it stores
information about the primary key and the name and data type of all attributes. The
catalog also keeps track of how tables are fragmented and replicated, i.e., how many
fragments there are, the FVD of each fragment, and the number of replicas and their
locations. Also, one replica of each fragment is designated the master replica, and
the catalog stores this information.
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The existence of caches of intermediate query results is also regularly published
to the catalog in the same manner as table, fragment and replica information. For
each cached query result, the catalog stores a semantic descriptor, location and
timestamp. Information about cache entries is not looked up directly, but rather
discovered as a side effect of table lookups. The cache lookup is included in table
lookup requests and replies. This mechanism is described in more detail in Sect. 5.1.

5 Distributed Query Processing in DASCOSA-DB

DASCOSA-DB is a query shipping system where all sites store data and process
queries. Queries may arrive from any site of the system, and the site that introduces
a query to the system becomes the initiator site for that query. It is assumed that
queries are written in some language that can be transformed into relational algebra
operators, for example SQL.

5.1 Query Pipeline

A query enters the system at one site. This site, called the initiator site, becomes
the coordinating site for this query. The initiator site transforms the query into an
algebra tree. During query planning, the different algebra nodes are assigned to
sites. This requires catalog lookups in order to transform logical table accesses into
physical localization programs, e.g., a set of accesses to table fragment replicas.
Sites can be assigned more than one algebra node so that one site can be assigned
a whole subquery. As all sites have the capability to execute operators, sites storing
table fragments used in the query are typically also assigned query operations on
these fragments during planning. This tends to reduce network traffic as tuples can
be processed locally. An example of an algebra tree with site assignment is shown in
Fig. 4(a). The initiator site plays the role of coordinator for this query and executes
an initiator algebra node that is the endpoint of the query result.

DASCOSA-DB can cache the intermediate and final results of queries. Each site
autonomously caches results of locally executed queries and subqueries and regis-
ters these in the distributed catalog so that the caches can be found by other sites.
These catalog entries contain a semantic description of the cached query result, the
address of the site that stores the cache entry, and a timestamp used to check cache
entry validity.

As Fig. 4(a) indicates, the complexity of a query increases with the height of the
query tree. The query T ∗ U ∗ V is more complex than T ∗ U . If some of the inter-
mediate results, like T ∗ U , are cached, the more complex queries may be answered
partly from these caches, saving both execution time and computational cost. More
complex results in cache means larger savings when these caches are used. How-
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(a) (b)

Fig. 4 (a) Example query plan. (b) Query dissemination with a cache hit.

ever, as the other arrow in Fig. 4(a) shows, the reusability of a result is higher for
the less complex queries.

When a table is looked up in the catalog, the initiator site piggybacks a rep-
resentation of the query to the lookup message. The catalog site that handles the
lookup request sees this query representation and responds by piggybacking onto
the response a list of suitable cache entries that might speed up query processing.
Information about a cache entry is stored at the same site as one of the tables in-
volved in the query that produced it. This means that after looking up all tables, the
initiator site has been told about all caches involving the combination of these ta-
bles. During localization, the initiator site looks at these cache entries. If a relevant
cache entry is found, the initiator site can rewrite the query to use the cache entry.
This is done by including the query that produced the cached result as a subquery
of current query and assigning the subquery to the site where it is cached.

After planning and possibly rewriting the query to use cached intermediate re-
sults, query dissemination begins by transmitting the algebra tree stepwise from the
initiator site to the different sites involved. The root algebra node always stays at
the initiator site. For each child of the root node, the initiator site sends out the sub-
tree rooted at that child node to the child’s assigned site. These sites, upon receiving
query subtrees where the roots are assigned to them, loop through the children of the
roots and ship them off to the sites to which they are allocated. This continues until
all nodes have reached their destination. The result of this stepwise transmission is
that each site knows the complete subquery for which it is the root.

