
Improving Space-Efficiency in Temporal Text-Indexing

Kjetil Nørvåg⋆ and Albert Overskeid Nybø

Department of Computer and Information Science
Norwegian University of Science and Technology

7491 Trondheim, Norway

Abstract. Support for temporal text-containment queries is of interest in a num-
ber of contexts. In previous papers we have presented two approaches to temporal
text-indexing, the V2X and ITTX indexes. In this paper, we first present improve-
ments to the previous techniques. We then perform a study of the space usage of
the indexing approaches based on both analytical models andresults from in-
dexing temporal text collections. These results show for what kind of document
collections the different techniques should be employed. The results also show
that regarding space usage, the new ITTX/VIDPI technique proposed in this pa-
per is in most cases superior to V2X, except in the case of patterns of high number
of new documents relative to number of updated documents.

1 Introduction

Temporal text indexes are used to reduce the cost of performing temporal text-
containment queries, i.e., query for all versions of documents that contained one or
more particular words at a particular time. The importance of such indexes will in-
crease as the ability to manage timestamped or temporal documents becomes common.
For example, an increasing amount of documents in companiesand other organizations
is now only available electronically, and exist in several versions updated at different
times. These documents can be in a number of formats like plain text, HTML, XML,
Microsoft Word, Adobe PDF, etc. Many organizations alreadyhave searchable reposito-
ries or intranet search engines that can be used to retrieve documents based on keywords
search, and possibly also other searchable parameters likecreate or update. Another ex-
ample is web warehouses which collect web pages from a numberof sites at regular
intervals, and whose information contents can be queried and analyzed.

We have previously proposed two text-indexing techniques for transaction-time
temporal document database systems: theV2 temporal text index(V2X) [1] used in
the V2 temporal document database system, and theinterval-based temporal text index
(ITTX) [2]. V2X is a combination of full-text indexes and time indexes for performing
efficient text-containment queries, and is most suitable for documents with few versions
or with a high degree of change between versions. In the ITTX,word occurrences and
stored in a way that is particular space-efficient when most documents have several
versions and the change between versions is relatively small.

This paper is the first comparative study of temporal text-indexing techniques, and
the contributions of this paper are 1) a more detailed study of the space usage of the

⋆ Email of contact author: Kjetil.Norvag@idi.ntnu.no

indexing approaches, 2) improvements to the ITTX, and 3) a study for what kind of
document collections the different techniques should be employed.

The organization of the rest of this paper is as follows. In Sect. 2 we give an
overview of related work. In Sect. 3 we give an overview our two basic techniques
for temporal text indexing, the V2X and ITTX indexes. In Sect. 4 we present several
improvements to the ITTX approach. In Sect. 5 we study the space usage of the different
indexing alternatives, and for what document collection types the different alternatives
should be used. Finally, in Sect. 6, we conclude the paper.

2 Related Work

There has been a large amount of research on indexing temporal data in context of
traditional data types, see [3] for an extensive survey. However, as explained in detail
in [1], the traditional temporal indexing methods are not directly applicable to temporal
text indexing.

The only research work we are aware of that directly focuses on access methods
for general temporal document querying, is the proposal from Anick and Flynn [4] on
how to support versioning in a full-text information retrieval system. In their proposal,
the current version of documents are stored as complete versions, and backward deltas
are used for historical versions. This gives efficient access to the current (and recent)
versions, but costly access to older versions. They also usethe timestamp as version
identifier. This is not applicable for transaction-based document processing where all
versions created by one transaction should have same timestamp. In order to support
temporal text-containment queries, they based the full-text index on bitmaps for words
in current versions, and delta change records to track incremental changes to the in-
dex backwards over time. This approach has the same advantage and problem as the
delta-based version storage: efficient access to current version, but costly recreation of
previous states is needed. It is also difficult to make temporal zig-zag joins (needed for
multi-word temporal text-containment queries) efficient.

