
Space-Efficient Support for Temporal Text Indexing in a
Document Archive Context

Kjetil Nørvåg

Department of Computer and Information Science
Norwegian University of Science and Technology

7491 Trondheim, Norway
Kjetil.Norvag@idi.ntnu.no

Abstract. Support for temporal text-containment queries (query for all versions
of documents that contained one or more particular words at a particular time t)
is of interest in a number of contexts, including web archives, in a smaller scale
temporal XML/web warehouses, and temporal document database systems in
general. In the V2 temporal document database system we employed a combi-
nation of full-text indexes and variants of time indexes to perform efficient text-
containment queries. That approach was optimized for moderately large temporal
document databases. However, for “extremely large databases” the index space
usage of the approach could be too large. In this paper, we present a more space-
efficient solution to the problem: the interval-based temporal text index (ITTX).
We also present appropriate algorithms for update and retrieval, and we discuss
advantages and disadvantages of the V2 and ITTX approaches.

1 Introduction

The amount of information made available on the web is increasing very fast, and an
increasing amount of this information is made available only on the web. While this
makes the information readily available to the community, it also results in a low per-
sistence of the information, compared to when it is stored in traditional paper-based
media. This is clearly a serious problem, and during the last years many projects have
been initiated with the purpose of archiving this information for the future. This essen-
tially means crawling the web and storing snapshots of the pages, or making it possible
for users to “deposit” their pages. In contrasts to most search engines that only store
the most recent version of the retrieved pages, in these archiving projects all (or at least
many) versions are kept, so that it should also be possible to retrieve the contents of
certain pages as they were at a certain time in the past. The Internet Archive Wayback
Machine [4] is arguably the most famous project in this context, and aims at providing
snapshots of pages from the whole Web. Similar projects at the national level also exist
in many countries, often initiated through the national libraries.

Most current web archives still only support retrieval of a web site as they were
at a particular time t (i.e., returning a snapshot), and several (including the Internet
Archive Wayback Machine [4]) also do not support text-containment queries yet (a
text-containment query is a query for all versions containing a particular set of words,
similar to the service offered by a search engine). The restrictions are understandable

based on the large amount of text stored in these archives. However, in order to in-
crease the usefulness of these archives as research tools, temporal text-containment
queries (query for all versions of pages that contained one or more particular words
at a particular time t) should also be supported. Support for temporal text-containment
queries is also useful in a more general context, in document databases as well as in
temporal XML/web warehouses, which are archives similar to the one discussed above,
but in a smaller scale. We denote a generic system supporting these features a tem-
poral document database system.1 In our project we have studied this issue in the V2
temporal document database system [9]. In the V2 prototype we employed a combi-
nation of full-text indexes and variants of time indexes for performing efficient text-
containment queries [8]. That approach was optimized for moderately large temporal
document databases. However, for “extremely large databases” as in the contexts dis-
cussed above, the index space usage of the approach used in V2 could be too large.
In this paper we present a more space-efficient solution to the problem, which we call
the interval-based temporal text index (ITTX), we present appropriate algorithms for
update and retrieval, and we discuss advantages and disadvantages of the V2 and ITTX
approaches to temporal text-containment querying.

The organization of the rest of this paper is as follows. In Section 2 we give an
overview of related work. In Section 3 we give an overview of the V2 temporal doc-
ument database system. In Section 4 we describe the ITTX approach. Finally, in Sec-
tion 5, we conclude the paper.

2 Related work

We have previously described the use of variants of time indexes to support temporal
text-containment queries [8] (one of these variants will be presented in Section 3.4).

Another approach to solve some of the problems discussed in this paper, is the pro-
posal from Anick and Flynn [1] on how to support versioning in a full-text information
retrieval system. In their proposal, the current version of documents are stored as com-
plete versions, and backward deltas are used for historical versions. This gives efficient
access to the current (and recent) versions, but costly access to older versions. They
also use the timestamp as version identifier. This is not applicable for transaction-based
document processing where all versions created by one transaction should have same
timestamp. In order to support temporal text-containment queries, they based the full-
text index on bitmaps for words in current versions, and delta change records to track
incremental changes to the index backwards over time. This approach has the same
advantage and problem as the delta-based version storage: efficient access to current
version, but costly recreation of previous states is needed. It is also difficult to make
temporal zig-zag joins (needed for multi-word temporal text-containment queries) effi-
cient.

