
Context-based Caching and Routing for P2P Web Service
Discovery

Christos Doulkeridis1, Vassilis Zafeiris1, Kjetil Nørvåg2, Michalis Vazirgiannis1

Emmanouel Giakoumakis1

1Dept. of Informatics, AUEB, Athens, Greece
{cdoulk,bzafiris,mvazirg,mgia}@aueb.gr

2Dept. of Computer Science, NTNU, Trondheim, Norway
Kjetil.Norvag@idi.ntnu.no

Abstract

In modern heterogeneous environments, such as mobile, pervasive and ad-hoc networks, architec-
tures based on web services offer an attractive solution foreffective communication and inter-operation.
In such dynamic and rapidly evolving environments, efficient web service discovery is an important task.
Usually this task is based on the input/output parameters orother functional attributes, however this does
not guarantee the validity or successful utilization of retrieved web services. Instead, non-functional at-
tributes, such as device power features, computational resources and connectivity status, that characterize
the context of both service providers and consumers play an important role to the quality and usability
of discovery results. In this paper we introduce context-awareness in web service discovery, enabling
the provision of the most appropriate services at the right location and time. We focus on context-
based caching and routing for improving web service discovery in a mobile peer-to-peer environment.
We conducted a thorough experimental study, using our prototype implementation based on the JXTA
framework, while simulations are employed for testing the scalability of the approach. We illustrate the
advantages that this approach offers, both by evaluating the context-based cache performance and by
comparing the efficiency of location-based routing to broadcast-based approaches.

1 Introduction

An increasing amount of data and services are becomingcontextual, in the sense that context is inherent
in the relevant metadata information. In addition, services also becomecontext-aware, so that results are
returned based on context. A simple specific example is location-dependent services, which deliver re-
sults based on location of the requestor. However, locationis just one dimension of context. A further
extension naturally includes time (spatio-temporal context), butcontext can also be generalized to an arbi-
trary number of dimensions.The contextual dimensions can for example be the result of sensor information
like temperature or speed, constraints that depend on availability of resource like bandwidth or display
characteristics, but also human factors like personal habits and social environment.

An example of a simple context-aware query is”find images of local monuments”, submitted by a user
currently walking near Acropolis in Athens using a device that can display images of size at most 640x480
pixels. Apparently the user searches for low quality imagesof the monuments on/around Acropolis hill. In
this case, images of monuments far away from the query location or of quality higher than the capabilities
of the requestor device are irrelevant for the query. Thus, both the location of the requestor and the device
capabilities have a significant impact on the query processing plan. Generalizing the above, such implicit
- contextual - information related to the query or the deviceneeds to be taken into account to increase
effectiveness of query processing and quality of the results.

It is thus natural that future mobile web services will be characterized by an arbitrary number of con-
textual dimensions. In this paper, the term service refers to web services as defined by the W3C1. An

1W3C, Web Services Architecture. W3C Working Group Note 11 February 2004. http://www.w3.org/TR/2004/NOTE-ws-arch-

1

important challenge is how to find appropriate web services based on context, i.e.,context-aware web
service discovery. Web service discovery from handheld devices differs from traditional web service dis-
covery. The dynamic features of terminals - such as heterogeneity, availability, mobility - that act as service
providers and share data, resources and functionality, make existing discovery mechanisms designed for
stationary web services problematic. Mobile devices, despite their fast technological advances, still impose
restrictions with respect to processing power, storage space, energy consumption and bandwidth availabil-
ity (Jensen, 2002).

Modern mobile devices are able to produce a wide range of data, from multimedia files (images or
video) to environmental measurements (for devices equipped with sensors). The heterogeneity of this
information calls for a globally acceptable way for access and sharing, hence the use of web services is
adopted. In our application scenarios, each mobile device may host a set of web services to enable access to
different types of information. A wide variety of applications can benefit from such mobile web services,
among others: peer-to-peer content sharing, provision of dynamic or real-time navigation information,
smart homes, detection of emergencies.

The fundamental mechanism for web service discovery is querying service directories, i.e., registries
of service descriptions that facilitate web service discovery based on specific parameters. A context-aware
service directory (Doulkeridis et al., 2003; Doulkeridis and Vazirgiannis, 2004) increases the precision and
efficiency of web service discovery by matching the context of the user submitting a request against the ser-
vice’s contextual information. Moreover, lack of scalability and thesingle point of failureproblem require
distribution of service directories. One suitable solution for solving this problem is to use a peer-to-peer
(P2P) architecture. In our approach, the service directories are maintained by servers, each responsible for
a particular geographic area. Each server maintains a context-aware service directory, storing information
about all published web services in the corresponding area.Mobile devices perform web service discovery
querying the server responsible for their area. The serversof different areas are interconnected in a P2P
network, essentially functioning as super-peers.

The challenge we tackle is efficient discovery of web services. In this paper we present algorithms
for context-based searching in the P2P network of service directories. The baseline search mechanism in
unstructured P2P networks is broadcast-based, known as flooding. However this results in excessive com-
munication cost and low granularity of search. It also imposes a query horizon to the service request, hence
it is inappropriate for locating remote or rare contents. Furthermore contextual information is ignored,
resulting in low quality web service discovery. In order to reduce the search cost and improve the search
quality, we introduce context-based caching into the architecture. In this way, the results of context-aware
service requests are cached, in order to save the processingcosts of subsequent identical requests. These
results (service descriptions) are of improved quality, due to context-awareness, and they can also be par-
ticularly useful when the query workload distribution is skewed. When the query horizon is not adequate
for serving the service request, we propose context-based routing as a mechanism that aims to locate web
services residing outside the query horizon.

The main contribution of this paper is the integration of contextual information in P2P web service dis-
covery, providing an architecture and algorithms for efficient context-based caching and routing. Based on
a prototype implementation we conduct experiments evaluating the performance of web service discovery
based on parameters such as context (location), cache size,query load distributions, starting threshold for
caching, etc. We also study a particular type of context-based routing, location-based routing and show
how this ensures effective location-based service discovery. This paper is a revised and substantially ex-
tended version of an earlier conference paper (Doulkeridiset al., 2005), where we presented our approach
regarding P2P service discovery based on caching and context-awareness. We now extend this work, by
studying context-based routing of web service requests in aP2P architecture of service directories. This
proves to be a promisingly scalable solution towards distributed and context-aware service discovery. In
particular, the contents of Sections 4.1, 4.3, 5.2 are entirely new.

The remainder of the paper is structured as follows. In Section 2 we present related work. In Section 3
we present our context model for context-aware web service representation and we describe the MobiShare
architecture for mobile web service discovery. In Section 4, we discuss query processing, particularly
context-based caching and location-based routing, based on contextual queries for web services in a P2P

20040211/, 2004.

2

architecture of service directories. Section 5 presents the experimental results. In Section 6, we conclude
the paper and describe future research directions.

2 Related Work

Distribution of service registries has emerged as a necessity in highly dynamic mobile environments. This
also holds for static architectures. For example, the latest UDDI specification2 addresses this challenge,
however its perspective is orthogonal compared to our approach. UDDI focuses on avoiding key collision,
when generating unique service keys in different registries.

Recently, several research initiatives have identified theneed for enhanced service directories (Akkiraju
et al., 2003; Jeckle and Zengler, 2002; ShaikhAli et al., 2003) or extended service descriptions. The WASP
project (Pokraev et al., 2003) extends the functionality ofUDDI by introducing UDDI+, an attempt to
improve the existing service discovery mechanisms regarding semantic and contextual features. The CB-
SeC framework (Mostefaoui and Hirsbrunner, 2003) attemptsto enable more sophisticated discovery and
composition of services, by combining agent-oriented and context-aware computing. Lee et Helal (Lee and
Helal, 2003) also argue in favor of providing support for context-awareness by means of service registries
and they propose the use of context attributes, as part of theservice description. For a recent review on web
service registries see (Dustdar and Treiber, 2005).

