Improving Space-Efficiency in Temporal Text-Indexing

Kjetil Ngrvag: and Albert Overskeid Nybg

Department of Computer and Information Science
Norwegian University of Science and Technology
7491 Trondheim, Norway

Abstract. Support for temporal text-containment queries is of irgeirea num-
ber of contexts. In previous papers we have presented twoagipes to temporal
text-indexing, the V2X and ITTX indexes. In this paper, wstfgresent improve-
ments to the previous techniques. We then perform a studyeapiace usage of
the indexing approaches based on both analytical modelgesudts from in-
dexing temporal text collections. These results show foatvikdiind of document
collections the different techniques should be employd® fesults also show
that regarding space usage, the new ITTX/VIDPI techniqe@gsed in this pa-
per is in most cases superior to V2X, except in the case afpetof high number
of new documents relative to number of updated documents.

1 Introduction

Temporal text indexes are used to reduce the cost of penfgrrtemporal text-
containment queries, i.e., query for all versions of docotsi¢hat contained one or
more particular words at a particular time. The importantsuzh indexes will in-
crease as the ability to manage timestamped or temporahuktis becomes common.
For example, an increasing amount of documents in companiksther organizations
is now only available electronically, and exist in severatsions updated at different
times. These documents can be in a number of formats like pat, HTML, XML,
Microsoft Word, Adobe PDF, etc. Many organizations alrehdye searchable reposito-
ries or intranet search engines that can be used to retréeentents based on keywords
search, and possibly also other searchable parametecsédiaee or update. Another ex-
ample is web warehouses which collect web pages from a nuoflstes at regular
intervals, and whose information contents can be queriddiaalyzed.

We have previously proposed two text-indexing techniquestfansaction-time
temporal document database systems:\Betemporal text indexv2X) [I] used in
the V2 temporal document database system, anghtbeval-based temporal text index
(ITTX) [2]. V2X is a combination of full-text indexes and tiindexes for performing
efficient text-containment queries, and is most suitableé@uments with few versions
or with a high degree of change between versions. In the I'WWotd occurrences and
stored in a way that is particular space-efficient when mosuthents have several
versions and the change between versions is relatively.smal

This paper is the first comparative study of temporal tegeking techniques, and
the contributions of this paper are 1) a more detailed stddhespace usage of the

* Email of contact author: Kjetil. Norvag@idi.ntnu.no

indexing approaches, 2) improvements to the ITTX, and 3udysfor what kind of
document collections the different techniques should beleyed.

The organization of the rest of this paper is as follows. Ictd8 we give an
overview of related work. In Sedfl 3 we give an overview ouo tasic techniques
for temporal text indexing, the V2X and ITTX indexes. In S&te present several
improvements to the ITTX approach. In S&dt. 5 we study theespaage of the different
indexing alternatives, and for what document collectiqretythe different alternatives
should be used. Finally, in SeEl. 6, we conclude the paper.

2 Related Work

There has been a large amount of research on indexing tehgaieain context of
traditional data types, seel [3] for an extensive survey. ¢l@g, as explained in detail
in [, the traditional temporal indexing methods are noédily applicable to temporal
text indexing.

The only research work we are aware of that directly focuseaazess methods
for general temporal document querying, is the proposahfAmick and Flynn[[4] on
how to support versioning in a full-text information retré system. In their proposal,
the current version of documents are stored as complet®msrand backward deltas
are used for historical versions. This gives efficient asdeshe current (and recent)
versions, but costly access to older versions. They alsahesémestamp as version
identifier. This is not applicable for transaction-basedutoent processing where all
versions created by one transaction should have same @mpstn order to support
temporal text-containment queries, they based the futlitelex on bitmaps for words
in current versions, and delta change records to track imen¢al changes to the in-
dex backwards over time. This approach has the same adeaatagproblem as the
delta-based version storage: efficient access to curresiove but costly recreation of
previous states is needed. It is also difficult to make temlpng-zag joins (needed for
multi-word temporal text-containment queries) efficient.