1 Note that such a system is different from traditional systems where versions of documents are
stored and retrieved using the document name and a version/revision number. In our system we
can take advantage of the temporal aspect, and make it possible to retrieve documents based on
predicates involving both document contents and validity time, and in this way satisfy temporal
queries.

Xyleme [12] supported monitoring of changes between a new retrieved version of a
page, and the previous version of the page, but did not actually support maintaining and
querying temporal documents (only the last version of a document was actually stored).

Storage of versioned documents is studied by Marian et al. [6] and Chien et al. [3].
Algorithms for temporal XML query processing operators are proposed in [7], where
queries can also be on structure as well as text content.

Another approach to temporal document databases is the work by Aramburu et
al. [2]. Based on their data model TOODOR, they focus on static document with as-
sociated time information, but with no versioning of documents. Queries can also be
applied to metadata, which is represented by temporal schemas.

3 An overview of the V2 temporal document database system

In order to make this paper self-containing, and provide the context for the rest of this
paper, we will in this section give a short overview of V2. We omit many optimizations
in this overview, and for a more detailed description, and a discussion of design choices,
we refer to [9, 8].

3.1 Document version identifiers and time model

A document version stored in V2 is uniquely identified by a version identifier (VID).
The VID of a version is persistent and never reused, similar to the object identifier in
an object database.

The aspect of time in V2 is transaction time, i.e., a document is stored in the
database at some point in time, and after it is stored, it is current until logically deleted
or updated. We call the non-current versions historical versions. When a document is
deleted, a tombstone version is written to denote the logical delete operation.

3.2 Functionality

V2 provides support for storing, retrieving, and querying temporal documents. For ex-
ample, it is possible to retrieve a document stored at a particular time t, retrieve the
document versions that were valid at a particular time t and that contained one or more
particular words. A number of operators is supported, including operators for returning
the VIDs of all document versions containing one or more particular words, support
for temporal text-containment queries, as well as the Allen operators, i.e., before, after,
meets, etc.

V2 supports automatic and transparent compression of documents if desired (this
typically reduces the size of the document database to only 25% of the original size).

3.3 Design and storage structures

The current prototype is essentially a library, where accesses to a database are per-
formed through a V2 object, using an API supporting the operations and operators de-
scribed previously. The bottom layers are built upon the Berkeley DB database
toolkit [11], which is used to provide persistent storage using B-trees.

The main modules of V2 are the version database, document name index, document
version management, text index, API layer, operator layer, and optionally extra struc-
tures for improving temporal queries. We will now give an overview of the storage-
related modules.

Version database. The document versions are stored in the version database. In order
to support retrieval of parts of documents, the documents are stored as a number of
chunks (this is done transparently to the user/application) in a tree structure, where the
concatenated VID and chunk number is used as the search key. The VID is essentially
a counter, and given the fact that each new version to be inserted is given a higher VID
than the previous versions, the document version tree index is append-only.

Document name index. A document is identified by a document name, which can
be a filename in the local case, or an URL in the more general case. Conceptually,
the document name index has for each document name some metadata related to all
versions of the document, followed by specific information for each particular version.

Text indexing. A text-index module based on variants of inverted lists is used in order
to efficiently support text-containment queries, i.e., queries for document versions that
contain a particular word (or set of words). In our context, we consider it necessary to
support dynamic updates of the full-text index, so that all updates from a transaction are
persistent as well as immediately available. This contrasts to many other systems that
base the text indexing on bulk updates at regular intervals, in order to keep the average
update cost lower. In cases where the additional cost incurred by the dynamic updates
is not acceptable, it is possible to disable text indexing and re-enable it at a later time.
When re-enabled, all documents stored or updated since text indexing was disabled will
be text indexed. The total cost of the bulk updating of the text index will in general be
cheaper than sum of the cost of the individual updates.