However, if a site receives a subtree for a query it has in its cache, and if that
cache entry is still valid, further dissemination of that subtree stops. Instead, the
site prepares a special algebra node to produce the result from cache. To the sites
higher up in the hierarchy, there is no way to tell if the result is served from cache or
produced from scratch. This transparency allows the sites to make cache decisions
without relying on central coordination. Fig. 4(b) shows query T ∗ U ∗ V with a
cache hit on subquery T ∗U . Site S0 checks the timestamp of the cache entry against
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the timestamps of T and U to see if the cache is up to date. If it is, T ∗U is delivered
from cache, and the only query operator actually executed is the join of T ∗ U and
V at site S0. Site S1 is never involved in the query processing, except when replying
to the request for the timestamp of U .

Results of query operators are transferred between sites in tuple packets. The
system supports stream-based processing of tuples, for example joins performed by
pipelined hash-join [23]. This means that an algebra node usually can start produc-
ing tuples before all the tuples are available from its operand nodes. This makes it
possible for nodes downstream to start processing as soon as possible and there-
fore lets more nodes execute in parallel. This requires each site to be able to accept
and buffer yet unprocessed packets, but it allows data transfers to be made without
explicit requests, thereby improving response time. In case of limited buffer avail-
ability, flow control is used to temporarily halt packet transmissions.

The result of any algebra operator is a candidate for caching at the site where it
is produced. Sites are allowed to use any cache replacement algorithm they want.
A cache entry is usable as soon as it is created, but in order to enable the query
planners to plan on using cached results the cache entries must be registered in the
distributed catalog. A site that has cached a result reports its existence to the same
site that handles lookup request for one of the tables used to produce the result. E.g.,
if the cache entry is the result of T ∗ U , the catalog stores the information about this
entry at either the site that stores the catalog entry for T or the catalog entry for U .
Any site that later looks up both T and U in order to perform a join is guaranteed to
find this entry.

5.2 Standard Query Operators

DASCOSA-DB supports the typical query operators. At the lowest level, the scan
operator accesses the local DBMS and delivers tuples of a table fragment. In order
to speed up execution, special scan nodes exist that push selection and projection
down into the local DBMS.

Selection and projection operators also exist to be inserted into the query tree
when the operations cannot be pushed down into the local DBMSs. The selection
operators also support set operators, i.e., IN and EXISTS, to compare against the
result of subqueries.

The join operators include natural join, equijoin and outer join. These are im-
plemented as pipelined hash joins. An operator also exists to produce the Cartesian
product. Other operators include sorting, limiting, aggregation (including grouping),
duplicate removal (UNIQUE) and a skyline operator.

All operators, except the scan operators, have flow controlled input and output
streams with a general interface. This makes it possible to connect them in any
meaningful way to represent a query. This generalized interface also makes it easy
to ship queries around, since the input and output streams are network transparent.
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For most normal cases in-memory operators suffice, but for large operand sizes
there are also variants of these operators that will use disk to avoid excessive mem-
ory consumption.

5.3 Fault-Tolerant Distributed Query Processing

The more sites that are involved in a query, the higher the probability of a site fail-
ing during query processing. Long queries and high churn rates in the system also
increases the probability of site failures. The traditional way of handling failures
focuses on update transactions, and the typical failure recovery is to do a complete
restart of the failed transaction. Query failures have largely been overlooked. Com-
plete query restart is an appropriate technique for small and medium-sized queries,
however it can be expensive for very large queries, and in some application areas
there can also be deadlines on results so that complete restarts should be avoided.
In some cases, various checkpoint-restart techniques have been employed to avoid
complete restarts of operations, but these techniques have been geared towards up-
date/load operations, and in many cases implies that a query will be delayed until
the failed site is back online.

As an alternative to local checkpointing and complete restart, DASCOSA-DB
supports partial restart of queries [8]. With partial restart, unfinished subqueries
from failed sites can be resumed on new sites after failures. These restarted sub-
queries may also utilize partial results already produced before the failure — both
results generated at non-failing sites and results from failing sites that have already
been communicated to non-failing sites. The technique integrated in DASCOSA-
DB can be compared to previous approaches like [20]. DASCOSA-DB’s fault toler-
ant query processing 1) reduces query execution time compared to complete restart,
2) incurs minimal extra network traffic during recovery from query failure, 3) em-
ploys decentralized failure detection, 4) supports non-blocking operators, 5) handles
recovery from multi-site failures, and 6) avoids duplicate tuples by deterministic de-
livery of tuples from base relations and operators. The query restart techniques can
also be used to provide distributed suspend and restart of queries.

