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Abstract. Recently, recommendation systems have received significant
attention. However, most existing approaches focus on recommending
items of potential interest to users, without taking into consideration
how temporal information influences the recommendations. In this pa-
per, we argue that time-aware recommendations need to be pushed in
the foreground. We introduce an extensive model for time-aware recom-
mendations from two perspectives. From a fresh-based perspective, we
propose using a suite of aging schemes towards making recommendations
mostly depend on fresh and novel user preferences. From a context-based
perspective, we focus on providing different suggestions under different
temporal specifications. The proposed strategies are experimentally eval-
uated using real movies ratings.

1 Introduction

Recommendation systems provide users with suggestions about products, movies,
videos, pictures and many other items. Many systems, such as Amazon, NetFlix
and MovieLens, have become very popular nowadays. One popular category of
recommendation systems are the collaborative filtering systems (e.g., [11, 8]) that
try to predict the utility of items for a particular user based on the items pre-
viously rated by similar users. That is, users similar to a target user are first
identified, and then, items are recommended based on the preferences of these
users. Users are considered as similar if they buy common items as in case of
Amazon or if they have similar evaluations as in case of MovieLens.

The two typical types of entities that are dealt in recommendation sys-
tems, i.e., users and items, are represented as sets of ratings, preferences or
features. Assume, for example, a restaurant recommendation application (e.g.,
ZAGAT.com). Users initially rate a subset of restaurants that they have already
visited. Ratings are expressed in the form of preference scores. Then, a recom-
mendation engine estimates preference scores for the items, i.e., restaurants in
this case, that are not rated by a user and offers him/her appropriate recommen-
dations. Once the unknown scores are computed, the k items with the highest
scores are recommended to the user.

Although there is a substantial amount of research performed in the area of
recommendation systems, most of the approaches produce recommendations by



ignoring the temporal information that is inherent in the ratings, since ratings
are given at a specific point in time. Due to the fact that a huge amount of
user preferences data is accumulated over time, it is reasonable to exploit the
temporal information associated with these data in order to obtain more accu-
rate and up to date recommendations. In this work, our goal is to use the time
information of the user ratings towards improving the predictions in collabora-
tive recommendation systems. We consider two different types of time effects
based upon the recency/freshness and the temporal context of the ratings and
consequently, we propose two different time-aware recommendation models.

The fresh-based recommendations assume that the most recent user prefer-
ences better reflect the current trends and thus, they contribute more in the
computation of the recommendations. To account for the recency of the ratings
we distinguish between the damped window model that gradually decreases the
importance of ratings over time and the sliding window model that counts only
for the most recent data and ignores any previous historical information. For
example, consider a movie recommendation system that gives higher priority to
new releases compared to other old seasoned movies (damped window model)
or focuses only on new releases (sliding window model).

From a different perspective, context-based recommendations offer different
suggestions for different time specifications. The main motivation here, is that
user preferences may change over time but have temporal repetition, i.e., recur
over time. As an example consider a tourist guide system that should provide
different suggestions during summer than during winter. Or, a restaurant recom-
mendation system that might distinguish between weekdays (typically business
lunches) and weekends (typically family lunches).

It is the purpose of this paper to provide a framework for studying various
approaches that handle different temporal aspects of recommendations. To deal
with the sparsity of the explicitly defined user preferences, we introduce the
notion of support in recommendations to model how confident the recommen-
dations of an item for a user is. We also consider different cases for selecting the
appropriate set of users for producing the recommendations of a user.

The rest of the paper is organized as follows. A general, time-invariant rec-
ommendations model is presented in Sect. 2. Time is introduced in Sect. 3, where
we distinguish between the aging factor (Sect. 3.1) and the temporal context fac-
tor (Sect. 3.2). The computation of recommendations under different temporal
semantics is discussed in Sect. 4, while in Sect. 5, we present our experiments us-
ing a real dataset of movie ratings. Related work is presented in Sect. 6. Finally,
conclusions and outlook are pointed out in Sect. 7.

