
On Decisive Skyline Queries

Akrivi Vlachou1, Christos Doulkeridis2, João B. Rocha-Junior3, and Kjetil
Nørv̊ag4

1 University of the Aegean, Greece
2 University of Piraeus, Greece

3 Universidade Estadual de Feira de Santana, Brazil
4 Norwegian University of Science and Technology, Trondheim, Norway

avlachou@aegean.gr, cdoulk@unipi.gr, joao@uefs.br, noervaag@ntnu.no

Abstract. Skyline queries aim to identify a set of interesting objects
that balance different user-specified criteria, i.e., that have values as
good as possible in all specified criteria. However, objects whose val-
ues are good in only a subset of the given criteria are also included in
the skyline set, even though they may take arbitrarily bad values in the
remaining criteria. To alleviate this shortcoming, we study the decisive
subspaces that express the semantics of skyline points and determine
skyline membership. We propose a novel query, called decisive skyline
query, which retrieves a set of points that balance all specified criteria.
Our experimental study shows that the newly proposed query is more
informative for the user.

Keywords: Skyline query · Decisive subspaces · Decisive skyline query.

1 Introduction

Skyline queries [2] constitute a powerful tool for data analysis and multi-objective
optimization, as they enable balancing of different (and often conflicting) criteria
specified by the user. Such queries return a set of data points (skyline points)
that are not dominated by any other point in all dimensions. A point p dominates
another point q, if p is better than or equal to q in all dimensions and strictly
better than q in at least one dimension. Nevertheless, the skyline set contains
also points that fail to balance among all given criteria, as we demonstrate in
the following.

Example 1. (Motivating example) Assume that a tourist is interested in booking
a hotel with a low price, a good ranking based on the customers’ ratings, and
nearby the beach. To this end, the tourist performs skyline analysis in an online
hotel database in order to discover hotels that fulfill all criteria. For instance, a
hotel called City Center Hotel may be included in the result due to its rank (best
value), despite the fact that it may have the worst value in distance from the
beach. Similarly, a hotel called Sunset Hotel, may have the worst rank among
the skyline points and may be included in the result set because of its combined
values in distance and price. However, had the user been really interested in



2 A. Vlachou et al.

such a hotel, she would have specified as criteria only a subset of the dimensions,
namely distance and price. In this paper, we argue in favor of a new query type,
namely one that excludes from its results set hotels that may have arbitrarily
bad values. We call this new query type decisive skyline query.

As shown in the example, the skyline query always returns the data point with
the best value in one dimension, regardless of the values in the other dimensions,
as this point cannot be dominated by any other point. Put differently, the skyline
definition imposes “OR semantics” between the different criteria. In the hotel
database, the skyline set contains the hotels that are the best trade-offs among
(a) rank, price and distance, OR (b) rank, price, OR (c) price, distance, OR
have (d) the minimum price, OR (e) the minimum rank, OR (f) the minimum
distance. But this is not the objective of the user’s search, since the user is
looking for the best trade-offs among rank, price and distance.

An indirect consequence of the aforementioned “OR semantics” is that the
skyline cardinality [5, 6, 16] increases rapidly with the dimensionality of the data
space. The high cardinality of the skyline set originates from the fact that as
the number of criteria increases, the combinations of different criteria increase
exponentially. In turn, the probability that a point is dominated in all differ-
ent combinations decreases, thus leading to more skyline points. Intuitively, it
is more difficult to satisfy more criteria, therefore it would be expected that
with increasing the number of criteria, the result size should decrease (or stay
constant). Should we add too many criteria, none of the points will be able to
satisfy all of them, thus resulting into an empty result set. In contrast to this
intuition, the cardinality of skyline set increases with increasing dimensionality.

Most existing approaches focus on the effect of the problem and try to restrict
the skyline cardinality. Towards this goal, different categories of approaches have
been recently proposed, including (1) selecting k representative skyline points [8,
12, 13], (2) restricting the skyline cardinality by changing the dominance rela-
tionship [3], and (3) ranking the skyline points based on different metrics [4, 9,
14] or user-defined functions [1, 7].

