APSKkyline: Improved Skyline Computation for
Multicore Architectures

Stian Liknes', Akrivi Vlachou'2, Christos Doulkeridis®, and Kjetil Ngrvag!

! Norwegian University of Science and Technology (NTNU), Trondheim, Norway
2 Institute for the Management of Information Systems, R.C. “Athena”, Athens, Greece
3 Department of Digital Systems, University of Piracus, Greece
stianlik@gmail.com, {noervaag, vlachou, cdoulk}@ idi.ntnu.no

Abstract. The trend towards in-memory analytics and CPUs with an increasing
number of cores calls for new algorithms that can efficiently utilize the avail-
able resources. This need is particularly evident in the case of CPU-intensive
query operators. One example of such a query with applicability in data analyt-
ics is the skyline query. In this paper, we present APSkyline, a new approach for
multicore skyline query processing, which adheres to the partition-execute-merge
framework. Contrary to existing research, we focus on the partitioning phase to
achieve significant performance gains, an issue largely overlooked in previous
work in multicore processing. In particular, APSkyline employs an angle-based
partitioning approach, which increases the degree of pruning that can be achieved
in the execute phase, thus significantly reducing the number of candidate points
that need to be checked in the final merging phase. APSkyline is extremely effi-
cient for hard cases of skyline processing, as in the cases of datasets with large
skyline result sets, where it is meaningful to exploit multicore processing.

1 Introduction

The trend towards in-memory analytics and CPUs with an increasing number of cores
calls for new algorithms that can efficiently utilize the available resources. This need
is particularly evident in the case of CPU-intensive query operators. One example of
such a query with applicability in data analytics is the skyline query. Given a set P of
multidimensional data points in a d-dimensional space D, the skyline query retrieves
all points that are not dominated by any other point. A point p € P is said to dominate
another point ¢ € P, denoted as p < ¢, if (1) on every dimension d; € D, p; < g;; and
(2) on at least one dimension d; € D, p; < g;. The skyline is a set of points SKYp C P
which are not dominated by any other point in P. Computing the skyline query in
a multicore context is an interesting research problem that has not been sufficiently
studied yet.

Previous approaches to solve this problem are variants of the partition-execute-
merge framework where the dataset is split into [V partitions (one for each core), then
the local skyline set for each partition is computed, and finally the skyline set is deter-
mined by merging these local skyline sets. However, the existing works largely overlook
the important phase of partitioning, and naively apply a plain random partitioning of in-
put data to cores. As also observed in [2], a naive partitioning approach may work well

in case of cheap query operators on multicore architectures, while sophisticated par-
titioning methods may not be beneficial. Nevertheless, in the case of skyline queries
which are CPU-intensive and especially for the case of “hard” datasets having an anti-
correlated distribution, which are frequent in real applications [13] and also more costly
to compute, the role of partitioning is significant. Skyline queries over anti-correlated
data produce a skyline set of high cardinality and a naive partitioning produces local
skyline sets containing uneven portions of the final skyline set and many local sky-
line points not part of the skyline set. In consequence, the merging cost is significantly
higher than necessary, and the final result is prohibitively long processing times.

Motivated by this observation, in this paper, we present APSkyline, an approach
for efficient multicore computation of skyline sets. In APSkyline, we employ a more
sophisticated partitioning technique that relies on angle-based partitioning [15]. Since
multicore skyline processing differs from skyline processing in other parallel environ-
ments, we apply all necessary adaptations of the partitioning technique for a multicore
system, which combined with additional optimizations result in significant performance
gains. Even though our partitioning entails extra processing cost, the degree of pruning
that can be achieved in the execute phase incurs significant savings in the subsequent
phases, thus reducing the overall execution time considerably. Furthermore, we show
how the partitioning task can be parallelized and efficiently utilize all cores for this
problem. We provide an extensive evaluation that compares APSkyline with the state-
of-the-art algorithms for multicore skyline processing, which demonstrates that our ap-
proach outperforms its competitors for hard setups of skyline processing, which are also
the cases where it is most meaningful to exploit multicore processing.

Summarizing, the main contributions of this paper include:

A new algorithm for multicore skyline computation based on angle-based partition-
ing that complies with the partition-execute-merge framework.

Different partitioning methods that result in improved performance depending on
the nature of the underlying datasets.

Novel techniques for parallelization of the partitioning task, in order to reduce the
cost of applying sophisticated partitioning methods.