2 A Time-free Recommendation Model

Assume a set of items I and a set of users U interacting with a recommendation
application A. Each user u ∈ U may express a preference for an item i ∈ I,
which is denoted by preference(u, i) and lies in the range [0.0, 1.0]. We use Zi
to denote the set of users in U that have expressed a preference for item i. The
cardinality of the items set I is usually high and typically users rate only a few



of these items, that is, |Zi| << |U| for a specific item i. For the items unrated by
the users, a relevance score is estimated by invoking a recommendation strategy.

In this section, we first present a model for time-free recommendations (Sect.
2.1) and then define the top-k recommendations (Sect. 2.2). The time–free rec-
ommendations model is the generally used recommendations model where the
notion of time is completely ignored.

2.1 Defining Time-free Recommendations

There are different ways to estimate the relevance of an item for a user. In
general, the recommendation methods are organized into three main categories:
(i) content-based, that recommend items similar to those the user has preferred
in the past (e.g., [17, 13]), (ii) collaborative filtering, that recommend items that
similar users have liked in the past (e.g., [11, 8]) and (iii) hybrid, that combine
content-based and collaborative ones (e.g., [5]).

Our work falls into the collaborative filtering category. The key concept of
collaborative filtering is to use, for a given user u ∈ U , the preferences of other
users in U in order to produce relevance scores for the items unrated by u.
But, which is the appropriate set of users, hereafter called peers, for computing
the recommendations of u? Due to the inherent fuzziness associated with this
question, there exists no single definition for locating the peers of u. In our model,
we assimilate three different aspects of peers: (i) close friends, (ii) domain experts
and (iii) similar users.

The close friends of a user u are explicitly selected by u. Computing recom-
mendations using only close friends is based on the assumption that these users
would have similar tastes for most things, because of the closeness of relationship.

Close Friends: Let U be a set of users. The close friends Cu, Cu ⊆ U , of a
user u ∈ U are explicitly defined by u.

From a different perspective, domain experts can be used for producing rec-
ommendations for specific queries, since they are considered to be knowledgeable
on a specific topic or domain. Several methods deal with the problem of finding
experts (e.g., [6]); the focus of this paper though is on how to exploit experts
preferences to recommend interesting items to other users and not on how to
identify these experts. So, we consider that the set of experts for a given query
are predefined, e.g., experts in tablet pcs.

Domain Experts: Let U be a set of users and Q be a query. The domain
experts DQ, DQ ⊆ U , are the users considered as experts for the domain of Q.

We denote this set as DQ, so, not dependent on the user, since typically
experts are associated with specific queries, subjects or domains rather than
with certain users.

Alternatively, a user can opt to employ the preferences of the users that ex-
hibit the most similar behavior to him/her in order to produce relevance scores
for the items unrated by him/her, even if other friendship or expert relation-
ships exist. Similar users are located via a similarity function simU(u, u′) that
evaluates the proximity between u and u′. Several methods can be applied for



selecting the similar users of a user u. A direct method is to locate those users
u′ with similarity simU(u, u′) greater than or equal to a threshold value.

Similar Users: Let U be a set of users. The similar users Su, Su ⊆ U ,
of a user u ∈ U is a set of users, such that, ∀u′ ∈ Su, simU(u, u′) ≥ δ and
∀u′′ ∈ U\Su, simU(u, u′′) < δ, where δ is a threshold similarity value.

Clearly, one could argue for other ways of selecting Su, e.g., by taking the m
most similar users to u. Our main motivation here is that we opt for selecting
only highly connected users even if the resulting set of users Su is small.

We define now the general notion of peers for a user by taking into account
the three different cases.

Definition 1 (Peers). Let U be a set of users, u be a user in U and Q be a
query posed by u. The peers Pu,Q, Pu,Q ⊆ U , of u for Q are either: (i) the close
friends Cu of u, (ii) the domain experts DQ for Q, or (iii) the similar users Su
of u.

Based on the peers of a user for a query, we define formally the relevance of
an item for a user as follows:

Definition 2 (Time-free Relevance). Let u be a user in U , Q be a query
posed by u and Pu,Q be the peers of u for Q. If u has not expressed any preference
for an item i, the time-free relevance of i for u under Q is:

relevancef (u, i,Q) =

∑
u′∈(Pu,Q∩Zi)

contribution(u, u′)× preference(u′, i)∑
u′∈(Pu,Q∩Zi)

contribution(u, u′)

where contribution(u, u′) =

{
1, if Pu,Q is Cu or DQ
simU(u, u′), if Pu,Q is Su

The relevance score of user u for an item i depends on the peers of u that have
given a rating for i, i.e., those in Pu,Q ∩ Zi. The contribution(u, u′) reflects
the importance of each preference(u′, i) for u; this importance depends on how
“reliable” u′ is for u. When close friends or domain experts are used, contribution
is set to 1, since we are certain about the importance of the preferences of the
selected users. For the similar users case, the contribution of each user u′ depends
on the similarity between u and u′.