Related to the task of temporal full-text indexing, is inthextemporal XML doc-
uments[[5]. In this case the focus is on improving path gsetteshould be noted that
temporal full-text indexes like the ones presented in ogep&an also be used to im-
prove performance of temporal XML queries, and this is dbeckin more detail in[6].

The inverted file indexes used as basis in our work is basedaalitional text-
indexing techniques, see for examplk [7].

3 Basic Temporal Text-Indexing Techniques

The basic lookup operation in non-temporal text indexintpisetrieve the document
identifiers of all documents that contain a particular werdrhe most common access
method for text indexing is the inverted file, which is alse tasis of our approaches.
An inverted file index is a mapping from a term (text word)to the documents
dy,ds, ..., d; where the term appears. Inverted files are also the basis appuoaches.
In the inverted file index, @osting listPL = (w,dy,ds,...,dy,) is created for each

index term, wherew is the text word, and; are the document identifiers of the docu-
ments the term appears in. The tupte= (w, d;), i.e., an index term and a document
identifier, is called gosting

In order to make this paper self-containing, and providectvgext for the rest of
this paper, we will in this section give a short overview of ¥2 index (V2X) and the
interval-based temporal text index (ITTX). Both the V2X diid X have been imple-
mented in temporal document database prototypes builtpaoftBerkeley DB [8].

The V2X Temporal Text-Index. A document version stored in V2 is uniquely identi-
fied by aversion identifieVID). In order to support partial retrieval of documentsg t
document versions are chunked and stored in a B-tree-basenngnt-version index.
The VID is essentially a counter, and given the fact that eeshversion to be inserted
is given a higher VID than the previous versions, the docurersion index is append-
only and always compact. A document is identified loaument nameConceptually,
the document name index has for each document name someataetathted to all
versions of the document, followed by specific informationdéach particular version,
including both timestamp and VID for each version. Thus,dbeument name index
can be used to retrieve particular versions of a particub@uchent by providing the
VIDs to be used in the lookup in the document-version index.

The words in the document versions are indexed by variantsefted lists, which
essentially provides a mapping from a word to the VIDs of att@iment versions con-
taining the word. In order to support efficient temporal teahtainment queries, a sep-
arate index calle/IDPI is employed. The VIDPI provides the mapping from VID to
validity period (start- and end-timestamp), which is timegstamp of the document ver-
sion identified by VID and the timestamp of the next versiartioe of deletion) of the
particular document.

Temporal text-containment queries using the VIDPI-intb@sed approach can be
performed by the following two-step algorithm:

1. A text-index query using the text index that indexes aikians in the database.
The result is a set of VIDs of all document versions contajnire particular word.

2. Atime-select operation selects the actual versions(Btage 1) that were valid at
the particular time or time period. For this purpose the ViBRused. One lookup
is needed for each of the VIDs returned in stage 1.

The ITTX Temporal Text-Index. One problem with the V2X is that each unique
word in a document version requires a separate posting itettiendex. This makes
the size of the text index proportional to the size of the doent version database. In
a document database with several versions of each docuthesize of the text index
can be reduced by noting the fact that the difference betweasecutive versions of
a document is usually small: frequently, a word in one doaumersion will in also
occur in the next (as well as the previous) version. Thus, arereduce the size of
the text index by storing word/version-range mappinggeiad of storing information
about individual versions.

In order to benefit from the use of intervals, we ukEument version identifiers
(DVIDs) instead of the version identifiers used in the V2Xv@&i a version of a doc-
ument with DVID=w, then the next version of the same document has DW= In
contrast to a VID that uniquely identifies a document versitmmed in the system, dif-
ferent versions of different documents can have the sam®D\., the DVIDs are not
unique between different versions of different documentsrder to uniquely identify
(and to retrieve) a particular document versiologument identifie(DID) is needed
together with the DVID, i.e., a particular document versioithe system is identified
by (DID||DVID). In this way, consecutive versions of the same docurttest contain
the same word can form a range with no holes.

