
Accuracy of Aggregation in Peer-to-Peer DBMSs

Norvald H. Ryeng and Kjetil Nørv̊ag

Department of Computer and Information Science,
Norwegian University of Science and Technology

Sem Sælands vei 7–9, NO–7491 Trondheim, NORWAY
{ryeng,noervaag}@idi.ntnu.no

Abstract. Peer-to-peer routing mechanisms are resilient to churn in the
overlay network layer. A major challenge for peer-to-peer database man-
agement systems is to provide similar robustness in the data and query
processing layer. In this paper we in particular study aggregation queries,
and present a new approach to increasing accuracy of such queries.

1 Introduction

A key feature of current peer-to-peer routing mechanisms is resilience to churn,
the effect of nodes constantly joining and parting from the network. A major
challenge in peer-to-peer database management systems is to provide similar
robustness in the data and query processing layer. The failure rate of a large,
distributed system is such that the system cannot expect all nodes to be acces-
sible at all times, so waiting for disconnected nodes to reconnect is not generally
an option. Instead, when nodes fail, query processing has to be based on partial
data.

The typical method for doing aggregation in peer-to-peer systems is using
a reduction tree. All nodes aggregate over their local data and merge the local
partial aggregate with the partial aggregates of all their children. In this way,
the result of the aggregation operation propagates up the tree, resulting in the
complete result at the root node.

The problem with this approach, is that failure of internal nodes causes loss
of data from all nodes below it in the hierarchy. Existing work propose to use
replication of the aggregation process to counter this effect. In this paper we
study this problem and describe a less costly technique to increase accuracy of
aggregation queries.

The organization of the rest of the paper is as follows. In Section 2 we give an
overview of related work. In Section 3 we present the general idea. In Section 4 we
describe experiments and results. Finally, in Section 5, we conclude and outline
issues for further work.

2 Related Work

Distributed hash tables (DHTs) are the underlying technology of several peer-
to-peer systems. Popular implementations are Kademlia [1], Chord [2], CAN [3]
and Pastry [4].

The PIER query processor [5, 6] and aggregation systems such as Astro-
labe [7], SDIMS [8] and TAG [9] allow for efficient aggregation queries, using
hierarchical algorithms. The Cougar Project [10] also uses a hierarchical algo-
rithm, but utilizes a hybrid push-pull technique differing from that discussed in
this paper.

While most current peer-to-peer systems create reduction trees based on
routing paths, an algorithm for creating trees in DHTs is presented in [11],
which also discusses how these trees can be used for aggregation and broadcast.

3 Accuracy of Aggregation

The impact of one node failure in a reduction tree depends on the structure of
the tree. If the tree is narrow and tall, one node failure results in the loss of data
from many nodes. In the pathological case of only one child per node, the average
data loss caused by one node failure is 50%. This is reduced by increasing node
degree. In the extreme case, the tree consists of only two levels, and one node
failure results only in the loss of data from this node. The data loss caused by
the failure of a high-level node is documented by Li et al. [11].

The current approach to fighting data loss (as suggested by, e.g., [5] and [11]),
is replication. This is easily done by creating several independent reduction trees,
replicating the whole aggregation process. Replication is prohibitively costly for
large systems, and other approaches should be followed if possible. We propose
that more attention is paid to other parameters, especially the degree of nodes.

The tree generated by existing algorithms can be estimated by considering
the height of the tree to be the maximum length of the routing path, i.e., the
maximum number of hops when doing a lookup. Assuming that all nodes have
the same degree and that the tree is completely balanced, the degree can be
calculated. The connection between number of nodes, N , degree, k, and height

h of the tree is given by N = k
h+1−1

k−1
.

Based on numbers from Stoica et al. [2], we estimate the node degree of a
reduction tree based on a Chord network of 10,000 nodes to be approximately 6.
Similarly, based on Ratnasamy et al. [3], we esteimate the degree of a reduction
tree based on a 4-dimensinal CAN of 130,000 nodes to be 10.

4 Experiments

We simulated a DHT network of 10,000 nodes, storing 100,000 tuples, where
we did hierarchical aggregation using different node degrees, with and without
replication. The aggregation functions used are the standard SQL functions sum,
count , avg , min and max . 10% of the nodes fail during query processing.