Fig. 5(a) shows a system executing the query T ∗ U ∗ V . Originally, only sites
S1,S2,S4,S5 and S6 are involved, but sometime during query processing S 4 fails.
This is detected by site S6, which is the recipient of the result of the failed algebra
node. Site S6 chooses S3 to replace S4, and reissues the query T ∗ U to this site. Site
S3 follows the normal query dissemination strategy and forwards the scan operators
to sites S1 and S2. The particular challenges that have been solved in our approach
relate to failure detection, selection of replacement site, and restart of the various
relational algebra operators.

Failures during query processing are detected by using timeouts. There is no
central failure detector. Instead, a site monitors all sites that produce the operands
for query operators executing at that site. If a site failure is detected, a new site is
selected for each of the failed operators. The impact of a failure is therefore localized
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Fig. 5 (a) Example of query failure and restart. (b) Relative cost of restarted TPC-H queries.

— it only affects the sites receiving the results of the failed query operators. Other
queries and subqueries executing at other sites continue as normal.

The replacement site selected to execute a failed query operator tries to pick
off where the operator first failed. How this is done, depends on the operator. Two
classes of operators can be identified: stateless and stateful. Stateless operators pro-
cess tuples independently. Examples include projection and selection. For these op-
erators, the number of operand tuples an operator has used to produce a given num-
ber of result tuples is stored. This number is transmitted with each packet of tuples
sent in the network. Using this number, a replacement site knows where to start
when resuming a failed operator. For example, assume that a failed site S f was exe-
cuting a selection. This selection was done on tuples received from another site S o.
The target site St for the selection, has received 500 result tuples when S f fails. As-
sume that 800 tuples from So had been processed to produce those 500 result tuples.
This fact will be known by St and transmitted to the replacement site Sr. Sr will then
know that it should request So to resume sending tuples, skipping the first 800.

For stateful operators, on the other hand, each result tuple can be dependent on
more than one operand tuple. Such operators include join and aggregation. When
such operators are restarted, they must request operands to be replayed in full. How-
ever, they can still use the number of received operands before the failure to prevent
sending duplicates. E.g., a join must get its two operands completely, but it can skip
sending the first result tuples up to and including the number of tuples received from
the failed site.

For this partial restart technique to work correctly, tuples must be produced by
an operator in a deterministic order. Note that this does not mean that is has to be a
sorted order. For scan operators, it is required that tuples are retrieved from the local
DBMSs in a deterministic order. Further, it is required that other operators are deter-
ministic so that they produce tuples in a deterministic order given the same ordering
of operand tuples. Thus, this requirement reduces to having operators consuming
tuples in a deterministic order. This is achieved by having operators consume pack-
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ets of operand tuples in a round-robin order sorted on the ID of the source site of an
operand tuple packet.

The results in Fig. 5(b) show the cost of a restart for a representative collection
of ten TPC-H queries. The average restart cost is 50%. The two queries with the
least gain (query 2 and 13) were also the two shortest queries. There is a constant
overhead in detecting site failure and restarting queries. For the longer queries, this
constant overhead is relatively small, so these queries have a lower restart cost.

6 Distributed Monitoring and System Management

DASCOSA-DB includes an integrated distributed monitoring and management tool.
Fig. 6 shows the user interface which allows the user to issue SQL statements and
monitor the state of the system in real time. It has proven very useful for the different
research projects employing or extending DASCOSA-DB.

Fig. 6 Screenshot from the DASCOSA-DB system monitoring tool.

DASCOSA-DB supports running more than one site on the same physical com-
puter. All these sites will still communicate as if distributed and have separate local
DBMSs. Running more than one site locally allows the user to easily examine the
execution of distributed queries as the monitoring tool can observe all these sites.



The DASCOSA-DB Grid Database System 17

The available views show which table fragments are stored at each site and the
schema for each of these. The catalog view for a site shows catalog entries stored
at that site. Tables are listed with the number of fragments and replicas, and each
fragment entry shows the FVD, the actual used ranged and the number of tuples in
the fragment. The catalog view also shows cached query results.