An extensive evaluation that compares APSkyline with the state-of-the-art algo-
rithms for multicore skyline processing, which demonstrates that our solution out-
performs its competitors for hard setups of skyline processing.

The rest of this paper is organized as follows: Sect. 2 provides an overview of related
work. In Sect. 3 we describe APSkyline and the partition-execute-merge framework,
while in Sect. 4 we describe in detail how partitioning is performed in APSkyline. Our
experimental results are presented in Sect. 5. Finally, in Sect. 6 we conclude the paper.

2 Related Work

Since the first paper on skyline processing in databases appeared [4], there have been a
large number of papers on the topic, and for a brief overview of current state-of-the-art
we refer to [6]. As shown in previous papers on main-memory skyline computing with
no indexes available [9, 11, 12], the best-performing algorithm is SSkyline (also known

as Best) [14], and this is also used as a building block in most approaches to multicore
skyline processing.

For efficient multicore computing of skylines, there are two state-of-the-art algo-
rithms, PSkyline [9, 11] and ParallelBNL [12]. As shown in [12], PSkyline usually
performs better than Paralle]lBNL in the case of unlimited memory available, but in a
memory-constrained context, ParalleIBNL performs better.

The PSkyline algorithm [9, 11], is a divide-and-conquer-based algorithm optimized
for multicore processors. In contrast to most existing divide-and-conquer (D&C) algo-
rithms for skyline computation that divide into partitions based on geometric properties,
PSkyline simply divides the dataset linearly into N equal sized partitions. The local sky-
line is then computed for each partition in parallel using SSkyline, and the local skyline
results subsequently merged. In the evaluation by Im et al. [9] of PSkyline and parallel
versions of the existing algorithms BBS and SFS, PSkyline consistently had the best
utilization of multiple cores.

In [12], Selke et al. suggest a parallel version of BNL using a shared linked list for
the skyline window. This is a straightforward approach, where a sequential algorithm
is parallelized without major modifications. However, there are some issues related to
concurrent modification of the shared list. Three variants of list synchronization are
suggested in the article: continuous, lazy, and lock-free. With continuous locking, each
thread will acquire a lock on the next node before processing, lazy locking [7] only locks
nodes that should be modified (or deleted), while lock-free is an optimistic approach
that does not use any locking. Lazy and lock-free variants need to verify that iterations
have been correctly performed and restart iterations that fail. In their evaluation, the
lazy locking scheme is shown to be most efficient, and in the evaluation in Sect. 5, we
refer to parallel BNL using the lazy locking scheme.

Relevant for our work on multicore skyline computation is also parallel and dis-
tributed skyline processing [1, 8, 15]. However, these techniques are based on the as-
sumption that communication between processing units (servers) is very costly com-
pared to local processing, thus making them unsuitable for direct adaption in a multicore
context. There has also been other recent work on computing skylines using specialized
parallel hardware, e.g., GPU [3] and FPGA [16].

3 The Partition-Execute-Merge Framework

Parallel query processing typically follows the partition-execute-merge framework, where
three distinct phases are used to split the work to multiple workers (cores or servers, de-
pending on the parallel setting):

1. Partitioning phase: The input data is usually split (partitioned) in NV non-overlapping
subsets .S; following the concept of horizontal partitioning, and each subset is as-
signed to a worker for processing.

2. Execute phase: Corresponds to the actual processing of each individual partition
and entails a query processing algorithm that operates on the input data of the par-
tition and produces candidate results for inclusion in the final result set.

3. Merging phase: Depending on the type of query, the merging phase may discard
some candidate results from the final result by comparing with candidates from

Algorithm 1 Partition-execute-merge
Require: P is the input relation, N is number of partitions
Ensure: SKYp is the skyline of P

S1,..., SN < PFartition(P, N)

L1, ceey Ly + SSkyline(Si, [P SN)

SKYp < SkylineMerge(L1,...,LN)

other partitions. For example, in the case of a range query, all candidate results
from each partition will be part of the final result set, thus the work of the merging
phase is minimal. In contrast, in the case of the demanding skyline query, points
from different partitions may dominate other points, which must be removed from
the skyline set. Thus, the merging phase of skyline queries entails significant pro-
cessing cost.

In the following, we describe in more detail each phase of the framework in the context
of skyline query processing using APSkyline, and elaborate on the individual objectives
of each phase. Algorithm 1 describes our overall approach.