In this paper, we take a radically different approach. We address what we
consider to be the cause of the problem, and not the effect. To this end, we focus
on the semantics of skyline queries (first studied by Pei et al. [11]). Informally,
the decisive subspaces of a skyline point are responsible for the point being
part of the skyline set, i.e., its values in these dimensions qualify it as skyline
point. Capitalizing on this concept, we propose a novel query type, called decisive
skyline query. We investigate two variants of the decisive skyline query, the strict
variant, which returns only the subset of skyline points that have the full space as
decisive subspace, and the relaxed variant, which returns also points with decisive
subspaces that cover the entire data space. Interestingly, as a by-product, it turns
out that the decisive skyline query does not suffer from increased output size for
increased dimensionality. We emphasize that this is the first paper that focuses
on the significance of retrieving points based on the properties of their decisive
subspaces, since in [11] the aim was to find the subspace skyline points of all
subspaces.



On Decisive Skyline Queries 3

2 Problem Formulation

Given a data set P on a data space D defined by a set of m dimensions
{d1, . . . , dm}, a data object p ∈ P is represented as an m-dimensional point
p={p[1], . . . , p[m]} where p[i] is the value on dimension di. A point p ∈ P dom-
inates another point q ∈ P , denoted as p ≺ q, if (1) on every dimension di,
p[i] ≤ q[i]; and (2) on at least one dimension dj , p[j] < q[j]. The skyline S(P ) is
a set of points which are not dominated by any other point in P . Without loss of
generality, we assume that skylines are computed with respect to min conditions
on all dimensions and that all values are non-negative.

The notion of skyline can be extended to subspaces. Each non-empty subset
U ofD (U ⊆ D) is referred to as a subspace ofD. The skyline of a subspace U ⊆ D
is a set SU (P ) ⊆ P which are not dominated by any other point on subspace
U . As shown in [11, 15], the skyline set of the full space does not contain all the
subspace skyline points of the different subspaces. A skyline point q in SU (P ) is
either a skyline point in SV (P ) (assuming U ⊂ V ) or there exists another data
point p, such that p[i] = q[i] (∀di ∈ U), that dominates q on the dimension set
V − U .

2.1 Intuition of Decisive Subspaces

Let us first assume that the distinct value condition holds, which means that no
two points share the same value in a given dimension (i.e., for any two points p
and q of P it holds that ∀di ∈ D : p[i] ̸= q[i]). In this case, any subspace skyline
point also belongs to the skyline set of the full space, which in turn simplifies
the definition of the decisive skyline queries. Under the distinct value condition,
the decisive subspace [11] of a skyline point p is defined as follows.

Definition 1. (Decisive subspace) For a skyline point p ∈ S(P ), a subspace U
of D is called decisive, if (1) p is a subspace skyline in U (p ∈ SU (P )), and
(2) there exists no subspace V ⊂ U such that p is a subspace skyline point in V
(∄V ⊂ U such that p ∈ SV (P )).

A skyline point p can have multiple decisive subspaces. We use DecSub(p) to
denote the set of decisive subspaces for a skyline point p. If a point p has a
decisive subspace U ⊂ D, then this fact alone promotes p to become a full space
skyline, irrespective of p’s values in dimension set D−U . Obviously, such skyline
points may not balance the remaining dimensions.

To address the problems of the semantics of the traditional skyline operator,
we define the strict decisive skyline set DS(P ) as the set of skyline points that
have the full space D as their decisive subspace, i.e., DS(P ) = {p|p ∈ S(P )
and DecSub(p) = D}. Based on the definition of decisive subspaces for the case
of distinct values, a skyline point p belongs to the decisive skyline set, if there
does not exist any other subspace U ⊂ D for which p belongs to the subspace
skyline set (∄U ⊂ D such that p ∈ SU (P )). We argue that decisive skyline points
are guaranteed to have good values in all given criteria, in contrast to subspace
skyline points.



4 A. Vlachou et al.

The above definition imposes the semantics of decisive skyline sets in a strict
(or rigid) way. A more relaxed variant, denoted D̂S(P ), is also defined as follows:

D̂S(P ) = {p|p ∈ S(P ) and
⋃

(∀Ui∈DecSub(p)) Ui = D}. This relaxed decisive
skyline set also includes points that belong to subspace skyline sets, as long as
their decisive subspaces cover the full space. Thus, the relaxed decisive skyline
points also balance all criteria, but possibly in different subspaces that cover the
full space. Also, notice that by definition DS(P ) ⊆ D̂S(P ).