As already mentioned, due to the abundance of items in a recommendation
application, users, even the expert ones, rate only a small portion of them.
So, the following question usually arises: How confident are the relevance scores
associated with the recommended items? To deal with this problem, we introduce
the notion of support for each candidate item i for user u, which defines the
fraction of peers of u that have expressed preferences for i.

Definition 3 (Time-free Support). Let u be a user in U , Q be a query posed
by u and Pu,Q be the peers of u for Q. The time-free support of i for u under Q
is:

supportf (u, i,Q) = |Pu,Q
⋂
Zi|/|Pu,Q|

Intuitively, the notion of support expresses how reliable is our estimation for i.
To estimate the worthiness of an item recommendation for a user, we propose

to combine the relevance and support scores in terms of a value function.



Definition 4 (Time-free Value). Let U be a set of users and I be a set of
items. For σ ∈ [0, 1], the time-free value of an item i ∈ I for a user u ∈ U under
a query Q, such that, @preference(u, i), is:

valuef (u, i,Q) = σ × relevancef (u, i,Q) + (1− σ)× supportf (u, i,Q)
We take a generic approach for computing the time-free value of an item for

a user. More sophisticated functions can be designed. However, this general form
of weighted summation is simple and easy to implement. Moreover, when σ = 1,
value maps to relevance, which is the typically used recommendation score.

2.2 Top-k Time-free Recommendations

Given a query Q submitted by a user u and a restriction k on the number of the
recommended items, the goal is to provide u with k suggestions for items that
are highly relevant to u and exhibit high support.

Definition 5 (Top-k Time-free Recommendations). Let U be a set of users
and I be a set of items. Given a query Q posed by a user u ∈ U , recommend to
u a list of k items Iu =< i1, . . . , ik >, Iu ⊆ I, such that:

(i) ∀ij ∈ Iu, @preference(u, ij),
(ii) valuef (u, ij , Q) ≥ valuef (u, ij+1, Q), 1 ≤ j ≤ k − 1, ∀ij ∈ Iu, and

(iii) valuef (u, ij , Q) ≥ valuef (u, xy, Q), ∀ij ∈ Iu, xy ∈ I\Iu.

The first condition ensures that the suggested items do not include already
evaluated items by the user (for example, do not recommend a movie that the
user has already watched). The second condition ensures the descending ordering
of the items with respect to their value, while the third condition defines that
every item in the result set has value greater than or equal to the value of any
of the non–suggested items.

3 Time-aware Recommendations
The general time-free recommendation model assumes that all preferences are
equally active and potentially they can be used for producing recommendations.
This way though the temporal aspects of the user ratings are completely ignored.
However, the information needs of a user evolve over time, especially if we con-
sider a long period of time, either smoothly (i.e., drift) or more drastically (i.e.,
shift). This fact makes the recent user preferences to reflect better the current
trends than the older preferences do. From a different point of view, user inter-
ests differ from time to time which means that users may have different needs
under different temporal circumstances. For example, during the weekdays one
might be interested in reading IT news whereas during the weekends he/she
might be interested in reading about cooking, gardening or doing other hobbies.

To handle such different cases, we propose a framework for time-aware rec-
ommendations that incorporates the notion of time in the recommendations
process with the goal of improving their accuracy. We distinguish between two
types of time-aware recommendations, namely the fresh-based and the context-
based ones. The fresh-based recommendations pay more attention to more recent
user ratings thus trying to deal with the problems of drift or shift in the user



information needs over time. The context-based recommendations take into ac-
count the temporal context under which the ratings were given (e.g., weekdays,
weekends).