Network traffic monitoring is made easy by using the network log, which will
list all messages received and sent by a selected site. This allows the user to, e.g.,
easily track the distributed execution of a query. Both query processing messages,
catalog messages and other maintenance messages can be inspected.

The monitoring tool also allows the user to inspect running queries and follow
the execution of algebra nodes as flow control changes the state of algebra nodes
between processing and paused states. A complete view of all running queries and
algebra nodes is provided.

Cache inspection is also provided. DASCOSA-DB has two caches: a restart
cache that is used to provide fault tolerant query processing, and a semantic cache of
intermediate query results. Each of these may be inspected through the management
interface.

Finally, the management interface allows the user to simulate network failures
and site crashes by toggling on or off message delivery to each site. When a site is
disconnected, the rest of the system will notice its disappearance and adjust to the
new situation. Queries involving the failed site will restart, and new master replicas
will be appointed.

7 Experimental Evaluation

The individual features of DASCOSA-DB have been evaluated experimentally in
earlier papers [8, 10, 18]. In this section, it is showed how the system, as a whole,
scales. Evaluation of additional DASCOSA-DB features not described in this chap-
ter can be found in [19].

7.1 Experimental Setup

The system consists of 10 interconnected sites running DASCOSA-DB. A TPC-H
dataset is horizontally fragmented into five fragments. Each site stores one frag-
ment, meaning that there are two replicas of each fragment. A set of 1000 random
TPC-H queries with random values for substitution parameters is used. An 80/20
distribution is used both for query and parameter selection.

The number of sites that issue queries, and thereby the number of coordinator
sites, is varied between 1, 5 and 10 to show how system performance increases with
increased parallelism. Each querying site executes its queries in series, waiting for
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one to complete before issuing the next. The system is tested both with and without
semantic caching enabled.

7.2 Results

The execution time of each experiment relative to a baseline is measured, where
all queries were issued in sequence from a single site, without caching any query
results. The results shown in Fig. 7 show that by increasing parallelism so that all
sites issue queries, execution times are reduced by 25%. Since DASCOSA-DB al-
lows queries to be issued from any site, the risk of the coordinator site becoming a
bottleneck is reduced, and higher throughput can be achieved.
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Fig. 7 Execution time relative to baseline.

Further, semantic caching reduces the run time with up to 73%. This considerable
improvement is possible because parts of the algebra tree for a query is similar to
some parts of other queries. These parts are reused to provide a quicker response to
the query, freeing up resources that otherwise would be used to process each query
from scratch.

The execution time does not decrease as much with increasing number of query-
ing sites as was the case without caching. The reason for this is that there is not
much more time to save after the reduction in execution time caused by semantic
caching. Also, caching is a means to improve execution time of a series of queries,
not parallel queries. The result has to be cached before it is used. Still, our seman-
tic caching method makes it possible to reduce execution time of multiple parallel
querying sites since cache entries are shared with all other sites.
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8 Summary and Future Challenges

The central point of the grid is to present the user with readily available computa-
tional power without the need to know where this power comes from. This should
also be the central point for data storage used by the grid, and our DASCOSA-DB
is designed with this in mind.

We have presented a middleware system that transparently provides access to
data distributed throughout the grid. Based on the relational model, our query ship-
ping database system efficiently queries data in situ, while constantly adapting to the
shifting workload by moving table fragment replicas closer to where they are used
and by replicating data that has to be read by many sites. Semantic caching reduces
the need to compute everything from scratch and allows new queries to take advan-
tage of the intermediate results of queries that have already finished, even if they
came from different sites. In case of failures during query processing, DASCOSA-
DB will restart only the failed subquery. DASCOSA-DB also provides a distributed
monitoring and management system.

Although we now have a working distributed database system, there is no lack of
remaining challenges. More advanced optimization in the presence of cached data
is needed. We will also study rank-aware operators which are important for many of
the intended application areas.
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8. Hauglid, J.O., Nørvåg, K.: PROQID: Partial restarts of queries in distributed databases. In:
Proceedings of CIKM (2008)



20 J. O. Hauglid, N. H. Ryeng, K. Nørvåg

9. Hauglid, J.O., Nørvåg, K., Ryeng, N.H.: Efficient and robust database support for data-
intensive applications in dynamic environments. In: Proceedings of ICDE (2009)
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