Conceptually, the text index that use ranges can be viewed easllection of
(w,DID,DVID;,DVID ;)-tuples, i.e., a word, a document identifier, and a DVID &ng
Note that for each document, there can be several tuplea¢bngordw, because words
can appear in one version, disappear in a later version jemdagain reappear later. A
good example is a page containing news headlines, wheretsgigs are reoccurring.

When a new document version with DVID=DV|Ds inserted, and it contains a
word that did not occur in the previous version.aRID,DVID ;,DVID ;) tuple is in-
serted into the index. DVIPis the DVID of the inserted version, but DVIDs set to a
special value UC (until changed). In this way, if this wordalso included in the next
version of this document, the tuple does not have to be mddifikis is an important
feature (a similar technique for avoiding text index updatealso described irl[4]).
Only when a new version of the document that does not containvbrd is inserted,
the tuple has to be updated. It is important to note that usirggorganization, it is
impossible to determine the DVIDs of the most recent vessioom the index. For the
[DVID ;,UC] intervals only the start DVID is available, and we do kabw the end
DVID. As will be described later, this makes query procegsitore complicated.

In order to save some space and increase performance oégd@ricurrent docu-
ments, a separate index is used for the entries that areatdl i.e., where the end of
the interval is UC. In this index the end value UC is implisih, that only the start DVID
needs to be stored. We denote the index for historical ert#Textidxand the index for
valid entriesCTxtldx

One of the main reasons why the VIDPI is very attractive indbetext of V2, is
that storing the time information in the VIDPI is much morase efficient than storing
the timestamps replicated many places in the text indexg(@areeach word). However,
when intervals are used, one timestamp for each start- ashg@int of the intervals is
sufficient, and the increase in total space usage, compdtiediging a VIDPI index,
should be less than what is the case in V2 (although, as wkesgealater in this paper,
this is unfortunately not always the case). It could also lmeenscalable, because the
V2 approach is most efficient when the VIDPI index can alwaggsdsident in main
memory. To summarize, our final solution for the ITTX as presd in [2] was to store
(w,DID,DVID;,DVID ;,Ts,Tg) in the HTxtldx (wherels and T are the start- and
end-timestamps of the interval [DVI[DVID ;>), and to store«,DID,DVID,T) in
the CTxtldx. In [2] we outline the algorithms to be appliedewhinserting, updating
and deleting documents, as well as algorithms for tempesdtdontainment queries
using the ITTX.

4 Improving the Interval-Based Temporal Text Index

After some experimenting with the ITTX we have discovereat ttor many types of
temporal document collections the assumption that ITT>isally more space-efficient
than the V2X does not hold. As a result, we have developedaevariants of ITTX
where the space efficiency is improved. The ITTX improversgvrill now be presented
together with a discussion about space usage of the variéiatstart with the original
ITTX, which we from now on will denotdéTTX-24/14in order to avoid any confusion
between the variants.

ITTX-24/14. In the original implementation of ITTX we used 4 bytes to egant

DIDs and DVIDs, and 6 byte for each timestamp. This meansal tjt24 bytes to

represent a posting interval in the historical index, andytes in the current index
where the end of interval is not known and therefore does aeé tio be stored. In
V2X, on average just a little over 2 bytes where needed toessmt a posting. This
means that in order to be competitive, the ITTX posting weaés need to cover on
average at least 12 versions in order to be competitive coedpia the V2X. For many
application areas this was not the case, and the space ubageusing the ITTX was
much higher than if V2X was used.