The achieved result, r, is compared to an ideal result, ri, which is the result
we would have got without node failures, and the accuracy of the results are
calculated as a distrance metric: dcount(r, ri) = dsum(r, ri) = davg(r, ri) = r−ri

ri

.

We also define dmin(r, ri) = dmax (r, ri) = r−ri

|Dvalue |
, where Dvalue is the domain of

the value attribute.

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0 1 2 3 4 5

A
cc

ur
ac

y

Number of replicas

avg
count

max

Fig. 1. Accuracy of aggregation functions
with different number of replicas.

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

 0 200 400 600 800 1000

A
cc

ur
ac

y

Node degree

H
RH

Fig. 2. Accuracy of the count function
with different node degrees.

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0 200 400 600 800 1000

A
cc

ur
ac

y

Node degree

H
RH

Fig. 3. Accuracy of the avg function with
different node degrees.

-0.002

-0.0018

-0.0016

-0.0014

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

 0 200 400 600 800 1000

A
cc

ur
ac

y

Node degree

H
RH

Fig. 4. Accuracy of the max function with
different node degrees.

4.1 Results

In all our experiments, the results for sum and min were very close to those of
count and max , respectively, so these were excluded from the figures.

From Figure 1 we see that the avg and max functions prove to be quite
accurate to start with, whereas the count function show that some method to
fight data loss is needed. In the rest of the experiments, only single replication is
used, so the results compared are from simple hierarchical aggregation (H) and
replicated hierarchical aggregation (RH).

Figures 2–4 show the results of varying the degree of nodes in the reduction
tree from 10 to 1,000 (using steps 10; 50; 100; 1,000). We can see that the
accuracy of count queries climb quite steeply from 10 to 100, i.e., from 0.1% to 1%
of the number of nodes in the system, but that accuracy does not increase much
beyond this number. The RH algorithm performs better than the H algorithm,
but for low node degrees, there is more to gain by increasing the degree than by
replicating.

We also see that there is little to gain by increasing the degree when com-
puting avg queries. The distribution becomes somewhat denser, but not much.

When computing the maximum value, the node degree is important, but there is
more to get from simple replication. For the parameters used in our simulations,
it is always better to replicate than to increase the degree of internal nodes.

If we compare the results to the estimated node degrees of trees based on
routing paths in Chord and CAN given in Section 3, we see that the simula-
tion results indicate that trees based on current DHT implementations are too
narrow, and that accuracy could be increased by generating broader trees.

5 Conclusion and Future Work

Our experiments show that varying the node degree in some cases may be more
efficient in increasing accuracy than the costly replication, and also that these
two methods may be combined to increase accuracy further. The simulations
also indicate that there is much to gain from increasing the node degree from
that of current implementations.

Several open problems remain. The query processor should be able to use
statistics to predict which algorithm and which parameters would suit the query
best. This could be combined with a requested level of accuracy to find the most
efficient aggregation method to achieve the requested accuracy. Similar studies
should also be done on other relational operations.

References

1. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system
based on the XOR metric. In: IPTPS. (2002)

2. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: SIGCOMM. (2001)

3. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM. (2001)

4. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Middleware. (2001)

5. Huebsch, R., Chun, B.N., Hellerstein, J.M., Loo, B.T., Maniatis, P., Roscoe, T.,
Shenker, S., Stoica, I., Yumerefendi, A.R.: The architecture of PIER: An internet-
scale query processor. In: CIDR. (2005)

6. Huebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T., Shenker, S., Stoica, I.:
Querying the internet with PIER. In: VLDB. (2003)

7. Renesse, R.V., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable tech-
nology for distributed system monitoring, management, and data mining. ACM
Trans. Comput. Syst. 21 (2003) 164–206

8. Yalagandula, P., Dahlin, M.: A scalable distributed information management sys-
tem. In: SIGCOMM. (2004)

9. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A Tiny AGgre-
gation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36 (2002)
131–146

10. Yao, Y., Gehrke, J.: Query processing in sensor networks. In: CIDR. (2003)
11. Li, J., Sollins, K., Lim, D.Y.: Implementing aggregation and broadcast over dis-

tributed hash tables. SIGCOMM Comput. Commun. Rev. 35 (2005) 81–92