3.1 Partitioning Phase

The objective of the partitioning phase is to divide input data in such a way that (a)
individual partitions produce local skyline sets of low cardinality, and (b) the number
of points in each partition is balanced. The former goal makes intra-partition query
execution particularly efficient and also reduces the cost of the merging phase, while
the latter avoids having an individual worker that is assigned a larger portion of work
that may lead to delayed execution and initiation of the merging phase. We will describe
this in more detail in Sect. 4.

3.2 Execute Phase

In this phase, an efficient skyline processing algorithm is employed to produce the local
skyline set of a given data partition. In principle, index-based skyline algorithms are not
applicable due to the additional overhead that would be required by index construction.
As a consequence, candidate algorithms are selected from the non-indexed family of
skyline algorithms. Obviously, the objective of this phase is to rapidly produce the local
skyline set of the partition.

In our approach, each thread executes an instance of SSkyline [14] using its private
partition as input to compute the local skyline independently. In short, SSkyline takes
an input a dataset P containing | P| tuples as input, and returns the skyline set of P.
The skyline is computed using two nested loops and three indices: head, tail, and .
Intuitively the inner loop searches for the next skyline tuple, while the outer loop repeats
the inner loop until all skyline tuples have been found. Fig. 1 shows an example run of
SSkyline. In the first iteration head points to the first tuple, ¢ to the second, and tasl to
the last. Confirmed skyline tuples are placed left of head and colored black, confirmed
non-skyline tuples are placed to the right of tail and marked with gray, while tuples

head i : tail

i

head head - tadl

tail

Fig. 1. SSkyline example. Black boxes are part of the skyline, white boxes are undetermined, and
gray boxes are dominated (i.e., gray boxes are not part of the skyline).

in-between are still under consideration and will at some point be pointed to by head if
they are part of the skyline. Each iteration of the outer loop confirms one skyline tuple
by moving head to the right, and the inner loop may discard many non-skyline tuples
by moving tail to the left. When head = tail, the algorithm terminates and returns all
skyline tuples. At this point, head and tail point to the last skyline tuple, while ¢ has
been discarded.

3.3 Merging Phase

In the merging phase, the local skyline sets produced by the workers need to be com-
bined in order to identify dominated points and exclude them from the final result
set. In our approach, we perform parallel skyline merging using the pmerge algorithm
from [11]. In short, the local skyline sets are merged to the final result one by one,
starting with merging two of the local skyline set into a temporary skyline set, and then
merging the other local skyline sets into this set one by one. The merging of the tempo-
rary skyline set and local skyline sets is performed in parallel, allowing threads to fetch
tuples from the local skyline set in a round robin fashion until all local skyline sets have
been merged.

4 Partitioning in APSkyline

In contrast to previous approaches that perform random partitioning naively, we intend
to exploit geometric properties of the data during the partitioning. The objective of our
approach is twofold: (1) reducing the time of the execute phase by assigning equally the
points to threads and in a way that is beneficial for skyline processing, and (2) minimize
the cost of the merge phase by reducing as much as possible the number of local skyline
points. Improving the efficiency of the execute and merge phase, may entail additional
processing cost for the partitioning phase, which will not dominate the overall process-
ing cost for large and demanding datasets. In this section, we describe in more detail
how to perform efficient angle-based partitioning for multicore skyline computation,
using the partitioning techniques presented in [15] as a starting point.

10— T 10— 10 10—
< 'ET’ < : de 4
gl "a i 8| "d/, 3 S 8| 4
g -l g £ 74 g £ b Sl S
2 € 2 K 2 . a0 ! €
Al a ! Al A Al A al .
-—'k 1) : < .h < o
b ~ b
0 Price 10 0 Price 10 0 Price 10 0 Price 10
(a) Grid partition- (b) Angle par- (c) Angle parti- (d) Angle parti-
ing titioning, equi- tioning, skewed tioning, dynamic
volume equi-volume

Fig. 2. Partitioning example using 4 partitions. To the left, (a) and (b) illustrate benefits of angle-
based compared to grid-based partitioning (skyline points c, a, k, h, b). To the right, (c) and (d)
illustrate benefits of dynamic angle-based partitioning (skyline points a and k).

In the following, in Sect. 4.1, we first describe basic partitioning schemes for sky-
line processing, and then present our two variants of angle-based partitioning (sample-
dynamic and geometric-random) that are appropriate for multicore systems and we em-
ploy in this work. Then, in Sect. 4.2, we show how to utilize parallel compute power
not only in phases that compute the actual skyline, but also in the partitioning phase.