Service discovery in pervasive environments (Zhu et al., 2005) also calls for context-aware support, in
order to make service discovery more efficient by intelligent selection of directories with relevant services.
In (Chakraborty et al., 2006), an approach for distributed service discovery is presented based on P2P
caching of service advertisements. Services are organizedhierarchically and they are described using
OWL to support semantic discovery.

In (Schmidt and Parashar, 2004), an approach for decentralized web service discovery based on P2P
technology is presented. A global service discovery architecture (GloServ) is presented in (Arabshian
and Schulzrinne, 2004), where services are organized basedon location hierarchically, similar to DNS
domain names. Our work is also related to research in the areaof location-based services, which covers
one of the possible dimensions, i.e., areas, in our contexts. In (Jensen et al., 2004) modeling of this
dimension is studied. Another relevant research work is presented in (Lee et al., 2002), which is about
location-dependent information services in pervasive computing environments. In (Steen and Ballintijn,
2002), services are organized hierarchically in a distributed search tree and the authors focus on avoiding
bottleneck problems on high-level nodes.

In (Baggio et al., 2001) Baggioet al. describes the location service in Globe. In order to designate
objects, the Globe location service uses unique identifierswhich they callobject handle. This handle is
location independent. The location of an object is described by means of acontact address. The Globe
location service is based on a hierarchical organization ofgeographical/administrative/network-topological
domains. Each domain is represented by a directory node, responsible for keeping track of all objects in
its domain. For each object, the node either has acontact recordwith the object address, or aforwarding
pointer indicating that the information is stored lower in the tree.

There is an increasing interest in the research community about caching in P2P networks. One of
the first approaches to P2P caching was presented in (Iyer et al., 2002). A set of nodes cooperate to
function as a traditional Web cache. In (Patro and Hu, 2003),the locality of queries in a Gnutella P2P
network is presented, and a transparent query caching scheme is proposed. Cache updates of mobile
agents organized in a P2P manner is discussed in (Leontiadiset al., 2004), whereas an approach regarding
distributed caching in Gnutella-like networks, based on distributing the query results among neighboring
peers, is presented in (Wang et al., 2004). In (Hu et al., 2004), the authors propose building a P2P service
directory by grouping together service entities semantically. In (Zheng et al., 2002), cache invalidation
for location-dependent data is discussed and two new cache replacement policies are proposed. Recently
taxonomy caching has been proposed as a scalable approach for web service discovery, which extends the
query horizon in unstructured P2P networks (Nørvåg et al.,2006). Compared to the above, our approach
deals with caching in P2P service directories, where contextual query workloads initiate caching of service
descriptions, in order to augment the performance of service discovery.

2The UDDI specification version 3.0,http://www.uddi.org.

3

Location=Acropolis

Time in [09:00-10:00] Time in [10:00-11:00]

Image=jpg Image=bmp Bandwidth=high

: service

Athens Downtown

Plaka Thisseio Monastiraki

Ermou str.

Image

JPG
MPG

BMP

1-2 MB0-1 MB
8-bit 16-bit 32-bit

: service

Figure 1: (Left) Conceptual model for context hierarchy. (Right) Different context hierarchies for each
contextual dimension.

3 Data Model and Architecture

Our approach to web service discovery is based on the notion of a service directory and in particular we
considercontext-aware service directories(Doulkeridis et al., 2003) that support maintenance of contex-
tual metadata for each web service. In our approach, this contextual information persists as part of the
service directory and it is not maintained as a separate layer external to the web service architecture. This
facilitates context-aware service requests aiming to discover more appropriate web services to the user
needs. In this work, we stress the importance of taking into account context in forming and processing user
queries. In (Doulkeridis et al., 2003), we have studied the benefits of context-awareness to the efficiency of
processing and in the quality of the results. Any attempt to tackle mobile service discovery, without taking
into account the involved contextual parameters, is bound to fail because it leads to: 1) small precision of
the search, 2) extremely large volume of exchanged data, and3) a time-consuming process that is annoying
for the user (Doulkeridis and Vazirgiannis, 2004).

In the rest of this section we describe the data model for context representation of web services and we
present the overall decentralized architecture of P2P service directories.

3.1 Context Model

The data model assumed in our work is acontext hierarchy, as illustrated by an example in Figure 1 (left).
The basic representation entity is thecontextual path. In general, a contextual path is an ordered set of
attributes (also calleddimensions) that have been assigned values of a specific data type. The contextual
path indexes one or more web services. The combination of allpossible contextual paths within a service
directory results in a context hierarchy. Note that in the case of a contextual dimension where this is not
possible, we can always represent it as a degenerate hierarchy that consists of one level only. However, in
general, the hierarchical representation model adopted here for contextual service descriptions follows the
same principles as the most popular and widely used hierarchical model (XML), which is the cornerstone
of all standardization efforts in the service-oriented world.

Mobile users issue keyword-based service requests that aresemantically disambiguated by means of a
service hierarchy (i.e. a set of service categories which isdomain-specific and is organized in a hierarchical
structure) (Valavanis et al., 2003), thus leading to those service categories relevant to the user request. At

4

Cell A

Cell B

Cell C

Wireless Network

Access Point

Wireless Network

Access Point

Wireless Network

Access Point

CAS
CAS

CAS

Internet

(a) Mobishare infrastructure

CAS

Device

Repository

Service Manager

Service Taxonomy

Context-aware

Service Directory
(CASD)

Service
Description

Repository

Request Handler

Service Publisher

Device Controller

CAS-2-CAS Communication Controller

(b) CAS architecture

Figure 2: MobiShare and CAS architecture.

the same time, a contextual query is formulated, describingthe user’s current situation, in order to be
issued to the context-aware service directory. In this paper, our focus is on contextual query processing,
after having found the relevant service categories. The useof context-awareness in the service discovery
process constitutes a filtering mechanism on the returned services, thus increasing the precision of retrieval.
The issue of semantic service discovery will not be further addressed in this paper.

The choice of a hierarchical representation of context is straightforward for several types of context. In
the case of location, geographical information supports the hierarchical notion in itself; countries consist
of cities, each city has districts, and each district is further split into neighborhoods and streets. This
is an example of disjoint contexts, i.e., the same district cannot belong to two different cities. In other
cases, a context may belong to more than one contextual paths. For example, a service-specific contextual
parameter, such as its average processing time may be preceded in the context hierarchy, by the bandwidth
availability for accessing the service or by the hosting device characteristics. This results in contextual
subpath replication in some parts of the context hierarchy,so that in order to allow easier management of
contextual paths and support higher context granularity, the context hierarchy will be implemented using a
separate hierarchy for each dimension, as illustrated in the right part of Figure 1. We will elaborate more
on this later in Section 4.2.1.

Definition: Given a set ofD contextual dimensions, we define a context hierarchyH such as:H = ∪Hi

with (i = 1..|D|), whereHi is an arbitrary hierarchical ordering of the values of each context domain.
Query and update algorithms for a hierarchical context model are usually similar to algorithms for

tree-based representations. In previous work, we have studied both query (get a service based on its con-
text) (Doulkeridis et al., 2003) and update (update the context of a service, insert new service) (Doulkeridis
and Vazirgiannis, 2004) algorithms for a contextual model that resembles one hierarchy. In general, these
algorithms are variations of breadth-first or depth-first search, according to the specific problem require-
ments.

The context hierarchy is used to support service requests, henceforth also referred to as query for
services. The queries are enriched with a contextual query that captures the context of the request. The set
of servicesS that satisfy a request is the intersection of the servicesSt that match the topic of request, and
the servicesSc that match the context of the request:S = St ∩ Sc.

While the context model is general enough to be applied in other domains, we focus on mobile environ-
ments in this paper. Even though we believe that the value of context is elevated by mobility, the scope of
our work can be easily extended in any context-aware domain,as long as the necessary context hierarchies
are defined for the particular domain.