ITTX-16/11. One way to reduce the space usage is to use a compresse@négtios
of the identifiers. In traditional non-temporal postinddighe difference is often small
between two consecutive document identifiers in large podists. This makes it pos-
sible to encode the identifiers very efficiently, for exampding Elias encodind [9] or
variable length encodin@[L0]. In the case of the interval§iT X this is more difficult,
but one possible approach is to reduce the size of the repatm of the DVIDs. In-
stead of using 4 bytes for each DVID, we can use 3 bytes forttreBVID, and 1 byte
to represent the difference between the end DVID and statbDDVhe consequences
of using this representation is that we can only h2&%e~ 16 million versions of each
document, and that no interval can have more than 256 vexsibis not very likely
that a documentin a document database should have moregmaifiidn versions, and
intervals over 256 versions can simply be represented bytwaore intervals instead.
The result of this representation is 16,7% reduced spaggeusa

Using the same difference-based technique to reduce sgage of timestamps is
not possible. The problem is that by using 1 byte to represdifference, the technique
is only useful if most differences is less than what 1 byteaesents, which is only
about 7 minutes. This will definitely not be the case in gehdéaen 2 bytes is not
sufficient, as it only increases the possible difference8tbdurs. However, in the case
of document databases it should be enough with a coarseulgriay than the one
provided by the 6 bytes for each timestamp that were usecioriginal ITTX. Similar
to the V2X, 4-byte-timestamps with resolution of 1 seconaidti suffice. The result is
then that the space needed for storing a posting intereal DID/DVID/DVID/T/T, is
4+ 3+ 1+ 4+ 4 = 16 bytes, a total reduction of 33% from the original size.

ITTX/VIDPIL. The improvements proposed so far are fairly simple and givg a
moderate reduction of space. In order to reduce the size drastically, some change
to the indexing architecture itself is necessary. One pdigiis to make the text index
itself “non-temporal” by not including the timestamps iretmain index, but instead
using a strategy similar to the VIDHII[1] approach used in VRe result is that it is
sufficient to store the time interval once for each versinstéad of once for each inter-
val in the text index. The text index itself still containgénvals of version identifiers,
thus still has the property of not increasing proportiomeltte version database size
which was the case of the index used in V2.

Using the ITTX/VIDPI approach, each posting interval in tiedex is a
DID/DVID/DVID record, using4 + 3 + 1 = 8 bytes. The records in the new VIDPI
index are DID/DVID/T/T structures, using 16 bytes each assg 4 byte large times-
tamps. In order to support efficient search in this indexréeerds should be sorted on
DID/DVID. Similar to what is done in the VIDPI index in V2, D\lIs are sequential so
they do not really have to be stored. In addition, the endgtarap of one version is the
start timestamp of the next, so only one timestamp for eactioreneeds to be stored,
i.e., 8 bytes is sufficient for each version.

There is one important difference between the VIDPI indexdus V2 and the
one proposed here: in V2 the VIDPI index was sorted on VIDswaas append-only,
thus having very low update cost. In the ITTX/VIDPI approdlis is not the case, so
the update will have a higher cost, approximately one blodie update per version,
instead of one per transaction as was the case for V2. Hopevmapared to the cost of
indexing words in documents, the VIDPI update cost is onlygimal.

ITTX/ND. During a temporal text-containment query using the implet®e version
of ITTX (the ITTX-24/14 variant), a lookup in the text indesturns for each document
where the word appears, an interval of versions (DVID,DV4DY a time period (T,T).
In order to determine the actual versions, a separate loiokhe document name index
is necessary. The DVDIs can be used to reduce the amount kfduang the lookup in
the document name index, but are not strictly necessaryr@dson for still including
the DVIDs in the ITTX, is that they are needed to support effitremoval of individual
versions from the database. If removal of intermediateiopsswill not occur, it is
possible to omit explicit storage of the DVID interval in timelex, and instead having
a DID together with the time interval. In this case, only 8oy needed for an entry in
the CTxtldx, and 12 bytes in the HTxtldx.

5 Evaluation of Space Usage

In this study the main focus will be on reducing space usaggead of studying the
access cost directly. When using the indexes discussedsipaiper, the space usage
also indirectly determines the access cost because aargtss @ function of posting
list/interval sizes and buffer-hit probability. We will mdfirst describe the test data that
is used in the study, then the evaluation approach will berie=d, and an evaluation
of space usage will be performed.