4.1 Partitioning Methods

Basic techniques. Several partitioning techniques exist for parallel skyline computa-
tion. The most straightforward is simply dividing the dataset in [V partitions at random
without considering geometric properties of the data. In fact, this is the approach fol-
lowed by the current state-of-the-art in multicore skyline processing [9, 11, 12]. How-
ever, this often results to large-sized local skyline sets with many points that do not
belong to the final skyline set and leads to high processing cost for the execute and
merge phase. In more details, if the points are randomly distributed, each partition fol-
lows the initial data distribution of the dataset, which means that only for some data
distribution the skyline algorithm will perform efficiently [15].

A straightforward approach taking geometric properties into account is grid-based
partitioning, however as illustrated in Fig. 2(a) this will result in data partitions that
do not contribute to the overall skyline set, resulting in a lot of redundant processing.
A more efficient approach is angle-based partitioning, first proposed by Vlachou et
al. [15]. As can be seen in Fig. 2(b), (equi-volume) angle-based partitioning produces
partitions whose local skyline sets are more likely to be part of the overall skyline set.
For details on calculation of partition boundaries (equi-volume) based on the volume of
the partitions we refer to [15].

Sample-dynamic partitioning. Even though equi-volume angle-based partitioning is
applicable for multicore systems, as the boundaries are defined by equations and not by

the data itself, the quality of the partitioning highly depends on the data distribution.
One possible problem of the equi-volume angle-based partitioning approach is the un-
even sizes of produced partitions in case of skewed datasets, as illustrated in Fig. 2(c)
where some partitions are empty. For this purpose, dynamic angle-based partitioning
can be employed. Nevertheless, dynamic angle-based partitioning in multicore systems
entails high processing cost and cannot be applied in a straightforward manner.

In dynamic partitioning, a maximum number of points for each partition is defined,
as illustrated in Fig. 2(d). Initially, during partitioning, there is only one partition. Dur-
ing partitioning, when the maximum limit is reached for a partition, the actual partition
is split into two. However, in a dynamic partitioning scheme, each partition split induces
an expensive redistribution cost. More specifically, each time a partition is split =2z
(where 1,4, is the maximum partition size) or more tuples need to be moved from one
memory location to another. This is reasonable in a parallel or distributed environment
where I0-operations (including communication between nodes) are the dominating fac-
tor. However, in a shared-memory system, such a method requires a significant amount
of the overall runtime. Therefore, we adopt a sample-based technique where a small
sample of the data is used in order to determine the partitioning boundaries, before
actual partitioning is performed.

In the sample-dynamic partitioning scheme, a configurable percentage s of the
dataset is used to pre-compute the partitioning boundaries. To increase the likelihood
of picking representative sample points, we propose to choose samples uniformly at
random.

Geometric-random partitioning. In some cases, neither equi-volume nor sample-
dynamic partitioning are able to achieve a fair workload, thus APSkyline will not be
able to use the available parallel computing resources optimally. For example, input
with equal rows may cause a skewed workload, and cannot be fairly distributed by
geometric partitioning alone. To handle such cases, we propose a hybrid partitioning
technique that utilizes geometric properties in combination with random partitioning in
order to prioritize a fair workload.

The idea is to modify geometric partitioning schemes like equi-volume and sample-
dynamic by having a maximum size of a partition, for example |P|/N. During parti-
tioning, points mapped to a partition that is already full are allocated to another, ran-
domly selected, partition. Note that in the case of geometric-random combined with
sample-dynamic partitioning, the geometric-random modification is only applied dur-
ing the final partitioning, not during processing of the sample for calculation of partition
bounds.

4.2 Parallelism in the Partitioning Phase

In contrast to algorithms directed at parallel and distributed systems, a shared-memory
algorithm needs to have a highly optimized partitioning phase. Thus, in the following
we present techniques for parallelizing our partitioning methods. Algorithm 2 shows
the parallel partitioning algorithm for the case of equi-volume partitioning. We use
N threads in order to partition a relation into N partitions. Obviously, we need some

Algorithm 2 ParallelEquiVolumePartitioning

Require: P is the input relation, N is number of partitions/threads
Ensure: S;,0 <14 < N contains the final partitioning
partitionBounds < determinePartitionBounds()
parallel fort =0to N — 1 do > Distribute work over N threads
for k = t% to (t + 1)% do
p + Pk]
i < MapPointToPartition(p, partitionBounds)
lock(S;)
Si +— S; U {p}
unlock(S;)