3.2 Architecture

The work presented in this paper is done in the context of the MobiShare architecture (Valavanis et al.,
2003). MobiShare provides an infrastructure for ubiquitous mobile access and mechanisms for publishing,
discovering and accessing heterogeneous mobile resourcesin a large area, taking into account the context
of both sources and requestors. As illustrated in Figure 2(a), MobiShare consists of numerous wireless

5

network access points that partition the geographical two-dimensional space into areas of coverage called
cells. Mobile users carrying portable devices stroll around and share their data through web services.
Besides mobile web services, there may also exist a variety of stationary web services in the surrounding
environment. Within each cell, acell administration server(CAS) is responsible for device monitoring
and management, as well as for indexing the contents and services provided by the mobile devices. Data
sharing web services are just one type of context-aware services. There are also web services that provide
aggregated environmental information, like temperature,lighting conditions, amount of traffic, gathered
from static sensors or mobile sensors attached to devices.

The CAS architecture is illustrated in Figure 2(b). Each CASmaintains acontext-aware service di-
rectory(CASD) that stores information about all published services in the corresponding cell. Apart from
CASD, a CAS consists of the following modules: 1)CAS-2-CAS communication controllercontaining
addresses of other CASs and responsible for managing interactions with other CASs, 2)Service Manager
containing the CASD, aService Taxonomyand aService Description Repository, 3)Device Controllerthat
manages the device-specific information, 4)Device Repositorystoring a list of all devices in the cell along
with their profiles, 5)Request Handlerfor receiving incoming service requests, and 6)Service Publisher
for publishing service descriptions.

CASs are only aware of neighboring CASs, so global knowledgeof the network topology is unavailable.
In this sense, the CASDs form a super-peer network, with the actual peers being the mobile devices that
offer mobile web services. This approach is robust and scalable, because it ensures system operation even
during the failure of some nodes, and also allows dynamic addition or removal of CASDs. In this paper
we are mainly interested in studying context-aware servicediscovery in this P2P network of CASDs, so
henceforth they will also be calledpeersfor simplicity.

3.3 Realizing Context Processing with SOAP and WSDL

The context processing features of the proposed architecture can be realized with base web services stan-
dards such as SOAP and WSDL. Compatibility with these standards is important as context has a key role
in service-oriented architectures situated in a mobile andubiquitous computing environment.

The capability of a node, either a CASD or mobile terminal, toprocess context information (and
probably adapt its behavior upon it) is realized as a WSDL 2.0feature component3 identified by a URI,
e.g.http://web-service-standards.org/base-extensions/context-processing.
Features are a basic extension mechanism of WSDL 2.0 and represent abstract functionality that charac-
terizes the message exchange specified by an operation or interface. Examples of such functionality are:
reliable and secure transfer of messages, message routing,correlation etc.

Thecontext-processingfeature complements the message exchange during service discovery and pub-
lishing (and generally of any context-aware operation) with information related to the context of the inter-
acting parties. It specifies the capability of the node implementing the ”context-aware” operation to extract
and take into account context information, but not the actual way that this information is used by the oper-
ation. The way that context enhances the behavior of the operation is part of the operation specification.

For purposes of illustrating the above concepts, a WSDL 2.0 code excerpt of the interface provided
by CASDs’ is provided below. CASD operations are grouped in two WSDL interfaces, a search and a
publishing interface. The search interface comprises of operations for submitting service discovery requests
to a service directory either from user terminals or peer directories. As regards the publishing interface it
is used by user terminals for registering to service directories and managing their published services. The
enhancement of one or more of the following operations with thecontext processingfeature is expressed
with a respective WSDL feature element.

<description
xmlns="http://www.w3.org/2006/01/wsdl"
targetNamespace="http://cs.aueb.gr/wsdl/casd"
xmlns:tns="http://cs.aueb.gr/wsdl/casd"
xmlns:wsoap="http://www.w3.org/2006/01/wsdl/soap">

3Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language.http://www.w3.org/TR/wsdl20.
World Wide Web Consortium Candidate Recommendation, 2006.

6

<types> ... </types>

<interface name="serviceDiscovery">
<operation name="search"

pattern="http://www.w3.org/2006/01/wsdl/in-out">
<!-- Context-aware search for services -->

<feature ref="http://services-standards.org/base-
extensions/context-processing" required="false"/>

<input messageLabel="In" element="tns:searchRequest"/>
<output messageLabel="Out" element="tns:searchResponse"/>

</operation>
</interface>

<interface name="servicePublish">
<operation name="register"

pattern="http://www.w3.org/2006/01/wsdl/in-out">
<!-- Register a mobile device to a service directory -->

<feature ref="http://services-standards.org/base-
extensions/context-processing" required="false"/>

<input messageLabel="In" element="tns:registerRequest"/>
<output messageLabel="Out" element="tns:registerRequest"/>

</operation>

<operation name="publish"
pattern="http://www.w3.org/2006/01/wsdl/in-out">

<!-- Publish a set of services to the directory under a
specific context -->

<feature ref="http://services-standards.org/base-
extensions/context-processing" required="false"/>

<input messageLabel="In" element="tns:publishRequest"/>
<output messageLabel="Out" element="tns:publishResponse"/>

</operation>

<operation name="unpublish"
pattern="http://www.w3.org/2006/01/wsdl/in-out">

<!-- Unpublishing does not require any context processing -->
<input messageLabel="In" element="tns:unpublishRequest"/>
<output messageLabel="Out" element="tns:unpublishResponse"/>

</operation>
</interface>

<binding name="discoverySOAPBinding"
interface="tns:serviceDiscovery"
type="http://www.w3.org/2006/01/wsdl/soap"
wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP">

<operation ref="tns:search"
wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response">

<wsoap:module ref="http://soap-modules.org/context-processing/"
required="false"/>

...
</operation>

</binding>
...
</description>

The abstract functionality specified by thecontext-processingWSDL feature can be realized through
a respective SOAP module4. A SOAP module extends the behavior of a single SOAP node by imple-

4SOAP Version 1.2 Part 1: Messaging Framework.http://www.w3.org/TR/soap12-part1/. World Wide Web Con-

7

menting one or more features. A feature is expressed in SOAP messages with a set of SOAP header
blocks. The definition of the syntax and semantics of these header blocks is part of thecontext-processing
SOAP module specification. We identify this module with the URI http://soap-modules.org/
context-processing/ and reference it in appropriate operations elements in the interface bindings
section of the WSDL description document5.

The ”required” attribute of the feature element specifies whether support of SOAP module is required
for a client in order to utilize the service operations. A value of ’false’ states that feature implementation is
not mandatory for a client in order to invoke the respective operations, allowing thus both context-aware or
”unaware” mobile terminals to interact with the CASDs. The same holds for thecontext-processingmodule
that realizes the WSDL feature and is referenced in the definition of the service interface bindings. We have
identified four types of SOAP header blocks that are relevantto context management in the proposed P2P
service discovery architecture. Our focus in this section is on the specification of the types and semantics
of SOAP header blocks, while the syntax and structure of block information will be part of our future work.
Context header blocks are introduced in the header part of a SOAP message by CASDs or user clients. Each
header block is identified by a local name and the namespace ofthecontext-processingSOAP module:

• context-match, that requires from the ultimate receiver of the SOAP request to perform a match
against the given context while generating a response. The header block contains an element infor-
mation item that specifies a pattern for context matching. Inthe case of a service discovery request,
the header block is introduced by a user client and is processed by the CASD receiving the request.
The CASD evaluates the request on the subset of its contents that matches the given context pattern.

• context-update, that updates the context of the initial sender to the ultimate receiver of the SOAP
message. Context information is included in the header block as an element information item. A
context-update header block may be sent as part of a service publish request sent from a user terminal
to a CASD, specifying the context of the published services.