Index type [HTxtldx CTxtldx Space
ITTX-24/14 |DID(4) DVID(4) DVID(4) T(6) T(6)|DID(4) DVID(4) T(6)| N1 * 24 + Nic x 14
ITTX-16/11 |DID(4) DVID(3) DVID(1) T(4) T(4)|DID(4) DVID(3) T(4)| N * 16 + Nic = 11

ITTX/VIDPI |DID(4) DVID(3) DVID(1) DID(4) DVID(3) |Nm 8+ Nic #8
ITTX/IND [DID(4) T(4) T(4) DID(4) T(4) Nin 124 Nic * 8
V2X VID(2) VID(2) N *2

Table 1. Space usage of different indexing alternatives. The numimeparanthesis
are the number of bytes used to represent the fields in the.ifNiamber of historical

intervals is denotedvy, intervals in CTxtldx is denoted/,c, and number of postings
in total is denotedVp.

5.1 TestData

Acquiring real-world temporal document collections idfidifilt. In some of our previ-
ous studies in temporal document databases, we have usediaelat collection that
is based on the evolution of pages from a set of web sites. twrigh that collection
was sufficient for the use in our previous work, it has a nundfeshortcomings that
makes it less satisfactory for the purpose of this paperadt & very high number of
documents that are never updated, and it only presents gtieaton area (temporal
web warehouses). When comparing different indexing apbres, it is necessary with
a number of test collections with different characterggtatistical properties, and is
also an advantage if we know and can control these charstateriin order to make it
easier to explain the results. For this purpose we have deedfrDocGen temporal
document generator.

TDocGen creates a temporal document collection whose ciesistics are decided
by a number of configurable parameters. For example, theapilily of update, av-
erage number of new documents in each generation, etc.,ecanrifigured. One of
the important properties of TDocGen is that the documerteiites have vocabulary,
vocabulary size, and words distribution according to wha&bipected in the real world.
The created documents contain real words taken from histiegjibased on real (but
non-temporal) documents and follows empirical laws likeapke law and Zipf’s law.
In order to capture the aspect of dynamic and static docwsnenery new document
created by TDocGen is characterized as being dynamic divediastatic. The per-
centage of documents in each partition and the probabiliypdates to each partition
is configurable. In a typical configuration 20% of the docuteeme defined to be dy-
namic, and 80% of the updates are performed on dynamic daasmEDocGen is
described in more detail in_[1L1].

5.2 Evaluation Method and Validation

Our approach to comparison is to use the simple disk usagelmad summarized
in Tab.[0 as basis for calculating the space usage (noteHhbagxtra space needed
for the VIDPI indexes in the case of the ITTX/VIDPI and V2X erlbatives is very
small compared to the rest of the index structure and is theremitted from the

space usage models, the same is the case for the start-Vi@bfobunk in the V2X
index). In order to calculate the space usage for the différelexing alternatives, the
models will be instrumented with words, validity intervadsc., based on the document
collections created by TDocGen. The statistics is acquisenhserting the collections
into an IDDB database and using the statistics from the ITAGEK.

In order to have confidence in the result using our evaluatiethods, a validation
of the approach is necessary. The modeling approach is the &ar all the ITTX-
variants, so validation of one of them suffices. The ITTX424variant is implemented
in the IDDB prototype, and we insert one of the test collewtimto an IDDB database
and compare the actual disk space usage of the ITTX indexiBliRith the predicted
values resulting from instrumentation of the model as desdrabove.

In order to predict the actual space us-

1400 MB

age from the values described in the previ- |88 1oer /|
ous section, page utilization and page over- rooons |)
head has to be taken into account. Fidgdre it wonm |)
illustrates space usage of storing a test colle¢- S
tion in IDDB for different amounts of data. = ™|]
The uppermost curve shows the actual disk ~ “***[="

space used for data stored in the IDDB sys- 20M8

tem (having page fill factor of 67%), the sec- M8 e 50 60 7 59 90 100
ond curve shows space usage adjusted for page bays

utilization (i.e., space usage if fill factor was_. .
g. 1.Space usage of storing a test col-

100%), and the lower curve shows the spa{eI T .

usage as predicted by the model which a ection in IDDB for different amounts
sumes 100% fill factor. The discrepancy be9f data.
tween the model and real values is the space occupied bywkeyds) and overhead on
each page.