Algorithm 3 ParalleIDynamicPartitioning
Require: P is the input relation, N is number of partitions/threads s is sample fraction
Ensure: S;,0 < i < N contains the final partitioning

nextPartID < 0

partitionBounds < determinelnititialBounds()

for t = 0 to s|P| do > Sample size
p < Plrand(0,|P| — 1|)] > Random point
i < MapPointToPartition(p, partitionBounds)
S; — S; U {p}

if S; is full then
nextPartID < nextPartID + 1
split S; into S;, Snext
partitionBounds < determineNewBounds()

parallel fort =0to N — 1 do > Distribute work over IV threads
for k = t% to (¢t + 1)% do
p PIk]
i1 < MapPointToPartition(p, partitionBounds)
lock(S;)
Si +— S; U {p}
unlock(S;)

way of determining which points each thread should distribute. This can be done in
a round robin fashion, or using a linear partitioning strategy to define read bound-
aries without physically partitioning points. We use the linear strategy. To split data
into 2 partitions, thread 1 processes tuples [1,...,|P|/2] and thread 2 processes tuples
[|P|/2+1,...|P]]. This ensures no need for locking during read. All threads place tu-
ples into multiple shared collections (partitions) so here locks are needed. However, we
emphasize that in contrast to locks used for concurrency control in, e.g., database sys-
tems, this is low-overhead locks, and typically implemented as spinlocks. In practice,
some collisions will occur and threads will sometimes have to wait for locks. However,
because the time needed to write result tuples is much smaller than the time required
to perform the calculations for mapping a point to partition, lock waiting time is not
significant.

In contrast to the equi-volume scheme where the boundaries are pre-determined,
for the sample-dynamic partitioning scheme the boundaries must be computed first. In
this case we suggest a two-step process, where partitioning boundaries are calculated
sequentially using a certain percentage of the input relation (i.e., a sample) before par-
allel partitioning is performed, as described in Algorithm 3. In the first step, the bounds
are computed and then in the second step the data points are partitioned. Finally, it is
straightforward to modify Algorithm 3 for supporting the geometric-random partition-
ing scheme.

5 Experimental Evaluation

In this section, we present the results of the experimental evaluation. All our exper-
iments are carried out on a machine with two Intel Xeon X5650 2.67GHz six-core
processors, thus providing a total of 12 physical cores at each node. Each processor can
run up to 12 hardware threads using hyper-threading technology. Each core is equipped
with private L1 and L2 caches, and all cores on one die share the bigger L3 cache. All
algorithms are implemented in Java.

5.1 Experimental Setup

Datasets. For the dataset P we employ both real and synthetic data collections. The
synthetic sets are: (1) uniform (UN), (2) correlated (CO), and (3) anti-correlated (AC).
For UN dataset, the values for all d dimensions are generated independently using a
uniform distribution. The CO and AC datasets are generated as described in [4]. The
real datasets are: (1) NBA which is a 5-dimensional dataset containing approximately
17K entries, where each entry records performance statistics for a NBA player, and
(2) ZILLOWSD, a 5-dimensional dataset containing more than 2M entries about real
estate in the United States based on crawled data (from www.zillow.com), and where
each entry includes number of bedrooms and bathrooms, living area, lot area, and year
built.

Algorithms. We compare our new algorithms against the current state-of-the-art
multicore algorithms PSkyline [9,11] and Paralle]lBNL [12] (implementations are based
on source code made available by Selke et al. [12]). We implemented three variants of
our algorithm (APSkyline) that differ based on the variant of angle-based partitioning
employed:

— APSEquiVolume: Equi-volume angle-based partitioning.

— APSSampleDynamic: Sample-dynamic partitioning with sample size s = 1%.

— APSSampleDynamic+: Sample-dynamic partitioning in combination with the geo-
metric-random modification, with limit for each partition %, sample size s = 1%.
Measurements. Our main metric is the runtime of each algorithm. Each test is

executed 10 times and median values are used when reporting results. We perform one
dry-run before taking any measurements in every experiment. Additionally, we measure
variance, minimum, and maximum values in order to ensure that tests are sufficiently

(a) Runtime (b) Speedup

Fig. 3. Comparison of algorithms running with a different number of threads.

accurate. For synthetic datasets, new input is generated for each of the 10 executions,
in order to factor out the effect of randomization.