A B C

p
1

4 5 2

p
2

3 1 6

p
3

5 4 4

p
7

1 7 7

p
4

7 2 3

p
6

2 3 8

p
5

6 6 1

(a) Data set

DecSub()

p
1

{AC,AB}

p
2

{B,AC}

p
3

{ABC}

p
7

{A}

p
4

{AC}

p
6

{AB}

p
5

{C}

(b) DecSub
Fig. 1. Example of decisive subspaces.

Example 2. Consider a data space D = ABC and a data set P defined in D
(Figure 1(a)). All points are skyline points and Figure 1(b) depicts their decisive
subspaces. For p7, subspace A is the decisive subspace, therefore the value of A
is sufficient to qualify p7 as a skyline point in the full space independently of its
values in the other dimensions. Similar for p2 and p5 the decisive subspaces are
B and C respectively. On the other hand, AC is also a decisive subspace for p2,
because p2 appears in the subspace skyline of AC, and AC is not a super-set of
B. Only point p3 has the full space ABC as decisive subspace, and this is the
only point in this example that belongs to the decisive skyline set DS(P ) = {p3}.
Points p1 and p2 may also be considered as good options, even though they do
not belong to DS(P ). For example, p2 has the best value in dimension B, but
also balances nicely dimensions AC, since it is in the subspace skyline in AC.
Points p1 and p2, together with p3, belong to the relaxed decisive skyline set
D̂S(P ) = {p1, p2, p3}.

2.2 Formal Definition of Decisive Subspaces

In the following, we withdraw the restriction on points taking distinct values. In
the general case, the main difference is that there may exist subspace skylines
that do not belong to the full space skyline points. Recall that a subspace skyline
point q ∈ SU (P ) is either a skyline point in the full space or there exists another
data point p, such that p[i] = q[i] (∀di ∈ U), that dominates q on the dimension
set D − U . If such a point p exists, then the remaining D − U dimensions are
important to determine whether q qualifies as a skyline point.



On Decisive Skyline Queries 5

Definition 2. (Maximal set of non-distinct points) Given a set of points G and
set of dimensions U , we define as maximal set of non-distinct points the set:
O(G,U) = {pi|pi ∈ P, ∀dk ∈ U and ∀pj ∈ G : pi[k] = pj [k]}.

Based on the above definition, O(G,U) is the maximal set of points of P
with identical values with the points of G in U , i.e., there exists no other point
q ∈ P with this property. The following definition is equivalent to the definition
of [11].

Definition 3. (Maximal skyline group) Given a set of points G and set of di-
mensions U , the pair {G,U} is called maximal skyline group and is denoted as
SG(G,U), if it holds that (1) ∀pi ∈ G it holds that pi ∈ SU (P ) (2) ∀pi, pj ∈ G
and ∀dk ∈ U pi[k] = pj [k] (3) ∄dk ∈ D − U such that ∀pi, pj ∈ G : pi[k] = pj [k]
(4) ∄pj ∈ P −G such that ∃pi ∈ G and ∀dk ∈ U : pi[k] = pj [k].

Intuitively, SG(G,U) is the maximal set of points with same values in U ,
these points are subspace skylines in U , and U is the maximal set of dimensions
for which this set of points coincide.

In the following, we define the concept of decisive subspaces for a maximal
skyline group.

Definition 4. (Decisive subspaces of maximal skyline group) Given a maximal
skyline group SG(G,U), a subspace V ⊆ U is called decisive for SG(G,U) if
(1) ∀pi ∈ G it holds that pi ∈ SV (P ) (2) O(G,V ) = G (3) ∄V ′ ⊂ V such that
conditions 1) and 2) hold for V ′.

2.3 Decisive Skyline Points

We denote the decisive subspaces of the maximal skyline group SG(G,D) as
DecSub(G). A decisive subspace V of SG(G,U) means that all points in G share
the same values in U and are in the subspace skyline set for every subspace V ′

such that V ⊆ V ′ ⊆ U . We cannot conclude if all points of G belong to the
skyline set of D, since depending on the remaining dimensions some of them
may be dominated. Only if they are incomparable in the remaining dimensions,
then all of them will belong to the skyline set. Skyline points that belong to a
maximal skyline group SG(G,D) that has the full space as a decisive subspace
are included to the skyline set based on the values of all given dimensions,
regardless if these points form groups in some subspaces.