• context-trace, that is used by an initial SOAP sender to collect context information during the routing
of a SOAP request to the ultimate receiver through various intermediaries. For instance, a context-
trace header block sent from a user terminal to a CASD, is initialized with the mobile terminal’s
current context and is further enriched with relevant context information items from all SOAP in-
termediaries relaying the request to the target CASD. Such SOAP intermediaries could be other
user devices acting as SOAP gateways in the user’s Personal Area Network. We assume that these
intermediaries may have a more accurate or complete view of the initial sender’s context and are
authorized to access and append context information. A context-trace header block includes a set of
element information items (context parts, that correspondto contextual paths or fragments of them)
representing context information collected from the various intermediaries. A context-trace header
can be sent as part of a device registration request to a CASD,allowing thus the user terminal to
”explore” its surrounding context.

• trace-result, that includes the result of a context-trace header block. Atrace-result header block is
returned to the initial node as part of a SOAP response. On thebasis of trace-result information a
user device updates its perceived context that is further used during service publishing.

4 Context-based Caching and Routing

Based on the aforementioned super-peer architecture, we will study issues related to context-based search-
ing, i.e. routing of service requests (also called queries for simplicity). We will first give a general overview
of how searching is performed and then describe how context can be used to improve the quality of web
service discovery. Our main approaches towards this aim arecontext-based cachingand location-based
routing.

sortium Candidate Recommendation, 2006.
5Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts. http://www.w3.org/TR/

wsdl20-adjuncts. World Wide Web Consortium Candidate Recommendation, 2006.

8

4.1 Basic Searching

The basic search approach is broadcast-based, i.e., based on flooding. It involves query forwarding from
the local CAS to its neighboring peers on every user request.Initially the query is submitted to the local
CAS (henceforth also calledoriginator), which performs the following tasks: 1) forwards the queryto its
immediate neighbors, and 2) processes the query locally. The neighboring CASs follow the same procedure
as long as the maximum hop count TTL (time-to-live) is not reached. On each CAS where there is a match,
the results are sent back directly to the originator, i.e., not through the neighboring peers. The originator
collects all results, and sends them back to the requesting device.

The time-to-live parameter determines the range of the search (query horizon), in terms of the number
of steps that the query will be forwarded to a peer’s neighborhood, starting from the originator. It is clear
that increasing values of TTL considerably increase the number of peers that receive and process the query,
and thus the probability of reaching multiple and high quality answers. On the other hand, a very large
number of messages has to be exchanged due to the exponentialnature of this strategy.

The criteria for query satisfaction vary according to the specific application. While locating a single
service that is close may be enough for a taxi-booking application, in the case of more complex services
that may consist of several simple services this is not enough. For example, a request for cheap and near
restaurants obviously cannot be limited to the first servicefound. Similarly, there exist scenarios of use
that request the best N services, where N is a user-defined parameter. The search strategy employed clearly
depends on the type of application. In this paper, we are interested in the retrieval of as many contextually
relevant services as possible, assuming exact context matching.

Yet another direction for query satisfaction is the case of partial context matching. This means that
a query can be satisfied even if only part of its context is matched with the service context. In this case
a subset of the query dimensions are prominent or a more elaborate technique is to allow weighting of
different dimensions. Usually the location dimension is considered prominent in most applications.

4.2 Query Processing with Caching

We enhance the basic search mechanism with context-based caching in order to address the case of recur-
ring queries and increase the efficiency of P2P web service discovery. We start with a general overview,
then describe messages that will be used in the communication, followed by a study of issues related to
caching query results.

4.2.1 Overview

Local query evaluation is a hybrid approach that employs query forwarding and caching of results in order
to enhance the overall performance of the P2P network. A CAS,henceforth also called peer (Pi), maintains
data structures that store service descriptions, both local and cached ones, as well as relevant information
needed to ensure cache consistency. Three data structures are identified as essential parts of a peer’s internal
architecture:

• A context-aware service directory (CASD) that is conceptually represented as a hierarchy of services.
However, in the presence of many different contextual dimensions, it is not straightforward to com-
bine them arbitrarily in a single way that makes sense, without replication of certain sub-hierarchies.
Hence, context management becomes complicated. Instead, aslightly different approach is to as-
sume different context hierarchies for different contextual dimensions (see Figure 1). This approach:
1) allows easier management of contextual paths and 2) supports higher context granularity. Never-
theless, both approaches present several similarities, due to their reliance on the notion of contextual
paths, so the same algorithms and techniques apply in both cases. In the rest of this paper, we assume
different hierarchies of contextual values for each dimension of context.

• A cacheC used for services’ descriptions storage. The structure of the cache is similar to CASD.

• A list L containing the identifiers of the peersPj that currently maintain copies ofPi’s services in
their local cache.

9

4.2.2 Query and Cache Management Protocol

A detailed description of the message types introduced for query support and cache management is pro-
vided in this section. We highlight the role of each message type and specify basic attributes:

• Service Request (Sreq): occurs when a peer (Pi) submits a contextual queryQcxt for relevant ser-
vices6 to its neighborsN(Pi). The message includes:Qcxt, Pi’s identifier, and a counterH (time-
to-live) that indicates the number of steps thatQcxt will be transmitted.

• Service Request Forwarding (Sreqf): a peerPi that receives aSreq message sendsSreqf to neighbors
in N(Pi), if H > 0. In each message hop the value ofH is reduced by one. TheSreqf message
includes the peer identifier of the originator (Porig), the queryQcxt and the current hop countH .

• Service Response (Sres): sent by a peerPi that received a Service RequestSreq, back to the origi-
nator of the query. The contents of this message are the matching service descriptions retrieved both
from the peer’s CASD and its cache contents.

• User Moved (Mu): this message is send by a peerPA to a peerPB , whenever a user deviceu that
offers servicesu.S (registered inPA’s CASD) moves from the cell controlled byPA to the respective
cell of PB. The two cells are assumed as spatially adjacent. The message contains the descriptions
of the servicesu.S and are appended inPB ’s CASD.

• List L Moved (Ml): follows PA’s Mu message toPB and transfers the list of peers kept inPA.L
that keep cached content provided byu that migrated fromPA to PB .

• Invalidate Cache (Ic): follows List L Moved (Ml) message and is sent by peerPB (as defined above)
to all the peers that cache services offered byu. The message contains the identifier of the peer that
includesu.S in its local CASD (PB in our case) and the context ofu in the new cell. The message
triggers cache updates (i.e., changing peer id where service is now available - in this case changing
PA to PB) and cache replacement in case the context ofu is different in the respective cells of peers
PA andPB .

• Invalidate List (Il): is sent when a cache replacement occurs. When a peerPA replaces an entry in its
cacheC, i.e., deletes serviceS originally from peerPD with another service, it sends anIl message
to PD causing deletion of the corresponding entry (i.e.,PA’s identifier) fromPD ’s list L.

Contextual queries submitted to a peerPA trigger retrieval of matching services and merging of partsof
neighboring service directories (N(PA)) to the originator cache, in order to enable local query processing
of future service requests with similar context.

4.2.3 Message Exchange Example

Consider the case of a mobile deviceu located in a cell controlled by a peer A that issues a requestQ
for services. At the same time a contextual queryQcxt is formulated incorporating the current context
of the request (in terms of location, user profile, device capabilities, etc). Then the request is sent to the
local service directory, say peerPA and then forwarded to all neighboring directories (N(PA)) usingSreqf

messages. The matching services are returned toPA via Sres messages and at a next step to the requesting
deviceu. Finally, PA merges the service descriptions with its current cache contents, for contextQcxt, in
order to serve further requests of the same type locally.

As a result of user movement, a mobile device can cross its current cell boundaries and thus enter
another peer’s area of responsibility. Figure 3 presents such a scenario, where a user deviceu moves from
the cell controlled by peer A to the respective cell of peer B.In addition, it shows the message exchange
sequence that is triggered by cell change. At first, aMu message is sent from peer A to peer B which is
now responsible for publishing the device’s offered servicesu.S. This message is followed byMl, that
charges peer B with keeping consistent the caches of other peers (peers C and D) that store part ofu.S. Peer
B enforces cache consistency by sendingIc messages to C and D that update their cached copies ofu.S.