In our time-aware recommendation model, the rating of a user u for an item
i, i.e., preference(u, i), is associated with a timestamp tu,i, which is the time
that i was rated by u. So, this timestamp declares the freshness or age of the
rating. Below, we first define the fresh-based recommendation model (Sect. 3.1)
and then, the temporal context-based recommendation model (Sect. 3.2). We
also present a variant of the top-k recommendations problem by defining the
top-k time-aware recommendations (Sect. 3.3).

3.1 Fresh-based Recommendations
Generally speaking, the popularity of the items of a recommendation applica-
tion changes with time; typically, items lose popularity while time goes on. For
example, a movie, a picture or a song may lose popularity because they are too
seasoned. Motivated by the intuition that the importance of preferences for items
increases with the popularity of the items themselves, fresh-based recommenda-
tion approaches care for suggesting items taking mainly into account recent and
novel user preferences.

Driven by the work in stream mining [10], we use different types of aging
mechanisms to define the way that the historical information (in form of ratings)
is incorporated in the recommendation process. Aging in streams is typically
implemented through the notion of windows, which define which part of the
stream is active at each time point and thus could be used for the computations.
In this work, we use the damped window model that gradually decreases the
importance of historical data comparing to more recent data and the sliding
window model that remembers only the preferences defined within a specific,
recent time period. We present these cases in more detail below. Note that the
static case (Sect. 2), corresponds to the landmark window model where the whole
history from a given landmark is considered.

Damped window model. In the damped window model, although all user
preferences are active, i.e., they can contribute to produce recommendations,
their contribution depends upon their arrival time. In particular, the preference
of a user u for an item i is weighted appropriately with the use of a tempo-
ral decay function. Typically, in temporal applications, the exponential fading
function is employed, so the weight of preference(u, i) decreases exponentially
with time via the function: 2−λ(t−tu,i), where tu,i is the time that the preference
was defined and t is the current time. Thus, t − tu,i is actually the age of the
preference. The parameter λ, λ > 0, is the decay rate that defines how fast the
past history is forgotten. The higher λ, the lower the importance of historical
preferences compared to more recent preferences.

Under this aging scheme, the so-called damped relevance of an item i for a
user u with respect to a query Q in a given timepoint t is given by:

relevanced(u, i,Q) =

∑
u′∈(Pu,Q∩Zi)

2−λ(t−tu′,i) × contribution(u, u′)× preference(u′, i)∑
u′∈(Pu,Q∩Zi)

contribution(u, u′)

So, all user item scores are weighted by the recency 2−λ(t−tu′,i).



Since all preferences are active, the damped support of i for u under Q is
equal to the corresponding time-free support, that is:

supportd(u, i,Q) = supportf (u, i,Q)

Finally, the damped value of i for u under Q is computed as in the time-free
case by aggregating the relevance and support scores (σ ∈ [0, 1]):

valued(u, i,Q) = σ × relevanced(u, i,Q) + (1− σ)× supportd(u, i,Q)

Sliding window model. The sliding window model employs an alternative
method which exploits only a subset of the available preferences, and in partic-
ular, the most recent ones. The size of this subset, referred to as window size,
might be defined in terms of timepoints (e.g., use the preferences defined after
Jan 2011) or records (e.g., use the 1000 most recent preferences). We adopt the
first case. The preferences within the window are the active preferences that par-
ticipate in the recommendations computation. Let t be the current time and W
be the window size. Then, a preference of a user u for an item i, preference(u, i),
is active only if tu,i > t−W .

In the sliding window model, the sliding relevance of an item i for a user u
under a query Q is defined with regard to the active preferences of the peers of
u for i. More specifically:

relevances(u, i,Q) =

∑
u′∈(Pu,Q∩Xi)

contribution(u, u′)× preference(u′, i)∑
u′∈(Pu,Q∩Xi)

contribution(u, u′)

where Xi is the set of users in Zi, such that, ∀u′ ∈ Xi, tu′,i > t−W .
The sliding support of i for u under Q is defined as the fraction of peers of u

that have expressed preferences for i that are active at time t. That is:

supports(u, i,Q) = |Pu,Q
⋂
Xi|/|Pu,Q|

Finally, the sliding value of i for u under Q, for σ ∈ [0, 1], is:

values(u, i,Q) = σ × relevances(u, i,Q) + (1− σ)× supports(u, i,Q)

3.2 Temporal Context-based Recommendations

In contrast to fresh-based recommendations, the context-based ones assume that
although the preferences may change over time, they display some kind of tem-
poral repetition. Or in other words, users may have different preferences under
different temporal contexts. For instance, during the weekend a user may prefer
to watch different movies from those in the weekdays. So, a movie recommenda-
tion system should provide movie suggestions for the weekends that may differ
from the suggestions referring to weekdays.