The effects of page utilization and space for keys and oeatli® approximately
the same for the indexing alternatives, so in the rest ofstiidy we will use the values
predicted from the models. These values reflects space afi®ga reorganization of
the database, which would bring page utilization close @4 0Figurdll shows that the
accuracy of the model is good, and the small difference aisesdigh confidence in
the models for the indexing techniques that are not actiraiyemented (ITTX-16/11,
ITTX/VIDPI, and ITTX/ND).

A similar approach is followed to validate the V2X model. Wihe test data we
have studied, the difference between predicted and reaésat approximately 3%,
this is the result of omitting the start VID of each chunk i 42X index from the
model.

5.3 Space Usage

Different document database applications have differeo¢ss pattern and document
characteristics. A big advantage of having document ctidies created by a synthetic
document generator is that we are able to produce collectieftecting the different
applications. We will now study space usage for a numberfédréint temporal docu-
ment collections. Our application case that is behind thrarpaters, is a company or

DefaulfNormal distribute
Parameter valugAverage Std. dev.
Number of documents first that exists the first glay 20|
Percentage of documents being dynamic 20
Percent of updates applied to dynamic documgnts 80,
Number of words in each line in document 10
Number of new documents created/day 20 10
Number of deleted documents/day 3 1
Number of updated documents/day 200 75|
Number of lines in new document 150 50
Number of new lines when updating 50 10
Number of deleted lines when updating 20 5

Table 2. Default document generator parameters.

department involving a humber of persons that each dayewad update a certain
number of documents. The starting point for the study is aid@mt collection created
by TDocGen using the parameters in Tab. 1. These parametefsicexample reflect a
group of 10 people where each of them every day on averagesr2aew documents
and updates 10 documents, and once in a while delete docsimastiming 50 lines on
a page, a typical new document has 3 pages, and an updatécalliypddition of text
equivalent to one new page, and removal of text equivalemtlica page. In addition to
performing a study using the default parameters in [ab. lhave also changed some
of the parameters to understand how these changes wilt afface usage.

The results are presented in Hil. 2. In all graphs, the spsageufor the index is
presented as a function of document collection size, whigiien as number of days
there have been actions performed on the database. In ordeake it easier to see
details in the graphs, we have only included the interegtargjof the range (days), i.e.,
up to the interesting points of crossing. The actual docuroelfection size at the end
of each experimentis typically in the order of 15 times thacgpusage of the V2X, i.e.,
between 1 GB and 4 GB (depending on number of days and updstsdpatterns).

Figure[2(a) illustrates space usage using the default peamas presented in
Tab.[d. As can be seen in the figure, already early in the exgetiit becomes ob-
vious that using the default parameters, the intervalbimskexing techniques based on
the ITTX excel.

The default parameters represent a quite aggressive ymatteen in terms of amount
of updated documents, although the percentage of docuthenere updated decreases
as the size of the database grows larger. In order to studsftibet of the update rate,
we have run the experiments based on the default paramietensjth number of up-
dated documents each day reduced to 100. The results ateated in Fig[R(b), and
shows that the space usage of the V2X does not increase arttee\ery high rate as
in Fig.[A(a). It also shows that it takes a longer time befbeedifference between V2X
and the other techniques becomes significant. However,iftegethce increases with
time, so it is obvious there are great benefits gained fromguisiiervals-based indexes
also in this case.

Index size

Index size

Index size

120MB ——————————
ITTX-24/14 '+
TTX-16/11 x
L ITTX/ND x |
100MB I irrkviDPl ®
V2xX .
80 MB |- o

60 MB

40 MB

20 MB

0MB

= L
0 10 20 30 40 50 60 70
Days

(a) Default parameters.