6Here we remind the reader that the requestor’s queryQ is enriched with implicit contextual information forming thusQcxt

10

1: Mu

User movement

3: Ic

3: Ic
2: Ml

D C L D C L

D C LD C L

A

BC

D

ListCASD Cach
e

4: Il

4: Il

Figure 3: Message exchange resulting from user mobility in aP2P architecture of context-aware service
directories.

Assume that the context ofu.S is different in the new cell in terms of the location dimension, e.g. in cell B
[location=Thisseio] while in cell A [location=Acropolis]. Moreover, peers C and D are interested only in
services offered in the area of Acropolis. As a result, cachereplacement is triggered andIl messages are
sent from C and D to peer B in order to remove them from its listL.

4.2.4 Contextual Query Result Caching in Practice

In the following, we discuss issues related to caching queryresults and their effect on web service discovery
in the architecture described above. Such issues are: queryworkload distributions, caching models and
cache replacement strategies. In the next section, we experimentally validate these issues.

Non-uniformly distributed query workloads motivate the design of algorithms that achieve better per-
formance. In the case of successive occurrences of a requestq, caching in principle reduces the cost
induced by processing repeated occurrences ofq. Determining the point (in terms of query workloads)
when caching query results should start may be useful. In other words, assuming a discrete set of possible
queries and a statistical distribution of the expected query workload, athresholdmust be defined, above
which the originator starts caching parts of directories that satisfy a specific query. An initial choice could
be the mean value of the query distribution. However, we willelaborate more on this later.

Maintainingcache consistencyis a major issue in every caching scheme. The most popular approaches
are: push-based and pull-based, as well as some variations.In push-based approaches, the cached content
is updated by the CASDs that currently manage the services that have been cached. This is achieved by
each peer keeping a listL of those peers that have at some point requested and cached the specific service.
In pull-based approaches, peers that have cached content periodically ask the responsible peers for updates,
in order to avoid stale content. Our approach is push-based and enforces cache consistency through cache
updates whenever a change occurs, for example whenever a user moves to a different cell.

Allowing cache forwardingis another interesting issue of the caching approach. Consider the case of
a peerB that contains cached content from another peerA, retrieved for the contextual queryQcxt. If a
third peer, say peerC, requests fromB services for contextQcxt, then two options exist: 1)B evaluates
the query and sends the relevant part of its directory, whichcontains only descriptions of local services, to
C, or 2)B evaluates the query and sends the part of the directory containing both local and cached service
descriptions. The former option prevents caching of service descriptions beyond neighboring directories,
in other words a peer can contain only its local contents and contents of its immediate neighbors, defined
by H . In the latter case, we enable cache forwarding, so a peer mayeventually (after many steps) contain
service descriptions from any service directory. However,this will result in caching large portions of
service directories and frequent cache replacements, withunexpected performance degradation.

Cache forwarding enables the diffusion of popular service descriptions even in peers that cannot reach
them due to the limited TTL. As a result popular sources become available to distant peers while the

11

Europe

Norway

Trn2Trn1

Trondheim

Trn3 Trn4Fos2

Fosnavåg

Fos3Fos1 Fos4

Greece

Peristeri

Athens

MonastirakiKypseli Thisseio

Figure 4: Location hierarchy.

message overhead due to frequent flooding with high query TTLis constrained. A negative effect of cache
forwarding is the increasing cache consistency overhead inpopular peers, e.g. peers located in an area of
global interest (Acropolis in the case of Athens) or in any other area where a significant event takes place.
With reference to the above example, peer A is responsible for the consistency of peer B and C caches,
as regards contextQcxt. In general, every peer that receives and caches forwarded cache content contacts
the original source and registers for change notifications.Another issue that is raised from this approach
is the latency in cache invalidation of distant peers, resulting in their use of stale results (even for a short
time period). An amendment that can be introduced is the control of the horizon (hop distance) of cache
forwarding by taking into account factors such as 1) change frequency of cached content, 2) available
resources of source peer in terms of storage capacity or bandwidth.

Cache replacement strategy is a critical aspect of any caching scheme that greatly impacts the perfor-
mance. In a P2P setting relatively large TTL values may return a high number of results thus causing
frequent cache replacements. In this approach, we used least frequently used (LFU), which is deemed ap-
propriate, since it penalizes services that are not requested frequently, thus replacing them with other more
popular services.

The use of one hierarchy for each dimension looks like a case where a multidimensional index could be
used. However, this is not the case, because unlike traditional multidimensional data where there is usually
one value for each dimension, in our case for each service, there are just values for a small subset of possible
dimensions. In this case, it is better having one hierarchy for each dimension (less space and less cost of
updating). This approach is further motivated by the fact that service requests involve only a small subset
of contextual dimensions, depending on the type of service.For example, a web service that aggregates
and returns sensor readings, like temperature, heat or noise level, is dependent on the location, whereas a
web service that provides file-sharing purposes depends on the file type and size dimensions of context.
However it is highly unlikely that a web service may depend onmost (or all) contextual dimensions.

4.3 Location Hierarchy

Intuitively, if we assume that the content in peers is location-specific, then upon receiving a query for
location A, a node should route the query only to nodes residing in location A, rather than other locations.
This motivates the need for location-based routing of service requests.

4.3.1 Limitations of Context-based Caching

While context-based caching can be particularly effectivefor recurring contextual service requests, as will
be shown in Section 5, it does not suffice 1) in the case of inexact context match, and 2) for locating remote
contents.

Consider the location hierarchy in Figure 4. Let us further assume location-based content assignment,
meaning that the P2P topology is put on top of the geographical map, so that neighboring peers reside in
nearby locations. If a contextual service request issued bya peer inTrondheimis for locationMonastiraki
and this leads to a local cache miss, then the alternative is to search using the basic mechanism, i.e.,
flooding, which would probably return few results. Actuallyin many cases, for sufficiently large networks

12

and queries for far locations, no results at all. However, using the hierarchy the service request could be
extended to search for ancestor nodes ofMonastirakiin the hierarchy, in this exampleAthens. If this entry
is in the cache, then the query can be forwarded to the cached peer and then local flooding will find the
requested location-specific content with high probability. Still, the query extension does not guarantee that
the requested location will be found, since this is dependent on the contents of the cache or, in other words,
on the query horizon. So the challenge is to exploit the location hierarchy (and generalizing, any context
hierarchy) in a way that leads searches to remote peers, thusextending the query horizon.

Notice the advantages and differentiating factors of location-based routing compared to context-based
caching. First, while context-based caching is beneficial in the case of recurring contextual queries, where
the exact same context request is submitted, location-based routing can provide a direction for the search
even in the case of partial context matching, when some (not all) of the query’s contextual dimensions
match the cached contextual description. In that case, the cache cannot be helpful. Second, context-based
caching is totally dependent on the query horizon of the basic search mechanism. In the case of queries
for local contents, context-based caching suffices, however supporting context-based service discovery in
large-scale networks requires a different approach. Towards this end, we focus on location-based routing
in the next paragraphs.

4.3.2 Location-based Routing

Location is a contextual dimension that is among the most important. In addition it also has the property
that it is often related to the physical location of the web services. For example, the highest probability of
finding pictures from Athens will probably be at thelocationAthens. It is also the case that often requests
will be performed for a location that is very far from the location of the query originator, and that none of
the service providers at a nearby location will be able to satisfy the request. An example is a person sitting
on the airport in Trondheim wanting to access services in Athens, maybe to see pictures from today or book
a taxi from Athens airport.