Related to the task of temporal full-text indexing, is indexing temporal XML doc-
uments [5]. In this case the focus is on improving path queries. It should be noted that
temporal full-text indexes like the ones presented in our paper can also be used to im-
prove performance of temporal XML queries, and this is described in more detail in [6].

The inverted file indexes used as basis in our work is based on traditional text-
indexing techniques, see for example [7].

3 Basic Temporal Text-Indexing Techniques

The basic lookup operation in non-temporal text indexing isto retrieve the document
identifiers of all documents that contain a particular wordw. The most common access
method for text indexing is the inverted file, which is also the basis of our approaches.

An inverted file index is a mapping from a term (text word)w to the documents
d1, d2, . . . , dj where the term appears. Inverted files are also the basis of our approaches.
In the inverted file index, aposting listPL = (w, d1, d2, . . . , dm) is created for each

index term, wherew is the text word, anddi are the document identifiers of the docu-
ments the term appears in. The tupleP = (w, di), i.e., an index term and a document
identifier, is called aposting.

In order to make this paper self-containing, and provide thecontext for the rest of
this paper, we will in this section give a short overview of the V2 index (V2X) and the
interval-based temporal text index (ITTX). Both the V2X andITTX have been imple-
mented in temporal document database prototypes built on top of Berkeley DB [8].

The V2X Temporal Text-Index. A document version stored in V2 is uniquely identi-
fied by aversion identifier(VID). In order to support partial retrieval of documents, the
document versions are chunked and stored in a B-tree-based document-version index.
The VID is essentially a counter, and given the fact that eachnew version to be inserted
is given a higher VID than the previous versions, the document-version index is append-
only and always compact. A document is identified by adocument name. Conceptually,
the document name index has for each document name some metadata related to all
versions of the document, followed by specific information for each particular version,
including both timestamp and VID for each version. Thus, thedocument name index
can be used to retrieve particular versions of a particular document by providing the
VIDs to be used in the lookup in the document-version index.

The words in the document versions are indexed by variants ofinverted lists, which
essentially provides a mapping from a word to the VIDs of all document versions con-
taining the word. In order to support efficient temporal text-containment queries, a sep-
arate index calledVIDPI is employed. The VIDPI provides the mapping from VID to
validity period (start- and end-timestamp), which is the timestamp of the document ver-
sion identified by VID and the timestamp of the next version (or time of deletion) of the
particular document.

Temporal text-containment queries using the VIDPI-index-based approach can be
performed by the following two-step algorithm:

1. A text-index query using the text index that indexes all versions in the database.
The result is a set of VIDs of all document versions containing the particular word.

2. A time-select operation selects the actual versions (from stage 1) that were valid at
the particular time or time period. For this purpose the VIDPI is used. One lookup
is needed for each of the VIDs returned in stage 1.

The ITTX Temporal Text-Index. One problem with the V2X is that each unique
word in a document version requires a separate posting in thetext index. This makes
the size of the text index proportional to the size of the document version database. In
a document database with several versions of each document,the size of the text index
can be reduced by noting the fact that the difference betweenconsecutive versions of
a document is usually small: frequently, a word in one document version will in also
occur in the next (as well as the previous) version. Thus, we can reduce the size of
the text index by storing word/version-range mappings, instead of storing information
about individual versions.

In order to benefit from the use of intervals, we usedocument version identifiers
(DVIDs) instead of the version identifiers used in the V2X. Given a version of a doc-
ument with DVID=v, then the next version of the same document has DVID=v+1. In
contrast to a VID that uniquely identifies a document versionstored in the system, dif-
ferent versions of different documents can have the same DVID, i.e., the DVIDs are not
unique between different versions of different documents.In order to uniquely identify
(and to retrieve) a particular document version, adocument identifier(DID) is needed
together with the DVID, i.e., a particular document versionin the system is identified
by (DID||DVID). In this way, consecutive versions of the same document that contain
the same word can form a range with no holes.