3.4 Temporal text-containment queries in the V2 prototype

Several approaches for text-containment queries are supported by V2 [8]. We will now
describe the most general of these, the VP-index-based approach, where the validity
period of every document version is stored in a separate index. This index maps from
VID to validity period, i.e., each tuple in the VP index contains a VID, a start timestamp,
and an end timestamp. In the V2 prototype the VP index is implemented as a number
of chunks, where every chunk is an array where we only store the start VID which the
period tuples are relative to. In this way we reduce the space while still making delete
operations possible.

Even for a large number of versions the VP index is relatively small, but it has a
certain maintenance cost: 1) at transaction commit time the VID and timestamp has
to be stored in the index, and 2) every document update involves updating the end
timestamp in the previous version, from UC (until changed) to a new value which is
the start (commit) timestamp of the new version. The first part is an efficient append

operation, but the second is a more costly insert. However, considering the initial text
indexing cost for every version, the VP-index maintenance cost is not significant in
practice.

Temporal text-containment queries using the VP-index-based approach can be per-
formed by 1) a text-index query using the text index that indexes all versions in the
database, followed by 2) a time-select operation that selects the actual versions (from
stage 1) that were valid at the particular time or time period.

4 Space-efficient support for temporal text-containment queries

Many of the design decisions in V2 are based on the assumption that it shall support
typical database features as transaction-based consistency, arbitrarily large transactions,
and (relatively) fast commit. However, in a document warehouse context, these can be
relaxed. For example, it is possible to assume only one write/update process.

Before we continue the discussion of the text index, we emphasize that as a mini-
mum, the text index should:

– Support the mapping operation from a word W to the identifiers of all the document
versions that contain the word.

– Ensure that if a identifier is returned by a lookup, it should be guaranteed that the
document version with this identifier actually exists and contains the word W .

4.1 A new storage architecture

One problem with the original text index in V2 is that each occurrence of a word in
a version require a separate posting in the text index. This makes the size of the text
index proportional with the size of the document database. For a traditional document
databases where only current versions are stored it is difficult to improve on this prop-
erty (although compression of index entries normally is used to reduce the total index
size). However, in a document database with several versions of each document, the
size of the text index can be reduced by noting the fact that the difference between con-
secutive versions of a document is usually small: frequently, a word in one document
version will in also occur in the next (as well as the previous) version. Thus, we can
reduce the size of the text index by storing word/version-range mappings, instead of
storing information about individual versions.

In V2 every document version is assigned a VID=v, where the new VID is one
higher than the previous assigned VID, i.e., VID=v+1. There is no correlation between
VID and document, i.e., VID=v and VID=v+1 would in general identify versions of
different documents. The advantage of this strategy of assigning VIDs is that it gives
the version database an efficient append-only property when the VIDs are used as the
keys of the versions. In a range-based index a number of versions with VID={5,6,7,8}
containing the word W could be encoded as (W, 5, 8). However, there is not necessarily
much similarity between document versions VID=v and VID=v+1 when the versions
are versions of different documents. Except for the most frequently occurring words,
there will not be many chances to cover large intervals using this approach. In order to

...

CTxtIdx
...W DID,DVID,TS DID,DVID,TS ...W DID,DVID,TS DID,DVID,TS ...W DID,DVID,TS DID,DVID,TS

...

HTxtIdx

W ...DID ...DVID,DVID,TS,TE DVID,DVID,TS,TE DID ...DVID,DVID,TS,TE DVID,DVID,TS,TE W ...DID ...DVID,DVID,TS,TE DVID,DVID,TS,TE DID ...DVID,DVID,TS,TE DVID,DVID,TS,TE

Fig. 1. The ITTX temporal text-index architecture.

benefit from the use of intervals, we instead use document version identifiers (DVIDs).
Given a version of a document with DVID=v, then the next version of the same docu-
ment has DVID=v+1. In contrast to the VIDs that uniquely identify a document version
stored in the system, different versions of different documents can have the same DVID,
i.e., the DVIDs are not unique between different versions of different documents. In or-
der to uniquely identify (and to retrieve) a particular document version, a document
identifier (DID) is needed together with the DVID, i.e., a particular document version
in the system is identified by (DID||DVID). In this way, consecutive versions of the
same document that contain the same word can form a range with no holes.