Unfortunately, in the case of large P2P networks, a contextual request for very remote contents will
not be successful by traditional flooding approaches, and asindicated in the previous paragraphs, it will
probably not be even be successful in the case of contextual caching. To overcome the limitations of the
basic search, mechanisms are needed that enable access to remote contexts. One possible solution to the
problem is to use a hierarchical overlay network based on theunstructured P2P network using the DESENT
algorithm (Doulkeridis et al., 2007). Another solution is to organize the CASs in a DHT-based structured
P2P network (in addition to the unstructured P2P network they already belong to) and use this for storage
of location information. Using a hierarchical network involves possible problems with load-balancing and
complex maintenance, so that given the stability and the very low churn rate of the CASs in our architecture,
the DHT solution is most appropriate. We emphasize that in this case each CAS actually participates in
both an unstructured P2P network and a DHT at the same time. Also note that services are not in any way
indexed in the DHT, because of the high churn of the mobile devices and their services that would induce
a very high maintenance cost (in contrast to the location of aparticular CAS which can be expected to be
extremely stable).

The maintenance of location-based in information is done asfollows: The location of a CAS is rep-
resented as a contextual path based on a location taxonomy. For example, the location of a CAS near
Acropolis would beL=/Europe/Greece/Athens/Acropolis. Each CAS has an identifier CID, in practice an
IP address/port number. Key-value pairs (Li, Ki) are inserted into the DHT. Thus given a query for a
particular location L, a search in the DHT given L would give CID as the result. Often a location query
is not performed for the most specific location, so we store inthe index also the possible prefixes of the
contextual (area) path. Thus in this particular example, 4 key-value tuples are inserted into the DHT. This
extra information enables searches with different level ofgranularity, as well as extending queries to more
general or more specific contexts. Note that a search for a location may return more than one CID, because
the requested area contains more than one CAS. A search for a particular location requires onlyO(log n)
messages, wheren is the number of CASs in the network.

13

Number of peersN 25 or 100
Number of neighborsn 4
TTL valueH 1 − 4
Dimensions of contextD 3
Values per dimensionV 4 − 5
Service contextsCs 100
Services per directoryS 1000
Cache sizec × S 0 < c < 1
Caching thresholdt 3 − 10

Figure 5: Experimental setup default parameters for implementation of context-based caching.

5 Experimental Results

In this Section, we present the outcome of the experiments performed in order to evaluate the efficiency
of our approach. We study: 1) the efficiency of context-basedcaching of web service descriptions, and
2) the effect of location-based routing of web service requests, as potential enhancements of traditional
web service discovery in a P2P environment.

5.1 Context-based Caching

We implemented the proposed architecture of distributed service directories using the JXTA framework7

for P2P applications. Each peer is represented as a JXTA peerthat contains a list of neighboring peers.
Neighbors are assigned to peers at startup to simulate coverage of a geographical region (each peer cor-
responds to a cell). Direct communication is achieved through exchange of messages between neighbors.
Each peer contains a number of web services for various contexts and a cache for storing locally service
descriptions that belong to web services outside its cell. The contextual service requests (Qcxt), issued by
mobile devices, are simulated by means of random query distributions in each peer. There are two func-
tional modes: plain query forwarding or caching. Upon receiving aSreq, the peer forwards the query to its
immediate neighbors and processes it locally. The originator peer retrieves the results (sets of contextual
paths) of the query and, if caching is enabled, caches them, in order to process further identical requests
locally, in an autonomous way.

We performed experiments on the implemented system. The basic experimental setup (see relevant
table in Figure 5) comprisesN = 25 or 100 peers, withn = 4 neighbors per peer in both cases. Each peer
was assignedS = 1000 services at startup, uniformly distributed underCs = 100 different contexts (if we
considerD = 3 contextual dimensions, having each4 or 5 discrete values). Unless mentioned otherwise,
the cache size is20% of the directory size, the caching thresholdt is set to5 query occurrences and the
TTL is 1. We simulated query workloads by means of statistical distributions that show the frequency of
occurrence for each of the100 different contextual queries. A total of2000 queries were generated in most
of the cases. Unless explicitly stated, we allow cache forwarding in all experiments presented here.

The cache hit ratio (CHR) is the primary metric in this approach, because it defines the percentage of
the queries that can be processed locally, without sending any messages to neighbors, thus influencing the
overall system performance. ACHRvalue ofx% means that out of100 service requestsx can be answered
locally, by retrieving the service provider’s identifier from the cache and then contacting it directly. As a
result, the cost of processing thesex requests in terms of number of messages is minimum (just 1 message),
compared to the flooding alternative. Our goal is to measure theCHR. We start recordingCHRresults after
80% of the peer cache has become full to eliminate the cache warm-up effect. In particular, we measure
theCHRof each peer, for every10 queries. We compute the averageCHRof all participating peers and
present comparative charts (see Figure 6(a), 6(b)) for varying: 1) cache sizes and 2) query distributions
respectively. We also performed a set of experiments for varying caching threshold values, and found out
that it does not influence theCHRsignificantly.

7JXTA technology is a set of open protocols that allow any connected device on the network ranging from cell phones and wireless
PDAs to PCs and servers to communicate and collaborate in a P2P manner, see http://www.jxta.org/

14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 200 300 400 500 600 700

C
ac

he
 H

it
R

at
io

Queries

Exp.parameters: t=5, H=1, N=25, Gaussian (Mean=50, S.Dev.=15)

c=0,10
c=0,30
c=0,50
c=1,00

(a) Effect of cache size on cache hit ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700

C
ac

he
 H

it
R

at
io

Queries

Exp.parameters: c=0.20, t=5, H=1, N=25

Uniform
Zipf a=1
Zipf a=2

Gaussian M=50, SD=15
Exponential MU=1 S=15

Poisson M=30

(b) Effect of different query distributions on cache hit ratio

Figure 6: Cache hit ratio dependency on cache size and query distribution.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 10 20 30 40 50 60 70 80 90 100

C
ac

he
 H

it
R

at
io

Queries

Experimental parameters: c=0,20, t=5, N=100, Poisson distribution

Location-biased queries
Not biased queries

Figure 7: Cache hit ratio degradation vs query selectivity.

At first (see Figure 6(a)), we study the effect of different cache sizes onCHR. We tested different
cache sizes (c = 10%−100%), as a percentage of the directory size, for a Gaussian distribution (mean=50,
st.deviation=15) of100 distinct queries. Generally, increasing the cache size, results inCHRaugmentation.
However, after650 queries and in order to increase theCHRfrom68% to80%, the cache size must increase
from10% to 100% of the directory size, so we educe that a relatively small benefit comes with a substantial
cost for highCHRs. Also, notice that small cache sizes (10%) result in sufficiently good performance on the
long run. Nevertheless, if a highCHR is required, then one should choose the largest cache size available.

Query distributions play an important role in the performance of caching. In Figure 6(b), we compare
the query workloads generated by various random distributions. Besides the uniform distribution, we chose
three distributions for query workloads that can representvery frequent occurrences for some queries, as
well as two variants of the zipfian distribution. The zipf lawimplementsp(i) = C/ia for i = 1 to n where
C is the normalization constant (i.e.,

∑
p(i) = 1). As mentioned before, in our application scenarios,

contextual queries tend to present high frequency at certain locations and times. The chart shows that the
zipfian query distribution (with parametera = 2) performed better, in terms ofCHR (nearly90%). As
expected, the uniform distribution performed worse than the rest, however for the particular experimental
setup the achievedCHRcan be considered satisfactory. Generally, the more skewedthe distributions, the
higherCHRvalues they presented.