200 MB T T T T T T T
ITTX-24/14 +

180 MB | ITTX-16/11 x <
ITTX/ND * L

160 MB | ITTX/VIDPI a * 4
v2x .

140 MB + e =

-~ X

120 MB s o i

100 MB + o =

80 MB .]

60 MB - ,’*" X x 7]

40MB X i

X K
20 MB i
oms et P .

0 50 100 150 200 250 300 350 400

Days

300 MB -———————r
TTX-24114 +
TTX-16/11 x
LITTXIND %
250MB [irrxvioel o
v2x N
200 MB | 1
X
150 MB | 1
.-
.

100 MB |- -
50MB [47 1
0MB = L L L L L L L

0 10 20 30 40 50 60 70

Days

(e) Increasing intial number of document
and the update rate.

Index size

200 MB

ITTX-24/14 v 1
180 MB | ITTX-16/11 x A
ITTX/ND * e
160 MB | ITTX/VIDPI o =]
V2X .
140 MB # E
120 MB s X
g x
100 MB -~ x” 4
A X o
80 MB - o e
60 MB | S et e a —
AR e |
40 MB e f
=)
20MB 1
oMB
0 50 100 150 200 250
Days

300

(b) Number of updated documents/day re-
duced to 100.

Index size

Index size

300 MB

250 MB

200 MB

150 MB

100 MB

50 MB

=

TTX-24/14 |+ ‘ ‘
ITTX-16/11 x
L ITTX/ND * o
ITTX/VIDPI o o
\Z28 L] A
L L |
; X
A X
L X =
X" e X
- P =g
r o X = 1
X =
.
0 50 100 150 200 250
Days

creased to 40.

140 MB

120 MB

100 MB |

80 MB

60 MB

40 MB

(c) Number of updated documents/day re- (d) Number of new documents/day
duced to 50.

300

in-

ITTX 24/14"
ITTX-16/11

[ITTX/IND

ITTX/VIDPI
Vv2x

o x X +

20 MB § 1A :

omB

30

40
Days

(f) Pattern consisting of mostly small up-

dates.

Fig. 2. Space usage for different temporal document collections.

Figurel2(c) shows the space usage when the update rateherfueduced, to 50
updates documents per day. It illustrates well the factttat/2X is best when most
documents have few updates, because short intervals maleténval-based indexes
inefficient. The same aspect can also be illustrated by &simg the number of new
documents created each day, instead of reducing the upatateTihis is illustrated
in Fig.[A(d), which shows space usage when the number of newndents has been
increased to 40. What happens is essentially that new dousraee created so fast that
itis not possible to update all old documents with the givedate rate. For the values as
shown in Fig[R(c) and2(d), there is not a very significarfedénce between ITTX/ND,
ITTX/VIDPI, and V2X, and access performance can be just gomant as space when
choosing which index to use. However, when the number of rasuihents relative to
number of updated documents increases even more, using2Kevil become more
and more beneficial. The extreme parameters are when treermarpdates, only new
created documents. In that case, a new interval has to beedréa each document,
and space usage will increase linearly with increasing ot collection size for the
interval-based indexes as well. However, an interval oigsumuch larger space in the
index than just a VID as is the case for the V2X, so V2X will itetichave a much lower
space usage in that case.

In order to study how the index structures scales to a langerher of documents,
we increased the number of documents at the start to 100@handimber of updated
documents each day to 400. The space usage is illustratéegl B(E), and the difference
between V2X and the interval-based alternatives is sigmific

In addition to the experiments presented so far on basisgf#inameters in Tabl 1,
we have also studied the impact of varying the other parasédme interesting case is
when most updates are very small, i.e., only one line addetlibiyng each update. One
possible application area where this could occur is a CVidesa. This is essentially
a best-case for the interval-bases index, and is very obwiden we see the graphs
in Fig.A(f): very little increase in index size of the intalbased approaches, but very
high increase in space usage for the V2X approach.