Conceptually, the text index that use ranges can be viewed as a collection of
(W ,DID,DVIDi,DVIDj)-tuples, i.e., a word, a document identifier, and a DVID range.
Note that for each document, there can be several tuples for each word W , because
words can appear in one version, disappear in a later version, and then again reappear
later. A good example is a page containing news headlines, where some topics are re-
occurring.

When a new document version with DVID=DVIDi is inserted, and it contains a
word that did not occur in the previous version, a (W ,DID,DVIDi,DVIDj) tuple is
inserted into the index. DVIDi is the DVID of the inserted version, but DVIDj is set to
a special value UC (until changed). In this way, if this word is also included in the next
version of this document, the tuple does not have to be modified. This is an important
feature (a similar technique for avoiding text index updates is also described in [1]).
Only when a new version of the document that does not contain the word is inserted,
the tuple has to be updated. It is important to note that using this organization, it is
impossible to determine the DVIDs of the most recent versions from the index. For the
[DVIDi,UC] intervals only the start DVID is available, and we do not know the end
DVID. As will be described later, this makes query processing more complicated.

Under the assumption that queries for current documents will be frequent enough to
compensate for the additional cost of having separate indexes for currently valid entries,
a separate index is used for the entries that are still valid (an assumption and solution
also used in some traditional temporal database systems), i.e., where the end of the

interval is UC. In this index the end value UC is implicit, so that only the start DVID
needs to be stored. We denote the index for historical entries HTxtIdx and the index for
valid entries CTxtIdx. Note that the space possibly saved by this two-index approach is
not an issue, the point is the smaller amount of index entries that have to be processed
during a query for current versions (and prefix queries can in particular benefit from
this architecture).

So far, we have not discussed how to make temporal text-containment queries effi-
cient. The first issue is whether timestamps can be used instead of DVIDs in the index.
This would be very useful in order to have document version validity time in the in-
dex. However, this is difficult for several reasons. First of all, more than one document
version could have the same timestamp, because they were created at the same time/by
the same transaction. However, the most important problem is that the intervals would
not be “dense”: in general, given a document version with timestamp T = ti, the next
version of the document will not have timestamp T =ti+1. The result is that it is im-
possible to determine the actual timestamps or document identifiers of the document
versions from the index.

In V2, the VP index is used to make temporal text-containment queries more effi-
cient (see Section 3.4) by providing a map from VID to version validity period (i.e.,
conceptually each tuple in the VP index contains a VID, a start timestamp, and an end
timestamp). With sequentially allocated VIDs as in V2, the VP index is append-only.
The result is a low update cost, and it is also space efficient because the VIDs do not
have to be explicitly stored.

One of the main reasons why the VP index is very attractive in the context of V2,
is that storing the time information in the VP index is much more space efficient than
storing the timestamps replicated many places in the text index (once for each word).
However, when intervals are used, one timestamp for each start- and end-point of the
intervals is sufficient, and the increase in total space usage, compared with using a VP
index, is less than what is the case in V2. It is also more scalable, because the V2 ap-
proach is most efficient when the VP index can always be resident in main memory. To
summarize, our final solution for the ITTX is to store (W ,DID,DVIDi,DVIDj ,TS,TE)
in the HTxtIdx (where TS and TE are the start- and end-timestamps of the interval
[DVIDi,DVIDj>, and to store (W ,DID,DVID,TS) in the CTxtIdx.

4.2 Physical organization

The physical organization of the ITTX is illustrated in Figure 1. In the HTxtIdx there
are for each word a number of document identifiers (DIDs), and for each DID there is a
number of [DVIDi,DVIDj>/[TS,TE> ranges. The CTxtIdx is similar, except that the
end DVIDs and end timestamps implicitly have the value UC and are therefore omitted.
In an actual implementation based on B-trees, this data is stored in chunks in the leaf.
The key of a chunk is (W ,DID,DVID), where DID is the smallest DID in the chunk,
and the DVID is the start of the first interval for this DID. As will be explained below,
this information is needed in order to efficiently implement multi-word queries where
we only need to retrieve postings for a subset of the DIDs. Note that the size of a chunk
must be smaller than a page, and as a result there will in general be more than one chunk
for each word, and there can also be more than one chunk for each DID.