Then we studied the effect of query selectivity onCHR. The intuition is that for queries of low se-
lectivity (i.e., many results returned) we expect that due to the high volume of the results frequent cache
replacements take place. We conducted an experiment, shownin Figure 7, where we used100 peers to
represent4 neighboring geographic locations (25 peers per location) and each peer held services having
as contextual value the corresponding peer’s location. We performed two measurements for: 1) location-
biased queries for each peer and 2) uniformly distributed queries, in order to have low and high query
selectivity respectively. The results show that location-biased queries exhibited a very poor performance
(small CHR), due to the low query selectivity. In other words, each query resulted in a large number of
services, which was comparable to the cache size, thus resulting in very frequent cache replacements (prac-

15

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200

T
ot

al
 N

um
be

r
of

 Q
ue

ry
 M

es
sa

ge
s

Queries

Experimental parameters: c=0,30, t=10, H=4, N=100, Zipf distribution

Cache Forwarding Enabled
Cache Forwarding Disabled

(a) Total number of query messages per peer

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 2 3 4 5 6 7 8

C
ac

he
 H

it
R

at
io

Hop Distance

Experimental parameters: c=0,30, t=10, H=4, N=100, Zipf distribution

Cache Forwarding Disabled
Cache Forwarding Enabled

(b) Cache hit ratio related to distance from popular sources

Figure 8: Studying the cache forwarding mechanism.

tically the result of each query caused cache replacement).The lesson learned here is that our approach
regarding context-based caching in a P2P architecture requires careful parameter tuning, especially in the
case that cache size is comparable to query selectivity.

In order to mitigate the impact of high query selectivity we conducted the rest of our experiments with
a modified version of the query forwarding algorithm. Specifically, instead of forwarding each query that
has not reached the maximum hop count TTL, a peer first checks its capability of satisfying the query.
Thus, queries that can be responded by the peer’s local directory are no further forwarded to its neighbors.
On the basis of this query forwarding approach, a flooding query reaches the minimum number of peers
that have relevant results and lie in its TTL horizon. However, in a real setting, decision making for query
forwarding could be based on the number or quality of resultsthat are omitted here for simplicity reasons.

We studied the impact of cache forwarding in the congestion of the peer network, as well as on the
average CHR with an experimental setup of100 peers deployed in a quadratic grid of side10. The grid
was divided in four regions, each one comprising25 peers and representing a respective geographical
area. The content of the peers of a region is characterized bythe same value in the context dimension
representing the location of the directory. The queries generated in each peer follow the zipf distribution
with their frequency of occurrence depending on the location dimension. The workload pattern generated
in each peer comprises the following types of queries with descending frequency of occurrence: 1) queries
related to a specific popular region (location=Acropolis),2) queries related to the current peer’s region,
3) queries for services available in neighboring regions. Figure 8(a) depicts the average number of query
messages processed by a peer in cases that cache forwarding is enabled or disabled. It is evident that in
the cache forwarding case the number of messages processed by each peer is substantially lower due to
the diffusion of popular results in all regions of the network of peers. Regarding Figure 8(b), it presents
the fluctuation of the averageCHR in each peer with respect to the hop distance from the popularregion.
Having cache forwarding enabled contributes to a more smooth variation in theCHRas the distance from
the popular content increases. On the other hand, when cacheforwarding in not allowed,CHRundergoes
significant degradation as query TTL does not suffice for reaching the popular region.

5.2 Location-based Routing

The aim is to illustrate that for large P2P networks a contextual request for far contents (e.g. a person
sitting on the airport in Trondheim wanting to access services in Athens, maybe to see picturea from today,
etc.) will not be successful by traditional flooding approaches, and probably will not be even be successful
in the case of contextual caching (this works well basicallyfor queries for nearby locations)8.

To address this problem we organize representative peers (one for each location) in a DHT overlay net-
work, using as key the location path and as value the peer identifier responsible for the particular location.
This means that a peerPA within location A can always be found with logarithmic cost.ThenPA can

8Context-based caching with cache forwarding extends the query horizon of the query, so it improves flooding techniques in this
sense, however this approach also imposes a limit to the extended query horizon. Thus for really large P2P networks, we propose
location-based routing as an alternative approach.

16

Topology type 1 N = 1600, n = 4
Topology type 2 N = 1600, n = 8
Topology type 3 N = 6400, n = 4
Topology type 4 N = 6400, n = 8
TTL valueTTL 10
Percentage of querying peers 20%
Zipfian query distribution parametera 1.2
Services per directoryS 50
Location hierarchy levels 4
Location hierarchy fan-out 4

Figure 9: Experimental setup default parameters for simulations of location-based routing.

Figure 10: Illustration of the SQUARE topology with connectivity degree 4 (left) and degree 8 (right).

retrieve the services in its surrounding area even using a naive technique like flooding. We stress here that
the DHT is used only for keeping the location of representative peers.

In order to test location-based routing we need a larger scale environment to test the feasibility of our
ideas. Therefore we study location-based routing through simulations. We have built a simulator in Java
for studying different search strategies in unstructured P2P networks.

The simulation setup (see also Figure 9) consists of a grid-like P2P network topology called SQUARE,
which organizes peers in a square topology with each peer having 4 or 8 neighbors. This topology resem-
bles a random graph with average connectivity degreed (4 or 8 in our case), with the difference that it’s
more dense than a random graph. Each pair of neighboring peers may share up to4 common neighbors.
This is necessary for ensuring connectivity of peers, even in the case of peer failure. For an illustration of
this topology, see Figure 10. We spread this topology on top of a geographical area, so that each actual
location is assigned to a set of peers that are near each other(see Figure 4 for an example of location hierar-
chy used). In this way we are able to simulate location-basedcontent assignment on peers, by having each
peer keeping service descriptions only of web services thatreside in its area of coverage. We consider4
different types of topologies, practically the combinations of1600 and6400 peers with connectivity degree
4 and8.

Each peer hosts a query generator that creates queries for locations. A random distribution for modeling
queries can be tested. Most interesting is the case of zipfianquery distribution, which is usually adopted
to model user behavior. Queries consist of one location. We consider queries for all (as many as possible)
results to test the quality of the search in terms of completeness of results.

A number of peersNQp
are randomly picked to act as querying peers, each of them producingNq

queries. The queries are processed sequentially, i.e., foreach querying peer, send its first query, then
its second query and so forth. Both strategies are evaluatedusing the same parameters (querying peers,
queries, etc.), in order to have, as much as possible, comparable results. In our simulations we assume20%
of the super-peers to receive queries from simple peers.

We study the comparative performance of the following search strategies:

1. Flooding: typical broadcast-based search with an associated TTL parameter.

17

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 3 2 1

A
ve

ra
ge

 R
ec

al
l

Topology Type

Flooding
Location-based Routing

 0

 0.2

 0.4

 0.6

 0.8

 1

 14 12 10 8 6 4

A
ve

ra
ge

 R
ec

al
l

Time-to-live (TTL)

Flooding
Location-based Routing

Figure 11: Average recall achieved for different topologies (left) and increasing TTL values for1600 peers
with avg.connectivity4 (right).

 0

 100

 200

 300

 400

 500

 4 3 2 1

C
on

ta
ct

ed
 P

ee
rs

Topology Type

Flooding
Location-based Routing

 0

 100

 200

 300

 400

 500

 14 12 10 8 6 4

C
on

ta
ct

ed
 P

ee
rs

Time-to-live (TTL)

Flooding
Location-based Routing

Figure 12: Number of contacted peers for different topologies (left) increasing TTL values for1600 peers
with avg.connectivity4 (right).

2. Location-based routing: forward service requests to representative super-peers (based on location),
using the DHT, then perform flooding in the surrounding area.

In Figure 11, we show the average recall achieved by the location-based routing approach compared
to flooding usingthe same number of messages. Recall defines the number of relevant services retrieved
as fraction of all relevant services. Higher recall values mean more complete results, which is an index
of the search quality. The simulation results show that for anetwork of1600 peers withTTL = 10, the
recall of location-based routing is high (around89.5−94.8%) compared to flooding, which achieves a poor
10−17.8%. This is expected since the content (services) is dependenton location, so using location-based
routing the service request is directed to a peer in the queried location, then local flooding is effective, thus
avoiding the limitations of blind flooding. We increase the network size to6400 peers to test the scalability
of our approach. Again, context-based routing outperformsthe basic search mechanism. The smaller recall
values obtained for the6400 network are due to the fact that we keep the same TTL value, as in the case of
1600 peers. This is shown for6400 peers when the peer connectivity is increased to8 (topology type 4),
where the recall values are closer to the ones for1600 peers, since more peers are contacted by the service
request.