Definition 5. (Strict decisive skyline points) A skyline point p belongs to the
strict decisive skyline set DS(P ) ⊆ S(P ) of a data set P , if there exists a max-
imal skyline group SG(G,D) such that p ∈ G and the decisive subspace of G is
the full space (DecSub(G) ={D}).

Definition 6. (Relaxed decisive skyline points) A skyline point p belongs to the

relaxed decisive skyline set D̂S(P ) ⊆ S(P ) of a data set P , if there exists a
maximal skyline group SG(G,D) such that p ∈ G and the union of the decisive
subspaces of G is the full space (

⋃
∀Ui∈DecSub(G) Ui = {D}).



6 A. Vlachou et al.

A B C

p
1

4 8 5

p
2

1 6 10

p
3

10 2 1

p
4

1 10 1

(a) Data set

S
ABC

(P)={p
1
,p

2
,p

3
,p

4
}

S
AB

(P)={p
2
,p

3
}

S
BC

(P)={p
3
}

S
A
(P)={p

2
,p

4
}

SC(P)={p3,p4}

S
B
(P)={p

3
}

S
AC

(P)={p
4
}

(b) SU (P )

DecSub()

p
1

{ABC}

p
2

{AB}

p
3

{B}

p
4

{AC}

p
3
,p

4
{C}

p
2
,p

4
{A}

(c) DecSub

Fig. 2. Example of decisive skyline set.

Example 3. Consider the data set P depicted in Figure 2(a). The decisive sub-
spaces for each maximal skyline group SG(G,U) are shown in Figure 2(c). We
observe that point p1 is the only point that belongs to the decisive skyline set.
Point p3 has B as decisive subspace. In turn, this means that p3 belongs to the
skyline set independently of its values in the other dimensions. In this example,
p3 has the worst value of all points in dimension A. On the other hand, point
p2 has AB as decisive subspace and not A, even though it is subspace skyline in
A. This is because it coincides with p4 in A and they form a group {p2, p4} in
that subspace. Still, the value of p2 in dimension C does not influence whether
p2 belongs to the skyline set or not, thus this value can be arbitrarily high. Note
that in this small example, the strict and relaxed decisive skyline points are the
same.

3 Decisive Skyline Algorithm

A straightforward way to compute the decisive skyline set is to compute all
maximum skyline groups and their decisive subspaces. Then, the points that
belong to a group that have the full space as a decisive subspace can be easily
determined. Computing all maximum skyline groups requires evaluating all 2m−
1 subspace skyline queries and requires multiple disk accesses on the same data.
We refer to this approach as Naive.

As we will show in the following, we develop an algorithm for computing the
strict decisive skyline set with two salient features. First, our algorithm avoids
evaluating all subspace skyline queries, and instead evaluates only m+1 skyline
queries. Second, assuming that data is indexed by a multidimensional index,
we define an appropriate query that allows our algorithm to traverse the index
at most once, retrieve a set of candidate points, and refine the result set in
main-memory.

One important observation is that the strict decisive skyline points (p ∈
DS(P )) are exactly those skyline points (p ∈ S(P )) that for any (m − 1)-
dimensional subspace U they are either dominated (p /∈ SU (P )) or share the
same values in U with another data point p′ (p′ =U p and p′ ̸= p). We denote
p′ =U p, if it holds that ∀di ∈ U : p[i] = p′[i]. However, in the simplest case



On Decisive Skyline Queries 7

one skyline query and m subspace skyline queries need to be processed and the
index must be accessed multiple times. To avoid this processing overhead, we
identify a super-set of this set that can be efficiently retrieved by traversing the
index structure at most once.

Definition 7. (Enriched skyline) A point p ∈ P is said to partially dominate
another point q ∈ P on D, if (1) on every dimension di ∈ D, p[i] ≤ q[i]; and (2)
on at least two dimensions dj , dk ∈ D, p[j] < q[j] and p[k] < q[k]. The enriched
skyline of P is the set of points eS(P ) ⊆ P which are not partially dominated
by any other point.

The above definition assumes that the enriched skyline is defined on a data
space that contains at least two dimensions, i.e., |D| ≥ 2. An interesting observa-
tion is that the enriched skyline uses a slightly modified definition of dominance,
that can be supported by any skyline algorithm with marginal overhead, by
simply changing the function used for point dominance. We can prove that the
enriched skyline set is sufficient to compute the strict decisive skyline set DS(P ).