The document name index is basically the same as the one used in V2, except that
for each document name there is also a document identifier. We emphasize that the
document name index is a map from document name to DID and the DVID/timestamp
of all the document versions.

The document version database is also identical to the one used in V2, except that
(DID||DVID) is used as the key, instead of only a VID. The append-only property it had
in V2 when using VID as the key is lost, but the cost of updating the version database is
much smaller than the text indexing cost, so this cost is compensated by a more efficient
text indexing. By including some time information in the ITTX we also avoid having a
separate VP index.

4.3 Operations

Given the description of the ITTX, the algorithms for the most important operations are
as follows.

Insert document: When inserting a new document (i.e., a document with a document
name not already stored in the database) at time t:

1. A new DID is allocated, and the document is inserted into the version database.
2. For all distinct words W in the document, a (W ,DID,DVID=0, TS=t) tuple is in-

serted into the CTxtIdx.

Update document: If the document to be inserted at time t is a new version of a
document that is already stored in the database:

1. The previous version of the document with DVID=j has to be read in order to deter-
mine the difference (or delta) between the two versions. The difference is needed
for several purposes: 1) often we do not want to store identical versions, 2) we
might want to reduce the storage costs by storing delta versions instead of com-
plete versions, and 3) we need to determine which new words appear in the new
version, and which words that existed in the previous version do not occur in the
new version.

2. A new DVID=j+1 is allocated and the document is inserted into the version database.
In addition, if we want to store delta versions, the previous document version is re-
placed with the delta version.

3. For all new distinct words W in the document, a (W ,DID,DVID=j+1,TS=t) tuple
is inserted into the CTxtIdx.

4. For all words that disappeared between the versions, (W ,DID,DVID=i,TS) is re-
moved from the CTxtIdx and (W ,DID,DVID=i,DVID=j,TS,TE= t) is inserted
into the HTxtIdx.

Delete document: A document delete in a temporal database is a logical operation, in
contrast to non-temporal databases where it is a physical operation. The delete operation
in a temporal database can be realized as an update that creates a (logical) tombstone

version. This tombstone can be considered as an empty document, and using the proce-
dure for documents as described above, all the words of the previous version is moved
to the HTxtIdx, but none are inserted into the CTxtIdx.

Retrieve document version: A document version can be retrieved from the version
database using (DID,DVID) as the key. If a document with a particular name Doc-
Name is to be retrieved, a lookup in the document name index is performed first. The
(DID,DVID) for all versions are stored here, sorted on DVID/time so that if a docu-
ment version valid at a particular time t is to be retrieved, the actual (DID,DVID) can
be found by a simple lookup in the document name index. The current version of a
particular document DID is simply the version with the largest DVID.

Non-temporal single-word text-containment query: All documents currently con-
taining a particular word WS can be found by a lookup in the CTxtIdx for all
(W ,DID,DVIDi,TS) where W=WS . However, it is impossible from the CTxtIdx alone
to know the most recent DVID for the actual DIDs. This can be found from the version
database, where the most recent DVID for a document is found by searching for the
largest DVID for the actual DID. Note that this is a simple lookup operation, the actual
document(s) do not have to be retrieved.