As above, the rating of a user for an item, preference(u, i), is associated
with the rating time tu,i. Time is modeled here as a multidimensional attribute.
The dimensions of time have a hierarchical structure, that is, time values are
organized at different levels of granularity (similar to [16, 18]). In particular,
we consider three different levels over time: time of day, day of week and
time of week with domain values {“morning”, “afternoon”, “evening”, “night”},
{“Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”, “Sun”} and {“Weekday”, “Week-
end”}, respectively. It is easy to derive such kind of information from the time



value tu,i that is associated with each user rating by using SQL or other pro-
gramming languages. More elaborate information can be extracted by using the
WordNet or other ontologies.

Let Θ be the current temporal context of a user u. We define the context-
based relevance of an item i for u under a query Q expressed at Θ based on
the preferences of the peers of u for i that are defined for the same context Θ.
Formally:

relevancec(u, i,Q) =

∑
u′∈(Pu,Q∩Yi)

contribution(u, u′)× preference(u′, i)∑
u′∈(Pu,Q∩Yi)

contribution(u, u′)

where Yi is the set of users in Zi, such that, ∀u′ ∈ Yi, tu′,i 7→ Θ, that is, the user
rating has been expressed for a context equal to Θ. For example, if the temporal
context of a user query is “Weekend”, only the user preferences given for context
“Weekend” would be considered.

The context-based support of i for u under Q is defined with respect to the
number of peers of u that have expressed preferences for i under the same to the
query context. That is:

supportc(u, i,Q) = |Pu,Q
⋂
Yi|/|Pu,Q|

Similar to the fresh-based recommendations, the context-based value of i for
u under Q is calculated taking into account the context-based relevance and
support. For σ ∈ [0, 1]:

valuec(u, i,Q) = σ × relevancec(u, i,Q) + (1− σ)× supportc(u, i,Q)

3.3 Top-k Time-aware Recommendations

Next, we define the time-aware variation of the top-k recommendations applica-
ble to both fresh-based and context-based approaches.

Definition 6 (Top-k Time-aware Recommendations). Let U be a set of
users and I be a set of items. Given a query Q posed by a user u ∈ U at time
t mapped to Θ, recommend to u a list of k items Iu =< i1, . . . , ik >, Iu ⊆ I,
such that:

(i) ∀ij ∈ Iu, @preference(u, ij), for the fresh-based recommendations, and ∀ij ∈
Iu, @preference(u, ij) that is associated with context equal to Θ, for the
context-based recommendations,

(ii) valueo(u, ij , Q) ≥ valueo(u, ij+1, Q), 1 ≤ j ≤ k − 1, ∀ij ∈ Iu, and

(iii) valueo(u, ij , Q) ≥ valueo(u, xy, Q), ∀ij ∈ Iu, xy ∈ I\Iu,

where o corresponds to the same d (for the damped window model), s (for the
sliding window model), or c (for the context-based model).

The first condition ensures that the suggested items do not include already
evaluated items by the user either in general or under a specific context, while
the second and the third conditions resemble those of Definition 5.



4 Time-aware Recommendations Computation

Assume a user that submits a query presenting his information needs. Each
query is enhanced with a contextual specification expressing some temporal in-
formation. This temporal information of the query may be postulated by the
application or be explicitly provided by the user as part of his query. Typically,
in the first case, the context implicitly associated with a query corresponds to
the current context, that is, the time of the submission of the query. As a query
example, for a restaurant recommendation application, consider a user looking
for restaurants serving chinese cuisine during the weekend. As part of his/her
query, the user should also provide the aging scheme that will be used.

Then, we locate the peers of the user (Sect. 4.1) and employ their preferences
for estimating the time-aware recommendations (Sect. 4.2). Recommendations
are presented to the user along with explanations on the reasons behind them
(Sect. 4.3). In following, we overview the details of each step.