Conceptually, the text index that use ranges can be viewed asa collection of
(w,DID,DVID i,DVIDj)-tuples, i.e., a word, a document identifier, and a DVID range.
Note that for each document, there can be several tuples for each wordw, because words
can appear in one version, disappear in a later version, and then again reappear later. A
good example is a page containing news headlines, where sometopics are reoccurring.

When a new document version with DVID=DVIDi is inserted, and it contains a
word that did not occur in the previous version, a (w,DID,DVID i,DVIDj) tuple is in-
serted into the index. DVIDi is the DVID of the inserted version, but DVIDj is set to a
special value UC (until changed). In this way, if this word isalso included in the next
version of this document, the tuple does not have to be modified. This is an important
feature (a similar technique for avoiding text index updates is also described in [4]).
Only when a new version of the document that does not contain the word is inserted,
the tuple has to be updated. It is important to note that usingthis organization, it is
impossible to determine the DVIDs of the most recent versions from the index. For the
[DVID i,UC] intervals only the start DVID is available, and we do notknow the end
DVID. As will be described later, this makes query processing more complicated.

In order to save some space and increase performance of queries for current docu-
ments, a separate index is used for the entries that are stillvalid, i.e., where the end of
the interval is UC. In this index the end value UC is implicit,so that only the start DVID
needs to be stored. We denote the index for historical entriesHTxtIdxand the index for
valid entriesCTxtIdx.

One of the main reasons why the VIDPI is very attractive in thecontext of V2, is
that storing the time information in the VIDPI is much more space efficient than storing
the timestamps replicated many places in the text index (once for each word). However,
when intervals are used, one timestamp for each start- and end-point of the intervals is
sufficient, and the increase in total space usage, compared with using a VIDPI index,
should be less than what is the case in V2 (although, as we shall see later in this paper,
this is unfortunately not always the case). It could also be more scalable, because the
V2 approach is most efficient when the VIDPI index can always be resident in main
memory. To summarize, our final solution for the ITTX as presented in [2] was to store
(w,DID,DVID i,DVIDj,TS,TE) in the HTxtIdx (whereTS and TE are the start- and
end-timestamps of the interval [DVIDi,DVIDj>), and to store (w,DID,DVID,TS) in
the CTxtIdx. In [2] we outline the algorithms to be applied when inserting, updating
and deleting documents, as well as algorithms for temporal text-containment queries
using the ITTX.

4 Improving the Interval-Based Temporal Text Index

After some experimenting with the ITTX we have discovered that for many types of
temporal document collections the assumption that ITTX is usually more space-efficient
than the V2X does not hold. As a result, we have developed several variants of ITTX
where the space efficiency is improved. The ITTX improvements will now be presented
together with a discussion about space usage of the variants. We start with the original
ITTX, which we from now on will denoteITTX-24/14in order to avoid any confusion
between the variants.

ITTX-24/14. In the original implementation of ITTX we used 4 bytes to represent
DIDs and DVIDs, and 6 byte for each timestamp. This means a total of 24 bytes to
represent a posting interval in the historical index, and 14bytes in the current index
where the end of interval is not known and therefore does not have to be stored. In
V2X, on average just a little over 2 bytes where needed to represent a posting. This
means that in order to be competitive, the ITTX posting intervals need to cover on
average at least 12 versions in order to be competitive compared to the V2X. For many
application areas this was not the case, and the space usage when using the ITTX was
much higher than if V2X was used.

ITTX-16/11. One way to reduce the space usage is to use a compressed representation
of the identifiers. In traditional non-temporal posting lists, the difference is often small
between two consecutive document identifiers in large posting lists. This makes it pos-
sible to encode the identifiers very efficiently, for exampleusing Elias encoding [9] or
variable length encoding [10]. In the case of the intervals in ITTX this is more difficult,
but one possible approach is to reduce the size of the representation of the DVIDs. In-
stead of using 4 bytes for each DVID, we can use 3 bytes for the start DVID, and 1 byte
to represent the difference between the end DVID and start DVID. The consequences
of using this representation is that we can only have224 ≈ 16 million versions of each
document, and that no interval can have more than 256 versions. It is not very likely
that a document in a document database should have more than 16 million versions, and
intervals over 256 versions can simply be represented by twoor more intervals instead.
The result of this representation is 16,7% reduced space usage.