Non-temporal multi-word text-containment query: A multiword query, i.e., a query
for all documents that contain a particular set of words W1, ..., Wn, can be executed by:

1. A lookup for word W1 in the CTxtIdx, resulting in a set of DIDs which initializes
the set R1.

2. For each of the words W2, ..., Wn, lookup the word Wi in the CTxtIdx, let the set
Si be the resulting DIDs, and let Ri = Ri−1 ∩ Si. When finished, Rn will contain
the DIDs of the documents that contain the words. In practice an optimized version
of this algorithm will be used. For example, if the number of entries for each word
is known in advance, it is possible to start the query with retrieving the entries
for the most infrequently occurring word(s), and only do lookups where a possible
match can occur, e.g., given R1, only do lookups for all (W2,DIDx) where DIDx

is a member of R1. In order to be able to do this, statistics for word occurrences is
needed. In static document databases this information is often stored in the index.
However, maintaining this statistics considerably increases the update cost, so in
a dynamic document database we rather advocate maintaining a word-frequency
cache for the most frequently occurring query words. This approximation should
be enough to reduce the query cost. Even without the help of a word-frequency
cache or statistics, the size of Ri, where i ≥ 2, will in general be small enough to
make it possible to reduce the cost by doing selective lookups.

Temporal single-word text-containment query (snapshot): When querying for all
document versions that contained a particular word WS at a particular time t, both the
CTxtIdx and the HTxtIdx have to be searched:

– Search HTxtIdx: All (W ,DID,DVIDi,DVIDj ,TS,TE) where W=WS and
TS ≤ t ≤ TE are retrieved.

– Search CTxtIdx: All (W ,DID,DVIDi, TS) where W=WS and t ≥ TS are retrieved.
– At most one version of each document can be valid at a particular time, so the

interesting part of the result is essentially a set of (DID, DVIDi,DVIDj) tuples. In
general we do not know the actual DVIDs of the matching versions (assuming a
fine-granularity timestamp, a match on t=TS or t=TE has a low probability). Given
a (DID, DVIDi,DVIDj) tuple and a time t, the actual DVID can in most cases
efficiently be determined by first doing a lookup in the document version database
in order to find the name of the document with the actual DID, followed by a lookup
in the document name index to find the DVID of the version of the document that
were valid at time t.

Temporal multi-word text-containment query (snapshot): The single-word tem-
poral text-containment query can be extended to multi-word similar to the case of a
non-temporal query. However, determining the actual DVIDs should be postponed until
the final step.

Temporal text-containment query (time range): Querying for all document versions
that contained a particular word at some point during a specified time interval is per-
formed similar to the temporal snapshot query as described above, the only difference is
that there can be more than one matching version of each document, resulting in more
than one (DID, DVIDi,DVIDj) tuple for each DID.

4.4 Comparison

The most important advantages of the ITTX, compared to the original V2 indexing
approach, are:

– Smaller index size.
– More efficient non-temporal (current) text-containment query (i.e., on the docu-

ments that are currently valid). In the V2 approach, it was impossible to tell from
the text index whether a version with a certain VID was a current version or not. In
addition, it was impossible to determine whether two VIDs in the text index were
VIDs of the same document or not, resulting in a larger number of VIDs to inspect
than desired.

– The time intervals in the index drastically reduce the number of DVIDs that have to
be checked. For example, for a snapshot query only one lookup is needed for each
matching document in order to determine the DVID.

– The average cost of updating a document is much lower. Assuming most words in
version DVID=i also occur in version DVID=i+1, only a few postings need to be
updated.

However, as with most indexing problems, there is not a single index structure that is
best in all situations: the context decides which indexing method is most beneficial.
This is also the case in our case, and in some contexts the V2 indexing approach can be
better than the ITTX:

– Although the insert of new documents will have the same indexing cost (for new
documents, all words have to be indexed), the actual insert into the version database
will be slightly more expensive because it is not an append operation as before. An-
other result of insert instead of append is that the storage utilization in the version
database is likely to be lower.