Parameters. We vary the following parameters: dimensionality (d=2-5), cardinal-
ity (| P|=50K-15M), number of threads (partitions) (N=1-1024), and data distribution
(AC,CO,UN,NBA,ZILLOWS5D). Default parameters are size of SM 5-dimensional tu-
ples of AC distribution. As also observed in [15], the anti-correlated dataset is most
interesting, since the skyline operator aims to balance contradicting criteria [10, 15].
Moreover, anti-correlated distributions are closer to many real-life datasets according
to [13]. Combined with the fact that multicore processing is typically employed for ex-
pensive setups of query processing, AC distribution is the setup that makes sense in the
multicore context.

5.2 Experimental Results

Effect of thread count. Fig. 3(a) shows the results in the case of an AC dataset as
we increase the number of threads from 1 to 1024. We expect to reach peak perfor-
mance at 24 threads, which is the maximum number of hardware threads available (12
physical cores + hyper-threading). As number of threads increase beyond 24, we ex-
pect that performance will gradually decrease due to increased synchronization costs
without additional parallel compute power. A main observation is that the APSkyline
variants consistently outperform the competitor algorithms, which is a strong witness
for the merits of our approach. For a low thread count ParalleIBNL is inefficient com-
pared to all the other D&C based algorithms. This is most likely due to the fact that
D&C based algorithms use SSkyline for local skyline computation, which uses an array
for storing results. The linked list used in Paralle]BNL is not as memory-efficient as
an array structure for sequential computations. Unsurprisingly, there is no significant
performance difference between variations of APSkyline (Fig. 3(a)).

In Fig. 3(b), we measure the speedup of each algorithm. The speedup for each algo-
rithm is relative to the same algorithm run with one thread, not to a common reference
point, in order for the results to be easily compared to related work [11, 12]. We ob-
serve that APSkyline achieves super-linear speedup for up to 12 threads. Obviously,

(a) PSkyline (b) APSEquiVolume (a) Dimensionality

Fig. 4. Segmented runtime for PSkyline and APSEquiVol- ~ Fig.5. Comparison with
ume. varying dimensionality.

super-linear speedup cannot be explained by parallelism alone, we therefore attribute
positive results to a combination of an increased parallel compute power, an increase in
high-level cache (each core contributes with its private cache), and smaller input car-
dinalities for SSkyline. Paralle]lBNL has a good speedup as thread count is increased.
This is in line with results presented in [12], and shows that a basic algorithm can be
quite effective when parallel compute power and low-cost synchronization constructs
are available. PSkyline shows a modest speedup compared to the other algorithms.

Fig. 4 shows the segmented runtime for PSkyline and APSEquiVolume (the two
best-performing algorithms). Local skyline computation shows diminishing performance
gains as the available parallel compute power increases. Partitioning refers to the time
needed for the partitioning phase (Sec. 3.1), local skyline for the time of the execute
phase (Sec. 3.2) and global skyline to the time of the merging phase (Sec. 3.3). Local
skyline processing gets more efficient as the number of threads increase for both ap-
proaches, but in the case of APSEquiVolume the processing cost reduces more rapidly.
This is due to the employed geometric partitioning, that alters the data distribution of
the points assigned to each thread in a way that the required domination tests are fewer.
In contrast, a random partitioning technique is expected to assign points that follow the
anti-correlated data distribution to each thread, which leads to a more demanding local
processing. Due to the geometric partitioning, APSEquiVolume results also to fewer lo-
cal skyline tuples, which in turn leads to a smaller processing cost of the merging phase
compared to PSkyline.

In summary, APSkyline clearly outperforms all other algorithms. When all cores
are in use (24 threads), APSkyline is 4.2 times faster than PSkyline and 5.2 times faster
than ParallelBNL. Fig. 4 also shows that the partitioning technique used in APSkyline
is more expensive than the one used in PSkyline. Nevertheless, the time spent for parti-
tioning is negligible compared to benefits attained in the subsequent phases. APSkyline
is able to utilize parallel compute power in every phase as shown by Fig. 4.

Effect of data dimensionality. Fig. 5 shows the obtained results when increasing the
number of dimensions from 2 to 5. For a dimensionality of 3 or less, Paralle]lBNL is

Ht

7 7cardinality 7~ cardinality

(a) Runtime (b) Runtime per skyline
tuple

Fig. 6. Comparison of algorithms running for varying data cardinality.

the most efficient algorithm, while APSSampleDynamic+ is the least efficient. For a
dimensionality of 4, APSEquiVolume and APSSampleDynamic outperform other algo-
rithms by a small margin. Finally, all variations of APSkyline significantly outperform
ParalleIBNL and PSkyline for 5-dimensional datasets. In contrast to earlier algorithms,
APSkyline scales well with dimensionality. It should be emphasized that size of the
skyline set increases rapidly with the dimensionality of the dataset, making skyline
processing for higher dimensional data more demanding. This experiment verifies that
for hard setups, as in the case of high dimensionality, our algorithms outperform the
competitors and (more importantly) the benefit increases for higher values of dimen-
sionality.