4.1 Selecting Peers

Our model assumes three different kinds of peers, namely close friends, domain
experts and similar users. For each submitted query Q of a user u, u specifies the
peers that will be used for producing his/her recommendations. This selection
step of the peers is, in general, application dependent. For example, when a user
is asking for advice for a personal computer, the domain experts may fit well
to the user needs, while when asking for a suggestion about a movie, the user’s
close friends may provide good answers. In a similar manner, when using a trip
advisor, the choice of users with similar tastes seems appropriate.

For the close friends case, the set of peers of u consists of the close friends of u,
while for the domain experts case, the set of peers of u consists of the users that
are considered to be experts for Q. We assume that this information is already
known. For the similar users case, we need to calculate all similarity measures
simU(u, u′) for all users u′ ∈ U . Those users u′ with similarity simU(u, u′)
greater than or equal to the threshold δ represent the similar users of u.

4.2 Computing Recommendations

Having established the methodology for finding the peers of a user, we focus next
on how to generate valued recommendations for him/her. Given a user u ∈ U
and his/her peers Pu,Q, the procedure for estimating the value score of an item
i for u requires the computation of the relevance and support of i. Note that
we do not compute value scores for all items in I, but only for the items I ′,
I ′ ⊆ I, that satisfy the query selection conditions. To do this, we perform a
pre-processing step to select the relevant to the query data by running a typical
database query. For example, for a query about destinations in Greece posed to
a travel recommendation system, we ignore all the rest destinations.

For computing the scores of the items in I ′, pairs of the form (i, valueo(u, i,Q))
are maintained in a set Vu, where o corresponds to d, s or c for the damped
window, sliding window and context-based approach, respectively. As a post-
processing step, we rank all pairs in Vu on the basis of their value score. To



provide the top-k recommendations to u, we report the k items with the highest
scores, i.e., the k first items in Vu.

Next, we discuss separately the particulars of each time-aware recommenda-
tion approach. For the damped window approach, all the preferences of the peers
of u are employed for computing recommendations. However, this is not the case
for the other two approaches, where only a subset of the peers preferences are
taken into consideration. More specifically, for the sliding window approach, only
the most recent preferences are used, while for the context-based approach, the
preferences that are defined for a temporal context equal to the query context.
This can be seen as a preference pre-filtering step. It is worth noting that, since
some preferences are ignored, some of the peers may not contribute finally to
the recommendation list construction.

Moreover, for the context-based approach, the associated set of preferences
for a specific query may be empty, that is, there may be no preferences for the
query. In this case, we can use for the recommendation process these preferences
whose context is more general than the query context. For example, for a query
with context “Sat”, we can use a preference defined for context “Weekend”. The
selection of the appropriate preferences can be made more efficient by deploying
indexes on the context of the preferences. Such a data structure that exploits
the hierarchical nature of context, termed profile tree, is introduced in [18].

As a final note, consider that the two approaches for computing time-aware
recommendations can be applied together. For instance, we can apply the context-
based approach first. Then, we can apply the damped window approach. This
way, the importance of the preferences that are defined for the query context
decreases with time.

4.3 Presenting Recommendations

After identifying the k items with the highest value scores for a user u, u is
presented with these items. Recently, it has been shown that the success of
recommendations relies on explaining the cause behind them [19]. This is our
motivation for providing an explanation along with each suggested item, i.e., for
explaining why this specific recommendation appears in the top-k list.

To do this, we present recommendations along with their explanations as
text by using a simple template mechanism. Since explanations depend on the
employed approach, different templates are associated with the two different
approaches.

For the fresh-based approach, the reporting results have the following form:
item @i is recommended by the system
because of its high value score, @valueo,
computed using the recent preferences of your @peers.
@|Pu,Q

⋂
Ti| users out of your @|Pu,Q| peers have rated this item.

In this case, o corresponds to d or s and Ti to Zi or Xi for the damped window
or the sliding window approach, respectively.

Similarly, for the context-based approach, the results are presented as follows:
item @i is recommended by the system
because of its high value score, @valuec,



computed using the preferences, defined for a temporal context
equal to the query one, of your @peers.
@|Pu,Q

⋂
Yi| users out of your @|Pu,Q| peers have rated this item.