Using the same difference-based technique to reduce space usage of timestamps is
not possible. The problem is that by using 1 byte to representa difference, the technique
is only useful if most differences is less than what 1 byte represents, which is only
about 7 minutes. This will definitely not be the case in general. Even 2 bytes is not
sufficient, as it only increases the possible difference to 18 hours. However, in the case
of document databases it should be enough with a coarser granularity than the one
provided by the 6 bytes for each timestamp that were used in the original ITTX. Similar
to the V2X, 4-byte-timestamps with resolution of 1 second should suffice. The result is
then that the space needed for storing a posting interval, i.e., DID/DVID/DVID/T/T, is
4 + 3 + 1 + 4 + 4 = 16 bytes, a total reduction of 33% from the original size.

ITTX/VIDPI. The improvements proposed so far are fairly simple and give only a
moderate reduction of space. In order to reduce the size moredrastically, some change
to the indexing architecture itself is necessary. One possibility is to make the text index
itself “non-temporal” by not including the timestamps in the main index, but instead
using a strategy similar to the VIDPI [1] approach used in V2.The result is that it is
sufficient to store the time interval once for each version, instead of once for each inter-
val in the text index. The text index itself still contains intervals of version identifiers,
thus still has the property of not increasing proportional to the version database size
which was the case of the index used in V2.

Using the ITTX/VIDPI approach, each posting interval in theindex is a
DID/DVID/DVID record, using4 + 3 + 1 = 8 bytes. The records in the new VIDPI
index are DID/DVID/T/T structures, using 16 bytes each assuming 4 byte large times-
tamps. In order to support efficient search in this index, therecords should be sorted on
DID/DVID. Similar to what is done in the VIDPI index in V2, DVIDs are sequential so
they do not really have to be stored. In addition, the end timestamp of one version is the
start timestamp of the next, so only one timestamp for each version needs to be stored,
i.e., 8 bytes is sufficient for each version.

There is one important difference between the VIDPI index used in V2 and the
one proposed here: in V2 the VIDPI index was sorted on VIDs andwas append-only,
thus having very low update cost. In the ITTX/VIDPI approachthis is not the case, so
the update will have a higher cost, approximately one block to be update per version,
instead of one per transaction as was the case for V2. However, compared to the cost of
indexing words in documents, the VIDPI update cost is only marginal.

ITTX/ND. During a temporal text-containment query using the implemented version
of ITTX (the ITTX-24/14 variant), a lookup in the text index returns for each document
where the word appears, an interval of versions (DVID,DVID)and a time period (T,T).
In order to determine the actual versions, a separate lookupin the document name index
is necessary. The DVDIs can be used to reduce the amount of work during the lookup in
the document name index, but are not strictly necessary. Thereason for still including
the DVIDs in the ITTX, is that they are needed to support efficient removal of individual
versions from the database. If removal of intermediate versions will not occur, it is
possible to omit explicit storage of the DVID interval in theindex, and instead having
a DID together with the time interval. In this case, only 8 byte is needed for an entry in
the CTxtIdx, and 12 bytes in the HTxtIdx.

5 Evaluation of Space Usage

In this study the main focus will be on reducing space usage, instead of studying the
access cost directly. When using the indexes discussed in this paper, the space usage
also indirectly determines the access cost because access cost is a function of posting
list/interval sizes and buffer-hit probability. We will now first describe the test data that
is used in the study, then the evaluation approach will be described, and an evaluation
of space usage will be performed.