3.1 Algorithmic Description

We design an efficient algorithm, called Decisive Skyline Algorithm and denoted
as DSA, for computing the strict decisive skyline DS(P ) of a set of points P .
The innovative features of our algorithm include that (a) DSA operates only on
a subset of the data set P , namely the enriched skyline set, that is both easy
to compute and guaranteed to include all decisive skyline points, and (b) DSA
computes the decisive skyline by efficient processing of the underlying subspace
skyline queries without the need to access the disk repeatedly. DSA extends the
well-known branch-and-bound (BBS) algorithm for skyline queries [10].

The pseudocode describing DSA is shown in Algorithm 1. The algorithm
takes as input a data set P indexed by an R-tree R and produces the decisive
skyline set DS(P ) as output. First, BBS is executed on the R-tree that indexes
P , and it populates the main-memory R-tree M with the enriched skyline points
(and only those). In addition, the skyline set S(P ) is retrieved (line 2). Notice
that the two parameters of the BBS() call in the pseudocode correspond to
the index used by BBS and the subspace which is processed respectively. Then,
DSA executes m subspace skyline queries on the main-memory R-tree M it-
eratively (lines 3-20). For each (m − 1)-dimensional subspace U , DSA exploits
the progressive property of BBS and retrieves subspace skyline points sorted by
their distance to the origin in subspace U (line 7) and places them in a buffer B
(line 9). This guarantees that points with identical values in U will be processed
in a batch. Processing of a batch of points includes examining each point p in B
and checking whether it is a candidate point (lines 11-15). If so, then we test if
there exists another point p′ with identical values on the m−1 dimensions of U ,
but different on the last dimension. If such a point p′ does not exist, the point p
can safely be discarded from the candidate points (line 13). The same procedure
is repeated until all subspace skyline points are processed or the candidate list
(S(P )) gets empty (line 6).



8 A. Vlachou et al.

Algorithm 1 Decisive Skyline Algorithm (DSA)

input: The R-tree index R built on data set P
output: The decisive skyline set DS(P )

1: M← null, B ← ∅ //M:main-memory R-tree, B:buffer
2: (S(P ),M)← BBS(R, D)
3: for i = 1...m do
4: U ← D − di //U :current subspace of m− 1 dimensions
5: tmpDist← −1
6: while has next point BBS(M, U) and S(P ) ̸= ∅ do
7: q ← next point of BBS(M, U)
8: if DistU (q) = tmpDist then
9: B = B ∪ q
10: else
11: for all p ∈ B do
12: if (p ∈ S(P )) and (∄p′ ∈ B : ∀dk ∈ U p[k] = p′[k] and p[i] ̸= p′[i]) then
13: S(P )← S(P )− p
14: end if
15: end for
16: B = {q}
17: end if
18: tmpDist← DistU (q)
19: end while
20: end for
21: return S(P )

DSA exploits the main-memory R-tree internally used by BBS, in order to
efficiently compute the decisive skyline set. Thus, DSA takes practically for free
the index structure that is constructed by BBS during the skyline computation,
thereby making the subsequent execution of subspace skyline queries extremely
efficient. Moreover, as all decisive skyline points belong to the skyline set, we
modify further BBS, so that only skyline points are reported as result (S(P )),
even though the main-memory R-tree indexes the enriched skyline points.

In practice, DSA processes m subspace skyline queries (of dimensionality
m− 1) using the main-memory R-tree, for excluding non-decisive skyline points
from the already computed skyline set by BBS. Notice that the main-memory R-
tree indexes only the enriched skyline points, therefore the execution of subspace
skyline queries is more efficient compared to processing on the entire data set P
on disk.

4 Experimental Evaluation

In this section, we provide an experimental study of the decisive skyline query.
All algorithms are implemented in Java and the experiments run on a machine
with 2x Intel Xeon X5650 Processors (2.66GHz), 128GB.



On Decisive Skyline Queries 9

4.1 Qualitative Study

We perform skyline analysis on data extracted from DBLP, in order to discover
researchers with significant number of publications on a combination of confer-
ences. The data set contains data that reflect DBLP entries before 15/10/2008.
We use the authors as points represented in a multidimensional space defined
by the number of publications in selected conferences (dimensions). Major con-
ferences from different research areas are selected as criteria that need to be
balanced. We underline the strict decisive skyline points, while relaxed deci-
sive skyline points are shown using bold. Each researcher is represented as a 3d
point with values equal to the number of publications for each of the selected
conferences, and higher values are preferable.