We use the symbol @ to mark parameter variables. Variables are replaced
with specific values at instantiation time. For a movie recommendation system,
an example of a reported result with its explanation is the following.
item Dracula is recommended by the system
because of its high value score, 0.9,
computed using the preferences, defined for a temporal context
equal to the query one, of your close friends.
27 users out of your 68 peers have rated this item.

5 Experiments
In this section, we evaluate the effectiveness of our time-aware recommendation
system using a real movie ratings dataset [1], which consists of 100,000 ratings
given from September 1997 till April 1998 by 1,000 users for 1,700 items. The
monthly split is shown in Fig. 1(a), while the split per weekends and weekdays
is shown in Fig. 1(b).
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Fig. 1. (a) Ratings per month and (b) ratings per temporal context.

Since there is no information about actual friends and experts in this dataset,
we employ as the peers of a given user his/her similar users. To this end, the
notion of user similarity is important. We use here a simple variation; that is,
we use distance instead of similarity. More specifically, we define the distance
between two users as the Euclidean distance over the items rated by both. Let
u, u′ ∈ U be two users, Iu be the set of items for which ∃preference(u, i),
∀i ∈ Iu, and Iu′ be the set of items for which ∃preference(u′, i), ∀i ∈ Iu′ .
We denote by Iu ∩ Iu′ the set of items for which both users have expressed
preferences. Then, the distance between u, u′ is:

distU(u, u′) =
√∑

i∈Iu∩Iu′ (preference(u, i)− preference(u′, i))2/|Iu ∩ Iu′ |
To evaluate the quality of the recommendations, we use a predictive accuracy

metric that directly compares the predicted ratings with the actual ones [12].
A commonly used metric in the literature is the Mean Absolute Error (MAE),
which is defined as the average absolute difference between predicted ratings and
actual ratings: MAE =

∑
u,i |preference(u, i)− valueo(u, i,Q)|/N , where N is



the total number of ratings in the employed dataset and o corresponds to d, s
or c. Clearly, the lower the MAE score, the better the predictions.

Next, we report on the results for the sliding window model, the damped
window model and the context-based model compared to the time-free model.

Sliding window model. To illustrate the effectiveness of the sliding window model,
we use windows of different sizes W . The window size W = 1 stands for the
most recent month, i.e., April 1998, the window size W = 2 stands for both
April 1998 and March 1998, and so forth. The window size W = 8 includes the
whole dataset, from April 1998 till September 1997. We denote the resulting
dataset as DW , where W = [1 − 8] is the window size. For each dataset DW ,
we compute the recommendations for each user by considering the user ratings
within the corresponding window W . We compare the predicted values with
the actual values given by the user within the same window W and report the
average results.

The results for different windows are presented in Fig. 2(a). In the same
figure, we also show the effect of the user distance threshold. In general, rec-
ommendations present better quality for small windows (this is not the case for
the smallest window size (W = 1) because of the small amount of ratings used
for predictions). For example, for a user distance threshold equal to 0.03 and
W = 2, the predictions are improved around 2.5% compared to W = 8 (i.e.,
compared to the time-free recommendations model). Or, for a threshold equal
to 0.06 and W = 3, the predictions are improved on average 0.5% compared
to W = 8. Moreover, the larger the window, the smaller the improvement. Re-
garding the effect of the user similarity thresholds, as expected, for larger user
distance thresholds, the MAE scores increase for all window sizes, since more
dissimilar users are considered for the suggestions computation.
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Fig. 2. MAE scores for (a) the sliding window and (b) the damped window model.

Damped window model. Next, we evaluate the effect of the decay rate λ in the
recommendations accuracy. We use different values for λ; the higher the λ is,
the less the historical data count. The value λ = 0 corresponds to the time-free
model. We downgrade the original ratings based on the decay factor λ and the
time difference between the end of the observation period (22/04/1998) and the
ratings timestamp.



The results of this experiment are shown in Fig. 2(b). Practically, this aging
model seems to not offer any (or offer a very small) improvement in this setting,
i.e., for the employed dataset. As above, larger distance thresholds lead to larger
MAE scores.