Index type HTxtIdx CTxtIdx Space
ITTX-24/14 DID(4) DVID(4) DVID(4) T(6) T(6) DID(4) DVID(4) T(6) NIH ∗ 24 + NIC ∗ 14

ITTX-16/11 DID(4) DVID(3) DVID(1) T(4) T(4) DID(4) DVID(3) T(4) NIH ∗ 16 + NIC ∗ 11

ITTX/VIDPI DID(4) DVID(3) DVID(1) DID(4) DVID(3) NIH ∗ 8 + NIC ∗ 8

ITTX/ND DID(4) T(4) T(4) DID(4) T(4) NIH ∗ 12 + NIC ∗ 8

V2X VID(2) VID(2) NP ∗ 2

Table 1. Space usage of different indexing alternatives. The numbers in paranthesis
are the number of bytes used to represent the fields in the index. Number of historical
intervals is denotedNIH , intervals in CTxtIdx is denotedNIC, and number of postings
in total is denotedNP.

5.1 Test Data

Acquiring real-world temporal document collections is difficult. In some of our previ-
ous studies in temporal document databases, we have used a document collection that
is based on the evolution of pages from a set of web sites. Eventhough that collection
was sufficient for the use in our previous work, it has a numberof shortcomings that
makes it less satisfactory for the purpose of this paper: it has a very high number of
documents that are never updated, and it only presents one application area (temporal
web warehouses). When comparing different indexing approaches, it is necessary with
a number of test collections with different characteristics/statistical properties, and is
also an advantage if we know and can control these characteristics, in order to make it
easier to explain the results. For this purpose we have developedTDocGen, temporal
document generator.

TDocGen creates a temporal document collection whose characteristics are decided
by a number of configurable parameters. For example, the probability of update, av-
erage number of new documents in each generation, etc., can be configured. One of
the important properties of TDocGen is that the documents itcreates have vocabulary,
vocabulary size, and words distribution according to what is expected in the real world.
The created documents contain real words taken from histograms based on real (but
non-temporal) documents and follows empirical laws like Heaps’ law and Zipf’s law.
In order to capture the aspect of dynamic and static documents, every new document
created by TDocGen is characterized as being dynamic or relatively static. The per-
centage of documents in each partition and the probability of updates to each partition
is configurable. In a typical configuration 20% of the documents are defined to be dy-
namic, and 80% of the updates are performed on dynamic documents. TDocGen is
described in more detail in [11].

5.2 Evaluation Method and Validation

Our approach to comparison is to use the simple disk usage models as summarized
in Tab. 1 as basis for calculating the space usage (note that the extra space needed
for the VIDPI indexes in the case of the ITTX/VIDPI and V2X alternatives is very
small compared to the rest of the index structure and is therefore omitted from the

space usage models, the same is the case for the start-VID of each chunk in the V2X
index). In order to calculate the space usage for the different indexing alternatives, the
models will be instrumented with words, validity intervals, etc., based on the document
collections created by TDocGen. The statistics is acquiredby inserting the collections
into an IDDB database and using the statistics from the ITTX index.

In order to have confidence in the result using our evaluationmethods, a validation
of the approach is necessary. The modeling approach is the same for all the ITTX-
variants, so validation of one of them suffices. The ITTX-24/14 variant is implemented
in the IDDB prototype, and we insert one of the test collections into an IDDB database
and compare the actual disk space usage of the ITTX index in IDDB with the predicted
values resulting from instrumentation of the model as described above.