Id Name SIGMOD PODS CIKM DecSub()

1 Divyakant Agrawal 14 7 11 {S,P,C}
2 Jeffrey F. Naughton 29 9 1 {S,P}
3 Amr El Abbadi 7 8 12 {P,C}
4 Jiawei Han 26 0 8 {S,C}
5 Dan Suciu 14 15 2 {P,C}
6 Serge Abiteboul 15 24 0 {S,P}
7 Michael J. Carey 36 3 0 {S}
8 Jeffrey D. Ullman 17 16 0 {S,P}
9 Divesh Srivastava 28 10 3 {S,C}, {P,C}
10 Yehoshua Sagiv 8 29 1 {P}
11 Christos Faloutsos 19 4 8 {S,P,C}
12 Raghu Ramakrishnan 28 14 1 {S,P}
13 Surajit Chaudhuri 33 8 0 {S,P}
14 Philip S. Yu 18 1 18 {C}
15 David J. DeWitt 33 1 1 {S,C}

Table 1. D̂S(P ): in bold, DS(P ): underlined.

Table 1 shows the skyline set for {SIGMOD,PODS,CIKM}.Divyakant Agrawal
and Christos Faloutsos are the strict decisive skyline points and they balance
nicely all criteria, compared to the remaining skyline points. By inspecting the
result set, we observe that several researchers do not truly balance all given cri-
teria (dimensions). Instead, they may balance subsets of the dimensions only,
but not all of them. For instance, Jeffrey D. Ullman nicely balances SIGMOD
and PODS, but not CIKM. The same holds for both Serge Abiteboul and Raghu
Ramakrishnan, who are also experts in data management. On the other hand,
Yehoshua Sagiv is included in the result due to the extremely high number of
PODS publications. The decisive skyline query manages to exclude these points
from the result set, thus returning only points that truly balance all criteria. It is
likely that if a user were interested in only a subset of the criteria, she would have
posed a 2d query with only the criteria of interest instead. On the other hand,



10 A. Vlachou et al.

 0.01

 0.1

 1

 10

 100

 1000

 2  3  4  5  6  7  8  9  10

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Dimensionality (UN)

DSA
BBS

(a) Varying dimensionality

 0

 5

 10

 15

 20

 25

 30

100K 400K 700K 1M

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Cardinality (UN)

DSA
BBS

(b) Varying cardinality

Fig. 3. Comparative study: Performance of DSA versus BBS.

Divesh Srivastava will be included in the relaxed decisive skyline set, because he
is a subspace skyline in subspaces {PODS,CIKM} and {SIGMOD,CIKM} that
cover the full space, thus he manages to balance all given criteria.

4.2 Performance of Decisive Skyline Algorithm

In the following, we study the cost of computing the strict decisive skyline query
(using DSA), compared with the cost of computing the skyline query (using
the BBS algorithm). Although in this latter experiment DSA and BBS compute
two different result sets, the experiment aims to answer the following interest-
ing question: how much is the overhead of computing decisive skyline points,
compared to the computation of the skyline set?

In Figure 3(a), we study the effect of increased dimensionality, using a syn-
thetic data set of 1M records following a uniform data distribution. We report
the average results over 10 different instances of the data set. When increasing
the dimensionality, the difference in response time between DSA and BBS is
small and increases slowly. In Figure 3(b), we vary the cardinality from 100K to
1M, and we observe that the difference in time between DSA and BBS is small
and constant, which is the expected result since the major impact in DSA is
the number of subspace computations that is fixed in this setting. In summary,
our finding is that DSA retrieves the strict decisive skyline set with a slightly
increased cost compared to a state-of-the-art skyline algorithm (BBS [10]) that
retrieves the traditional skyline set.