Context-based recommendations. In this set of experiments, we demonstrate the
effect of temporal context on producing recommendations. We consider two dif-
ferent temporal contexts “Weekends” and “Weekdays”. For the “Weekends” con-
text, we base our predictions only on ratings defined for weekends (Dweekends),
whereas for the “Weekdays” context, we consider ratings from Monday to Friday
(Dweekdays). The predicted values are compared to the actual values given by
the user within the same temporal context through the MAE metric.

Fig. 3 displays the results. Except for the two temporal contexts, “Weekends”
and “Weekdays”, we also present the scores for the time-free model, i.e., when
the whole dataset is used. Generally speaking, the temporal context affects the
recommendations accuracy. In particular, for both contexts, “Weekends” and
“Weekdays”, the quality of the recommendations is improved compared to the
time-free approach that completely ignores the temporal information of the rat-
ings. For example, for a user distance threshold equal to 0.03, the predictions
for “Weekends” are improved on average 0.95% when using ratings for “Week-
ends” instead of using the whole rating set. Similarly, for a distance equal to
0.06, the predictions for “Weekdays” are improved around 0.5%. Also, larger
distance thresholds values result in larger MAE scores, that is, the quality of the
recommendations decreases with the user distance threshold.

In overall, time plays an important role towards improving the quality of
the proposed recommendations. The sliding window and the context-based ap-
proaches increase the recommendations accuracy. However, a mere decay model
seems to be not adequate. Our goal is to design a more elaborate aging scheme
that considers not only the age of the ratings but also other parameters, such
as the recency and popularity of the recommended items and the context under
which the ratings were given. We expect that the time effect will be more evi-
dent for datasets that span a larger period of time. Further experimentation with
other kinds of peers provided by the application dataset will also be interesting.
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6 Related Work

The research literature on recommendations is extensive. Typically, recommen-
dation approaches are distinguished between: content-based, that recommend
items similar to those the user previously preferred (e.g., [17, 13]), collaborative
filtering, that recommend items that users with similar preferences liked (e.g.,
[11, 8]) and hybrid, that combine content-based and collaborative ones (e.g., [5]).
Several extensions have been proposed, such as employing multi-criteria ratings
(e.g., [2]) and defining recommendations for groups (e.g., [4, 15, 14]).

Recently, there are also approaches focusing on enhancing recommendations
with further contextual information (e.g., [3, 16]). In these approaches, context
is defined as a set of dimensions, or attributes, such as location, companion and
time, with hierarchical structure. While a traditional recommendation system
considers only two dimensions that correspond to users and items, a context-
aware recommendation system considers one additional dimension for each con-
text attribute. In our approach, we focus on a particular case of this model,
that is, the three-dimensional recommendations space among users, items and
time, since our specific goal is to study how the time effects contribute to the
improvement of predictions.

Moreover, there are some approaches which incorporate temporal informa-
tion to improve recommendations effectiveness. [21] presents a graph-based rec-
ommendation system that mixes long-term and short-term user preferences to
improve predictions accuracy, while [20] considers how time can be used into
matrix factorization models by examining changes in user and society tastes and
habits, and items popularity. [9] uses a strategy, similar to our damped window
model, that decreases the importance of known ratings as time distance from
recommendation time increases. However, the proposed algorithm uses cluster-
ing to discriminate between different kinds of items. [7] introduces the idea of
micro-profiling, which splits the user preferences into several sets of preferences,
each representing the user in a particular temporal context. The predictions are
computed using these micro-profiles instead of a single user model. The main
focus of this work is on the identification of a meaningful partition of the user
preferences using implicit feedback. In our paper, the goal is to examine time
from different perspectives. This way, we use a general model for time, consid-
ering time either as specific time instances or specific temporal conditions, in
order to define a unified time-aware recommendation model.

7 Conclusions
In this paper, we studied different semantics to exploit the time information as-
sociated with user preferences to improve the accuracy of recommendations. We
considered various types of time effects, and thus, proposed different time-aware
recommendation models. Fresh-based recommendations care mainly for recent
and novel preferences, while context-based recommendations are computed with
respect to preferences with temporal context equal to the query context. Finally,
we demonstrated our approach using a real dataset of movie ratings. There are
many directions for future work. One is to extend our framework so as to sup-
port a novel mode of interaction between users and recommendation systems;



our goal is to exploit the whole rating history to produce valued recommenda-
tions and, at the same time, use the fresh ratings to assist users in database
exploration.
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