In order to predict the actual space us-

 0 MB

 200 MB

 400 MB

 600 MB

 800 MB

 1000 MB

 1200 MB

 1400 MB

0 10 20 30 40 50 60 70 80 90 100

In
de

x
si

ze

Days

IDDB
IDDB-100%FF
ITTX-24/14

Fig. 1.Space usage of storing a test col-
lection in IDDB for different amounts
of data.

age from the values described in the previ-
ous section, page utilization and page over-
head has to be taken into account. Figure 1
illustrates space usage of storing a test collec-
tion in IDDB for different amounts of data.
The uppermost curve shows the actual disk
space used for data stored in the IDDB sys-
tem (having page fill factor of 67%), the sec-
ond curve shows space usage adjusted for page
utilization (i.e., space usage if fill factor was
100%), and the lower curve shows the space
usage as predicted by the model which as-
sumes 100% fill factor. The discrepancy be-
tween the model and real values is the space occupied by keys (words) and overhead on
each page.

The effects of page utilization and space for keys and overhead is approximately
the same for the indexing alternatives, so in the rest of thisstudy we will use the values
predicted from the models. These values reflects space usageafter a reorganization of
the database, which would bring page utilization close to 100%. Figure 1 shows that the
accuracy of the model is good, and the small difference also gives high confidence in
the models for the indexing techniques that are not actuallyimplemented (ITTX-16/11,
ITTX/VIDPI, and ITTX/ND).

A similar approach is followed to validate the V2X model. With the test data we
have studied, the difference between predicted and real values is approximately 3%,
this is the result of omitting the start VID of each chunk in the V2X index from the
model.

5.3 Space Usage

Different document database applications have different access pattern and document
characteristics. A big advantage of having document collections created by a synthetic
document generator is that we are able to produce collections reflecting the different
applications. We will now study space usage for a number of different temporal docu-
ment collections. Our application case that is behind the parameters, is a company or

Default Normal distributed
Parameter valueAverage Std. dev.
Number of documents first that exists the first day 20
Percentage of documents being dynamic 20
Percent of updates applied to dynamic documents 80
Number of words in each line in document 10
Number of new documents created/day 20 10
Number of deleted documents/day 3 1
Number of updated documents/day 200 75
Number of lines in new document 150 50
Number of new lines when updating 50 10
Number of deleted lines when updating 20 5

Table 2.Default document generator parameters.

department involving a number of persons that each day create and update a certain
number of documents. The starting point for the study is a document collection created
by TDocGen using the parameters in Tab. 1. These parameters can for example reflect a
group of 10 people where each of them every day on average creates 2 new documents
and updates 10 documents, and once in a while delete documents. Assuming 50 lines on
a page, a typical new document has 3 pages, and an update is typically addition of text
equivalent to one new page, and removal of text equivalent tohalf a page. In addition to
performing a study using the default parameters in Tab. 1, wehave also changed some
of the parameters to understand how these changes will affect space usage.

The results are presented in Fig. 2. In all graphs, the space usage for the index is
presented as a function of document collection size, which is given as number of days
there have been actions performed on the database. In order to make it easier to see
details in the graphs, we have only included the interestingpart of the range (days), i.e.,
up to the interesting points of crossing. The actual document collection size at the end
of each experiment is typically in the order of 15 times the space usage of the V2X, i.e.,
between 1 GB and 4 GB (depending on number of days and update/create patterns).

Figure 2(a) illustrates space usage using the default parameters as presented in
Tab. 1. As can be seen in the figure, already early in the experiment it becomes ob-
vious that using the default parameters, the interval-bases indexing techniques based on
the ITTX excel.

The default parameters represent a quite aggressive updatepattern in terms of amount
of updated documents, although the percentage of documentsthat are updated decreases
as the size of the database grows larger. In order to study theeffect of the update rate,
we have run the experiments based on the default parameters,but with number of up-
dated documents each day reduced to 100. The results are illustrated in Fig. 2(b), and
shows that the space usage of the V2X does not increase at the same very high rate as
in Fig. 2(a). It also shows that it takes a longer time before the difference between V2X
and the other techniques becomes significant. However, the difference increases with
time, so it is obvious there are great benefits gained from using intervals-based indexes
also in this case.