In the right part of Figure 11, the increase in recall values with increasing TTL is depicted. This is
an expected result, however the interesting part is that with location-based routing this increase is more
significant and it comes with a higher rate.

In Figure 12, we show the number of contacted peers for each approach using the same number of
messages. While location-based routing decreases the number of contacted peers, it manages to select peers
to forward the service request, in such a way that they contain more relevant services, when compared to
blind flooding. As mentioned before, the use of the same TTL value (10) keeps the number of contacted
peers relatively the same for both settings. The effect of increasing TTL values is depicted on the right part
of the figure.

18

6 Conclusions and Further Work

In this paper, we studied the integration of context-awareness in P2P service discovery, more specifically
context-based caching and location-based routing for improving web service discovery in a P2P architec-
ture of service directories. We used a context hierarchy as data model and presented how this work fits
in the MobiShare architecture. Extended experiments, capitalizing on a JXTA-based prototype, illustrated
the efficiency of caching. Via simulations we proved that location-based routing increases the quality and
decreases the cost of web service discovery.

While in this paper neighbor proximity refers to geographical terms, future work will focus on ex-
tending the approach to study semantic, content-based proximity, where neighboring peers are considered
based on similar content. This can be achieved by adopting semantic overlay networks (Crespo and Garcia-
Molina, 2002) (Doulkeridis et al., 2007) that group together peers with similar content. We also intend to
study how service churn, due to disconnections or user mobility, affects the efficiency of context-based
caching and searching.

References

Akkiraju, R., Goodwin, R., Doshi, P., and Roeder, S. A Methodfor Semantically Enhancing the Service
Discovery Capabilities of UDDI. InProceedings of the Workshop on Information Integration on the
Web (IIWeb-03), 2003.

Arabshian, K. and Schulzrinne, H. GloServ: Global Service Discovery Architecture. InProceedings of
Mobiquitous 2004, 2004.

Baggio, A., Ballintijn, G., Steen, M. V., and Tanenbaum, A. S. Efficient Tracking of Mobile Objects in
Globe.The Computer Journal, 44(5):340–353, 2001.

Chakraborty, D., Joshi, A., Yesha, Y., and Finin, T. Toward Distributed Service Discovery in Pervasive
Computing Environments.IEEE Transactions on Mobile computing, 5(2):97–112, 2006.

Crespo, A. and Garcia-Molina, H. Semantic Overlay Networksfor P2P Systems. Technical report, Stanford
University, 2002.

Doulkeridis, C., Nørvåg, K., and Vazirgiannis, M. DESENT:Decentralized and Distributed Semantic Over-
lay Generation in P2P Networks. To appear in IEEE Journal on Selected Areas of Communications
(J-SAC), 2007.

Doulkeridis, C., Valavanis, E., and Vazirgiannis, M. Towards a Context-aware Service Directory. In
Proceedings of the 4th VLDB Workshop on Technologies on E-Services (TES’03), 2003.

Doulkeridis, C. and Vazirgiannis, M. Querying and Updatinga Context-aware Service Directory in Mo-
bile Environments. InProceedings of the 2004 IEEE/WIC/ACM Int. Conference on WebIntelligence
(WI’04), 2004.

Doulkeridis, C., Zafeiris, V., and Vazirgiannis, M. The Role of Caching and Context-awareness in P2P
Service Discovery. InProceedings of MDM’05, 2005.

Dustdar, S. and Treiber, M. A View Based Analysis on Web Service Registries.Distributed and Parallel
Databases, 18(2):147–171, 2005.

Hu, T. H., Ardon, S., and Seneviratne, A. Semantic-laden Peer-to-Peer Service Directory. InProceedings
of the 4th IEEE International Conference on P2P Computing (P2P’04), 2004.

Iyer, S., Rowstron, A., and Druschel, P. Squirrel: A Decentralized Peer-to-Peer Web Cache. InProceedings
of the 21th ACM Symposium on Principles of Distributed Computing (PODC), 2002.

19

Jeckle, M. and Zengler, B. Active UDDI - an Extension to UDDI for Dynamic and Fault-tolerant Service
Invocation. InProceedings of the International Workshop on Web Services Research, Standardization,
and Deployment (WS-RSD’02), 2002.

Jensen, C. S. Research Challenges in Location-enabled M-services. InProceedings of the 3rd International
Conference on Mobile Data Management (MDM’02), 2002.

Jensen, C. S., Kligys, A., Pedersen, T. B., and Timko, I. Multidimensional Data Modeling for Location-
based Services.VLDB Journal, 13(1):1–21, 2004.

Lee, C. and Helal, S. Context Attributes: An Approach to Enable Context-awareness for Service Discovery.
In Proceedings of the 2003 Symposium on Applications and the Internet (SAINT’03), 2003.

Lee, D. L., Lee, W.-C., Xu, J., and Zheng, B. Data Management in Location-dependent Information
Services.IEEE Pervasive Computing, 1(3):65–72, 2002.

Leontiadis, E., Dimakopoulos, V. V., and Pitoura, E. Cache Updates in a Peer-to-Peer Network of Mobile
Agents. InProceedings of the 4th IEEE International Conference on P2PComputing (P2P’04), 2004.

Mostefaoui, S. K. and Hirsbrunner, B. Towards a Context-Based Service Composition Framework. In
Proceedings of the 1st International Conference on Web Services (ICWS’03), 2003.

Nørvåg, K., Doulkeridis, C., and Vazirgiannis, M. Taxonomy Caching: A Scalable Low-cost Mechanism
for Indexing Remote Contents in Peer-to-Peer Systems. InProceedings of the 2nd IEEE International
Conference on Pervasive Services (ICPS’06), 2006.

Patro, S. and Hu, Y. C. Transparent Query Caching in Peer-to-Peer Overlay Networks. InProceedings of
the International Parallel and Distributed Processing Symposium (IPDPS’03), 2003.

Pokraev, S., Koolwaaij, J., and Wibbels, M. Extending UDDI with Context-aware Features Based on
Semantic Service Descriptions. InProceedings of the 1st Int. Conference on Web Services (ICWS’03),
2003.

Schmidt, C. and Parashar, M. A Peer-to-Peer Approach to Web Service Discovery. World Wide Web,
7(2):211–229, 2004.

ShaikhAli, A., Rana, O., Al-Ali, R., and Walker, D. UDDIe: AnExtended Registry for Web Services. In
Proceedings of the 2003 Symposium on Applications and the Internet Workshops (SAINT-w03), 2003.

Steen, M. V. and Ballintijn, G. Achieving Scalability in Hierarchical Location Services. InProceedings of
the 26th International Computer Software and ApplicationsConference (CompSac), 2002.

Valavanis, E., Ververidis, C., Vazirgiannis, M., Polyzos,G. C., and Nørvåg, K. Mobishare: Sharing
Context-dependent Data and Services from Mobile Sources. In Proceedings of IEEE/WIC Interna-
tional Conference on Web Intelligence (WI’03), 2003.

Wang, C., Xiao, L., Liu, Y., and Zheng, P. Distributed Caching and Adaptive Search in Multilayer P2P
Networks. InProceedings of the 24th Int. Conference on Distributed Computing Systems (ICDCS’04),
2004.

Zheng, B., Xu, J., and Lee, D. L. Cache Invalidation and Replacement Strategies for Location-dependent
Data in Mobile Environments.IEEE Transactions on Computers, 51(10):1141–1153, 2002.

Zhu, F., Mutka, M., and Ni, L. Service Discovery in PervasiveComputing Environments.IEEE Pervasive
Computing, pages 81–90, 2005.

20