6 Discussion and Conclusions

Support for temporal text-containment queries is of irdene a number of contexts,
both temporal document databases and temporal XML dats{gdsk this paper, we
have presented improvements to the previous temporairdgiing techniques and
studied in more detail the space usage of the indexing appesaAs has been shown,
regarding space usage the ITTX/VIDPI is in most cases soipeerivV2X, except in the
case of:

— High number of new documents relative to number of updatediehents. In that
case, many intervals will be one-version intervals, whighexpensive in terms of
space usage.

— Possibility of physically deleting historical versionsiin the database, for example
if granularity reduction[[12] or vacuuming is performed {@dhat in the case of
ordinary/logical deletions of documents, previous varsiwill be retained in the

database). In that case, intervals will be destroyed andelaéve space usage of
interval-based approaches will be very high.

For both ITTX/VIDPI and V2X, a query has to be performed by akop in the text
index followed by a lookup in the VIDPI index. As long as theDRI index can fit in
main memory the cost of the VIDPI lookup is not significant alogs not have to be
taken into account. In this case, choice of index structarete based on create/update
pattern. However, if the number of document versions is \a&mye, the VIDPI index
might not fit in main memory. This can for example be the restid very large doc-
ument collection, but can also happen in the case of a smiddiction that contains
many small documents. In this case, the extra lookups in ti¥Vindex can con-
tribute much to the overall access time, and using an indeaawithout the need up
the extra lookup can be beneficial. The ITTX/ND normally quies more space than an
ITTX/VIDPI index, but the difference is small enough to cales it a good alternative
when the VIDPI index does not fit in main memory.

The proposed indexing techniques work well even for largaudzent collections.
However, we believe there still are possible ways of impngvndexing performance
in the case of very large document collections, and our oumerk focuses on de-
signing index structures that are truly scalable. Thesexesd will be needed when the
document collection and indexes are of such sizes that eongll parts of the index
structures can be assumed to be resident in main memory.

References

1. Ngrvag, K.: Supporting temporal text-containment ggein temporal document databases.
Journal of Data & Knowledge Engineerid (2004) 105-125
2. Ngrvag, K.: Space-efficient support for temporal tegteixing in a document archive context.
In: Proceedings of the 7th European Conference on Digitaidries (ECDL'2003). (2003)
3. Salzberg, B., Tsotras, V.J.: Comparison of access metfaydime-evolving data. ACM
Computing Survey81 (1999) 158-221
4. Anick, P.G., Flynn, R.A.: Versioning a full-text inforrtian retrieval system. In: Proceedings
of SIGIR'1992. (1992)
5. Mendelzon, A.O., Rizzolo, F., Vaisman, A.A.: Indexingnigoral XML documents. In:
Proceedings of VLDB’2004. (2004)
6. Ngrvag, K.: Algorithms for temporal query operators iMX databases. In: Workshop on
XML-Based Data Management and Multimedia Engineering0230
7. Witten, |.H., Moffat, A., Bell, T.C.: Managing GigabyteS8ompressing and Indexing Docu-
ments and Images. Morgan Kaufmann (1999)
8. Olson, M.A., Bostic, K., Seltzer, M.: Berkeley DB. In: Reedings of the FREENIX Track:
1999 USENIX Annual Technical Conference. (1999)
9. Elias, P.: Universal codeword sets and representatiihe integers. |IEEE Transactions on
Information TheoryiT-21 (1975) 194-203
10. Fraenkel, A., Klein, S.: Novel compression of sparsestsihgs — preliminary report. In:
Combinatorial Algorithms on Words, NATO ASI Series Volunia Springer Verlag (1985)
11. Nervag, K., Nybg, A.O.: Creating synthetic temporatutment collections. Techni-
cal Report IDI 6/2004, Norwegian University of Science aretfihology. Available from
http://ww. I dl .ntnu. no/ grupper/ DB-grp/|(2004)
12. Narvag, K.: Algorithms for granularity reduction inmporal document databases. (Ac-
cepted for publication in Information Systems)

http://www.idi.ntnu.no/grupper/DB-grp/

	Improving Space-Efficiency in Temporal Text-Indexing
	 Kjetil Nørvåg and Albert Overskeid Nybø