 0 MB

 20 MB

 40 MB

 60 MB

 80 MB

 100 MB

 120 MB

0 10 20 30 40 50 60 70 80 90 100

In
de

x
si

ze

Days

ITTX-24/14
ITTX-16/11
ITTX/ND
ITTX/VIDPI
V2X

(a) Default parameters.

 0 MB

 20 MB

 40 MB

 60 MB

 80 MB

 100 MB

 120 MB

 140 MB

 160 MB

 180 MB

 200 MB

0 50 100 150 200 250 300

In
de

x
si

ze

Days

ITTX-24/14
ITTX-16/11
ITTX/ND
ITTX/VIDPI
V2X

(b) Number of updated documents/day re-
duced to 100.

 0 MB

 20 MB

 40 MB

 60 MB

 80 MB

 100 MB

 120 MB

 140 MB

 160 MB

 180 MB

 200 MB

0 50 100 150 200 250 300 350 400

In
de

x
si

ze

Days

ITTX-24/14
ITTX-16/11
ITTX/ND
ITTX/VIDPI
V2X

(c) Number of updated documents/day re-
duced to 50.

 0 MB

 50 MB

 100 MB

 150 MB

 200 MB

 250 MB

 300 MB

0 50 100 150 200 250 300

In
de

x
si

ze

Days

ITTX-24/14
ITTX-16/11
ITTX/ND
ITTX/VIDPI
V2X

(d) Number of new documents/day in-
creased to 40.

 0 MB

 50 MB

 100 MB

 150 MB

 200 MB

 250 MB

 300 MB

0 10 20 30 40 50 60 70

In
de

x
si

ze

Days

ITTX-24/14
ITTX-16/11
ITTX/ND
ITTX/VIDPI
V2X

(e) Increasing intial number of document
and the update rate.

 0 MB

 20 MB

 40 MB

 60 MB

 80 MB

 100 MB

 120 MB

 140 MB

0 10 20 30 40 50 60 70

In
de

x
si

ze

Days

ITTX-24/14
ITTX-16/11
ITTX/ND
ITTX/VIDPI
V2X

(f) Pattern consisting of mostly small up-
dates.

Fig. 2.Space usage for different temporal document collections.

Figure 2(c) shows the space usage when the update rate is further reduced, to 50
updates documents per day. It illustrates well the fact thatthe V2X is best when most
documents have few updates, because short intervals make the interval-based indexes
inefficient. The same aspect can also be illustrated by increasing the number of new
documents created each day, instead of reducing the update rate. This is illustrated
in Fig. 2(d), which shows space usage when the number of new documents has been
increased to 40. What happens is essentially that new documents are created so fast that
it is not possible to update all old documents with the given update rate. For the values as
shown in Fig. 2(c) and 2(d), there is not a very significant difference between ITTX/ND,
ITTX/VIDPI, and V2X, and access performance can be just as important as space when
choosing which index to use. However, when the number of new documents relative to
number of updated documents increases even more, using the V2X will become more
and more beneficial. The extreme parameters are when there are no updates, only new
created documents. In that case, a new interval has to be created for each document,
and space usage will increase linearly with increasing document collection size for the
interval-based indexes as well. However, an interval occupies much larger space in the
index than just a VID as is the case for the V2X, so V2X will in total have a much lower
space usage in that case.

In order to study how the index structures scales to a larger number of documents,
we increased the number of documents at the start to 1000, andthe number of updated
documents each day to 400. The space usage is illustrated in Fig. 2(e), and the difference
between V2X and the interval-based alternatives is significant.

In addition to the experiments presented so far on basis of the parameters in Tab. 1,
we have also studied the impact of varying the other parameters. One interesting case is
when most updates are very small, i.e., only one line added byduring each update. One
possible application area where this could occur is a CV database. This is essentially
a best-case for the interval-bases index, and is very obvious when we see the graphs
in Fig. 2(f): very little increase in index size of the interval-based approaches, but very
high increase in space usage for the V2X approach.