Effect of data cardinality. In Fig. 6(a), we examine how the algorithms scale for in-
creased size of dataset. We observe that APSkyline achieves the best runtime for all
input sizes. In particular, we notice that APSEquiVolume is 15.8 times faster than Par-
alle]BNL and 5.9 times faster than PSkyline with 15M input tuples. Fig. 6(a) clearly
depicts that APSkyline variants are robust when increasing the data cardinality. More-
over, this experiment shows that even for small-sized AC datasets (which contain a
large percentage of skyline tuples), the setup is challenging thus both ParalleIBNL and
PSkyline demonstrate sub-optimal performance.

Fig. 6(b) shows the time used per skyline tuple by each algorithm. It is evident
that ParallelBNL and PSkyline do not handle high dataset cardinalities well. Time used
per skyline tuple should ideally be unchanged as cardinality increase. However, the
merging phase requires pairwise comparisons between local skyline tuples, which in
turn lead to a quadratic and not linear behavior of the skyline algorithms. As the number
of local skyline tuples increase with the dataset cardinality, it is expected that the time
per skyline tuple increases due to the pairwise comparisons. In this regard, APSkyline
is quite successful. Processing time per skyline tuple increases very slowly compared to
Paralle]BNL and PSkyline, and this is an excellent example of the ability of an angle-
based partitioning scheme to eliminate non-skyline tuples early.

Fig. 7. Segmented runtime for synthetic datasets (anti-correlated to the left, independent in mid-
dle, and correlated to the right).

Effect of data distribution. Fig. 7 shows the results for different synthetic data dis-
tributions and depicts the segmented runtime for each algorithm. First, we observe that
skyline processing over the AC dataset is much more demanding for any algorithm
(5000-30000 msec) than skyline processing over the UN or CO dataset (100-1300
msec). This verifies our claim that the AC dataset is a more typical use-case of mul-
ticore processing, which primarily targets the case of expensive query operators. AP-
Skyline is significantly faster than its competitors for the challenging AC dataset. The
most efficient variant (APSEquiVolume) is almost 5 times better than PSkyline and 6
times better than Paralle]BNL. Despite the fact that APSkyline is significantly faster for
hard setups (e.g., AC) where the number of skyline points is high, in the case of easy
setups (e.g., UN or CO) the cost of partitioning of APSkyline dominates its runtime
thus rendering the competitor algorithms more efficient.

When comparing the variants of APSkyline, we observe that equi-volume partition-
ing is most efficient. Due to the synthetic data generation, the dataset is fairly distributed
by the equi-volume scheme for the AC and UN datasets. In addition, the partitioning is
clearly more efficient for APSEquiVolume, since no sampling is used, and the partition
boundaries are simply determined by equations independently of the underlying data.
Thus, the small gain in the performance of computing the local and (global) overall
skyline sets is dominated by the additional cost of the partitioning, rendering APSE-
quiVolume the best variant for synthetic datasets.

Real datasets. Fig. 8 shows the obtained results for the real-life datasets. First, Fig. 8(a)
depicts the statistics for the NBA dataset. Recall that this dataset is a small dataset
containing approximately only 17K tuples. Combined with the fact that NBA is fairly
correlated [5] means that NBA is not a very challenging case for skyline computation.
Thus, Fig. 8(a) clearly depicts that the overhead of partitioning is too high compared
to the total processing cost. PSkyline achieves the best performance for NBA, even
though D&C based algorithms show similar performance for the local skyline compu-
tation and the merging phase. However, APSkyline spends much time partitioning and

Fig. 8. Segmented runtime for real-life datasets (NBA to the left, ZILLOWSD to the right).

is therefore less efficient than PSkyline. Moreover, the equi-volume partitioning scheme
is outperformed by all other partitioning schemes. This is attributed to the fact that the
dynamic strategy is better tailored for real-life datasets which are not symmetric as the
synthetic datasets. In case of symmetries, an equi-volume partitioning can distribute the
work fairly. In contrast, in a real-life dataset, a (sample-)dynamic partitioning scheme
is more robust than a fixed scheme that does not adapt to its input.