4.3 Comparison with Representative Skylines

Thereafter, we try to answer the following research question: can the set of deci-
sive skyline points be obtained by existing algorithms proposed for representative
skyline computation? To this end, we compare our algorithm against two well-
known skyline representative algorithms, namely dominance-based representa-
tive (DoR) [8] and distance-based representative (DiR) [13]. Both approaches



On Decisive Skyline Queries 11

 0

 10

 20

 30

 40

 50

 50  100  150  200

D
e
c
is

iv
e
 s

k
y
lin

e
 p

o
in

ts

Result set k

Random
DiR

DoR

(a) Number of decisive skyline points

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 50  100  150  200

R
e
c
a
ll

Result set k

Random

DoR

DiR

(b) Recall wrt. decisive skyline points

Fig. 4. Comparison with algorithms for representative skylines.

take as a input the number k of skyline points that are selected as represen-
tatives. In addition, we use a Random algorithm that selects k representative
skyline points from the skyline set at random. Figure 4(a) shows the number of
strict decisive skyline points retrieved by the representative skyline algorithms as
the value of k increases. In this experiment, the size of strict decisive skyline set
is 192 and the skyline cardinality is 952. As shown in the chart, both DoR and
DiR fail to retrieve the decisive skyline points. In fact, even a random selection
of skyline points (Random) retrieves more decisive skyline points than DoR and
DiR. This demonstrates that the existing skyline representative algorithms do
not take into account the semantics of the decisive skyline points and select com-
pletely different skyline points compared to our approach. Figure 4(b) shows the
recall that each representative skyline algorithm achieves, when using the strict
decisive skyline points as correct result. As depicted in the chart, the recall of
the representative skyline algorithms is very low, which demonstrates that these
algorithms do not try (not even implicitly) to identify decisive skyline points. In
fact, even a random selection of skyline points (Random) retrieves more decisive
skyline points than DoR and DiR. This demonstrates that the existing skyline
representative algorithms select completely different skyline points compared to
our approach.

5 Conclusions

In this paper, we exploit the semantics of skyline points and propose the decisive
skyline query. Capitalizing on the concept of decisive subspaces, we define two
variants of the decisive skyline set that are subsets of the skyline set. Points
belong to the decisive skyline set due to their values in all user-specified criteria
and provide interesting trade-offs. As a positive by-product and in contrast to
skyline cardinality, the cardinality of the decisive skyline query is not significantly
affected by dimensionality, thus leading to smaller result sets even for high-
dimensional data. Our evaluation demonstrates the performance of our algorithm
and that the decisive skyline query returns interesting points to the user.



12 A. Vlachou et al.

References

1. Bartolini, I., Ciaccia, P., Oria, V., Özsu, M.T.: Flexible integration of multimedia
sub-queries with qualitative preferences. Multimedia Tools Appl. 33(3), 275–300
(2007)

2. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of ICDE.
pp. 421–430 (2001)

3. Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z.: Finding k-
dominant skylines in high dimensional space. In: Proc. of SIGMOD. pp. 503–514
(2006)

4. Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z.: On high dimen-
sional skylines. In: Proc. of EDBT. pp. 478–495 (2006)

5. Chaudhuri, S., Dalvi, N.N., Kaushik, R.: Robust cardinality and cost estimation
for skyline operator. In: Proc. of ICDE. p. 64 (2006)

6. Godfrey, P.: Skyline cardinality for relational processing. In: Proc. of FoIKS. pp.
78–97 (2004)

7. Lee, J., won You, G., won Hwang, S.: Personalized top-k skyline queries in high-
dimensional space. Information Systems 34(1), 45–61 (2009)

8. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the k most representative
skyline operator. In: Proc. of ICDE (2007)

9. Lu, H., Jensen, C.S., Zhang, Z.: Flexible and efficient resolution of skyline query
size constraints. IEEE TKDE (2011)

10. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in
database systems. ACM TODS 30(1), 41–82 (2005)

11. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the best views of skyline: A semantic
approach based on decisive subspaces. In: Proc. of VLDB. pp. 253–264 (2005)

12. Sarma, A.D., Lall, A., Nanongkai, D., Lipton, R.J., Xu, J.J.: Representative sky-
lines using threshold-based preference distributions. In: Proc. of ICDE. pp. 387–398
(2011)

13. Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative skyline. In: Proc.
of ICDE. pp. 892–903 (2009)

14. Vlachou, A., Vazirgiannis, M.: Ranking the sky: Discovering the importance of
skyline points through subspace dominance relationships. DKE 69(9), 943–964
(2010)

15. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient computation
of the skyline cube. In: Proc. of VLDB. pp. 241–252 (2005)

16. Zhang, Z., Yang, Y., Cai, R., Papadias, D., Tung, A.: Kernel-based skyline cardi-
nality estimation. In: Proc. of SIGMOD. pp. 509–522 (2009)