6 Discussion and Conclusions

Support for temporal text-containment queries is of interest in a number of contexts,
both temporal document databases and temporal XML databases[6]. In this paper, we
have presented improvements to the previous temporal text-indexing techniques and
studied in more detail the space usage of the indexing approaches. As has been shown,
regarding space usage the ITTX/VIDPI is in most cases superior to V2X, except in the
case of:

– High number of new documents relative to number of updated documents. In that
case, many intervals will be one-version intervals, which are expensive in terms of
space usage.

– Possibility of physically deleting historical versions from the database, for example
if granularity reduction [12] or vacuuming is performed (note that in the case of
ordinary/logical deletions of documents, previous versions will be retained in the

database). In that case, intervals will be destroyed and therelative space usage of
interval-based approaches will be very high.

For both ITTX/VIDPI and V2X, a query has to be performed by a lookup in the text
index followed by a lookup in the VIDPI index. As long as the VIDPI index can fit in
main memory the cost of the VIDPI lookup is not significant anddoes not have to be
taken into account. In this case, choice of index structure can be based on create/update
pattern. However, if the number of document versions is verylarge, the VIDPI index
might not fit in main memory. This can for example be the resultof a very large doc-
ument collection, but can also happen in the case of a small collection that contains
many small documents. In this case, the extra lookups in the VIDPI index can con-
tribute much to the overall access time, and using an index variant without the need up
the extra lookup can be beneficial. The ITTX/ND normally occupies more space than an
ITTX/VIDPI index, but the difference is small enough to consider it a good alternative
when the VIDPI index does not fit in main memory.

The proposed indexing techniques work well even for large document collections.
However, we believe there still are possible ways of improving indexing performance
in the case of very large document collections, and our current work focuses on de-
signing index structures that are truly scalable. These indexes will be needed when the
document collection and indexes are of such sizes that only small parts of the index
structures can be assumed to be resident in main memory.

References

1. Nørvåg, K.: Supporting temporal text-containment queries in temporal document databases.
Journal of Data & Knowledge Engineering49 (2004) 105–125

2. Nørvåg, K.: Space-efficient support for temporal text indexing in a document archive context.
In: Proceedings of the 7th European Conference on Digital Libraries (ECDL’2003). (2003)

3. Salzberg, B., Tsotras, V.J.: Comparison of access methods for time-evolving data. ACM
Computing Surveys31 (1999) 158–221

4. Anick, P.G., Flynn, R.A.: Versioning a full-text information retrieval system. In: Proceedings
of SIGIR’1992. (1992)

5. Mendelzon, A.O., Rizzolo, F., Vaisman, A.A.: Indexing temporal XML documents. In:
Proceedings of VLDB’2004. (2004)

6. Nørvåg, K.: Algorithms for temporal query operators in XML databases. In: Workshop on
XML-Based Data Management and Multimedia Engineering. (2002)

7. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing Docu-
ments and Images. Morgan Kaufmann (1999)

8. Olson, M.A., Bostic, K., Seltzer, M.: Berkeley DB. In: Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference. (1999)

9. Elias, P.: Universal codeword sets and representations of the integers. IEEE Transactions on
Information TheoryIT-21 (1975) 194–203

10. Fraenkel, A., Klein, S.: Novel compression of sparse bit-strings — preliminary report. In:
Combinatorial Algorithms on Words, NATO ASI Series Volume 12. Springer Verlag (1985)

11. Nørvåg, K., Nybø, A.O.: Creating synthetic temporal document collections. Techni-
cal Report IDI 6/2004, Norwegian University of Science and Technology. Available from
http://www.idi.ntnu.no/grupper/DB-grp/ (2004)

12. Nørvåg, K.: Algorithms for granularity reduction in temporal document databases. (Ac-
cepted for publication in Information Systems)

http://www.idi.ntnu.no/grupper/DB-grp/

	Improving Space-Efficiency in Temporal Text-Indexing
	 Kjetil Nørvåg and Albert Overskeid Nybø