For the ZILLOWSD dataset, the best-performing algorithm is APSSampleDynamic+,
thus demonstrating the usefulness of the geometric-random modification. ParalleIBNL
is outperformed in an order of magnitude by all other algorithms. In fact, APSSample-
Dynamic+ is 36 times faster than Paralle]IBNL in this case. Additionally, we observe
that PSkyline and APSSampleDynamic+ spend significantly less time in the local sky-
line computation phase than APSEquiVolume and APSSampleDynamic. The reason for
APSEquiVolume and APSSampleDynamic spending so much time in the local skyline
computation phase when processing the ZILLOWSD dataset is lack of a fair work dis-
tribution. We observed that most points were placed in only a few partitions, causing
the majority of threads being idle. APSSampleDynamic and PSkyline do not have this
problem, as they always divide data fairly. Nevertheless, APSSampleDynamic+ is able
to outperform PSkyline with a factor of 1.4 using an angle-based partition technique in
combination with random partitioning.

Discussion. In summary, our novel algorithm APSkyline based on angle-partitioning
outperforms existing approaches for the most time-consuming datasets, while Paral-
leIBNL and PSkyline excelled for simpler cases. By taking into account that the anti-
correlated dataset is most interesting for skyline queries, since the skyline operator aims
to balance contradicting criteria combined with the fact that multicore processing is typ-
ically employed for expensive setups of query processing, it highlights the value of our
approach. Moreover, PSkyline performed slightly better than APSkyline variants for a
small real-life dataset and was quite efficient for a large real-life dataset. Nevertheless
APSSampleDynamic+ was able to reduce runtime by approximately 30% compared to

PSkyline for the large real-life dataset. Thus, the APSkyline variants outperformed the
existing approaches for all demanding datasets.

6

Conclusions

In this paper, we have presented APSkyline, a new approach for multicore skyline com-
puting. The use of angle-based partitioning increases the degree of pruning that can
be achieved in the execute phase, thus significantly reducing the number of candidate
points that need to be checked in the final merging phase. As shown by our experimen-
tal evaluation, APSkyline is extremely efficient for hard cases of skyline processing,
where we significantly outperform the previous state-of-the-art approaches.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

Afrati, EN., Koutris, P., Suciu, D., Ullman, J.D.: Parallel skyline queries. In: Proc. of ICDT
(2012)

Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main memory hash join algorithms
for multi-core CPUs. In: Proc. of SIGMOD (2011)

. Bggh, K.S., Assent, 1., Magnani, M.: Efficient GPU-based skyline computation. In: Proc. of

DaMoN (2013)

. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of ICDE (2001)
. Chan, C.Y,, Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z.: On high dimensional sky-

lines. In: Proc. of EDBT (2006)

. Chomicki, J., , Ciaccia, P., Meneghetti, N.: Skyline queries, front and back. SIGMOD Record

42(3), 6-18 (2013)

. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer, William N., 1., Shavit, N.: A lazy

concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.)
Principles of Distributed Systems, LNCS, vol. 3974, pp. 3-16. Springer Berlin Heidelberg
(2006)

. Hose, K., Vlachou, A.: A survey of skyline processing in highly distributed environments.

VLDB J. 21(3), 359-384 (2012)

. Im, H., Park, J., Park, S.: Parallel skyline computation on multicore architectures. Inf. Syst.

36(4), 808-823 (2011)

Morse, M., Patel, J.M., Jagadish, H.: Efficient skyline computation over low-cardinality do-
mains. In: Proc. of VLDB (2007)

Park, S., Kim, T., Park, J., Kim, J., Im, H.: Parallel skyline computation on multicore archi-
tectures. In: Proc. of ICDE (2009)

Selke, J., Lofi, C., Balke, W.T.: Highly scalable multiprocessing algorithms for preference-
based database retrieval. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) Database
Systems for Advanced Applications, LNCS, vol. 5982, pp. 246-260. Springer Berlin Heidel-
berg (2010)

Shang, H., Kitsuregawa, M.: Skyline operator on anti-correlated distributions. PVLDB 6(9),
649-660 (2013)

Torlone, R., Ciaccia, P.: Finding the best when it’s a matter of preference. In: Proc. of SEBD
(2002)

Vlachou, A., Doulkeridis, C., Kotidis, Y.: Angle-based space partitioning for efficient parallel
skyline computation. In: Proc. of SIGMOD (2008)

Woods, L., Alonso, G., Teubner, J.: Parallel computation of skyline queries. In: Proc. of
FCCM (2013)