– In the V2 system, two important operations that can be used to reduce the amount of
data that is stored in the system (or identify candidates for tertiary-storage migra-
tion) are vacuuming and granularity reduction [10]. Vacuuming is the traditional
temporal database method for data reduction, and removes the oldest versions.
However, in a document database context, granularity reduction is often more ap-
propriate. Two simple granularity reduction approaches that illustrate the concept,
are deleting versions of an document that are closer in time than tt, or simply re-
moving every second version of a document. This can be useful when we have a
large number of document versions created during a relatively short time period,
and after a while we do not really need all these versions. Although a (logical)
delete in a temporal database does not result in removal of any historical versions,
physical deletion can be performed as a result of vacuuming and granularity re-
duction operations [10]. When versions are physically removed from the database,
fragmentation of time ranges can occur. For example, the use of a granularity re-
duction strategy that removes every second version will have as a result that all
intervals only cover one DVID. Vacuuming on the other hand removes all versions
older than a certain age, and does not affect the efficiency of the interval represen-
tation of DVIDs. Thus, the ITTX approach is most suitable for application areas
where vacuuming, and not granularity reduction, is employed. In the context of this
paper, we can assume that all versions will be kept (and that eventual granularity
reduction has already been applied to the data), and there is less need for granularity
reduction.

– Bulk-updating can be performed relatively efficiently using the original V2 ap-
proach. VIDs are assigned sequentially, so that new VIDs are appended to the post-
ing lists. Even of a large number of VIDs are inserted for a particular word, they are
stored clustered in the leaf nodes of the index, so that only a much smaller number
of writes are actually needed. In the ITTX, the DVIDs are clustered on DIDs, so
that in worst case one write is needed for each word in a document (however, we
emphasize that when updating documents only a few entries actually have to be
updated in the index).

5 Conclusions and further work

In our V2 temporal document database system we employed a combination of full-text
indexes and variants of time indexes for performing efficient text-containment queries.
That approach was optimized for moderately large temporal document databases. How-
ever, for “extremely large databases” the index space usage of the V2 approach could
be too large. In this paper we have presented a more space-efficient solution to the
problem, the interval-based temporal text index (ITTX). We have presented appropriate
algorithms for update and retrieval, and we discussed advantages and disadvantages of
these two approaches.

Future work includes integrating the ITTX into V2 and use our temporal document
database benchmarks to compare the performance of ITTX with the VP index approach
currently used in V2. We also plan to investigate approaches that can achieve better
clustering in the temporal dimension, for example by using an extension of indexing
structures like the TSB-tree [5].

Acknowledgments This work was done when the author visited Athens University
of Economics and Business in 2002, and Aalborg University in 2003, supported by
grant #145196/432 from the Norwegian Research Council.

References

1. P. G. Anick and R. A. Flynn. Versioning a full-text information retrieval system. In Proceed-
ings of the 15th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, 1992.

2. M. J. Aramburu-Cabo and R. B. Llavori. A temporal object-oriented model for digital li-
braries of documents. Concurrency and Computation: Practice and Experience, 13(11),
2001.

3. S.-Y. Chien, V. Tsotras, and C. Zaniolo. Efficient schemes for managing multiversion XML
documents. VLDB Journal, 11(4), 2002.

4. Internet archive. http://archive.org/.
5. D. Lomet and B. Salzberg. Access methods for multiversion data. In Proceedings of the

1989 ACM SIGMOD, 1989.
6. A. Marian, S. Abiteboul, G. Cobena, and L. Mignet. Change-centric management of versions

in an XML warehouse. In Proceedings of VLDB 2001, 2001.
7. K. Nørvåg. Algorithms for temporal query operators in XML databases. In Proceedings of

Workshop on XML-Based Data Management (XMLDM) (in conjunction with EDBT’2002),
2002.

8. K. Nørvåg. Supporting temporal text-containment queries. Technical Report
IDI 11/2002, Norwegian University of Science and Technology, 2002. Available from
http://www.idi.ntnu.no/grupper/DB-grp/.

9. K. Nørvåg. V2: A database approach to temporal document management. In Proceedings of
the 7th International Database Engineering and Applications Symposium (IDEAS), 2003.

10. K. Nørvåg. Algorithms for granularity reduction in temporal document databases. Technical
Report IDI 1/2003, Norwegian University of Science and Technology, 2003. Available from
http://www.idi.ntnu.no/grupper/DB-grp/.

11. M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In Proceedings of the FREENIX
Track: 1999 USENIX Annual Technical Conference, 1999.

12. L. Xyleme. A dynamic warehouse for XML data of the web. IEEE Data Engineering
Bulletin, 24(2), 2001.

