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Abstract. The advent of digital libraries along with the tremendouswgh of
digital content call for distributed and scalable apprascior managing vast data
collections. Peer-to-peer (P2P) networks emerge as a pirggrsolution to delve
with these challenges. However, the lack of global contepdlogy knowledge
in an unstructured P2P system demands unsupervised médtiadsmtent orga-
nization and necessitates efficient and high quality sea@thanisms. Towards
this end, Semantic Overlay Networks (SONs) have been peapivsthe litera-
ture, and in this paper, an unsupervised method for dedizelaand distributed
generation of SONs, called DESENT, is proposed. We provéetsbility of our
approach through analytical cost models and we show threimghlations that,
when compared to flooding, our approach improves recall byentiwan3-10
times, depending on the network topology.

1 Introduction

The advent of digital libraries along with the tremendousagh of digital content call
for distributed and scalable approaches for managing \&atabllections. Future dig-
ital libraries will enable citizens to access knowledge &me/where, in a friendly,
multi-modal, efficient and effective way. Reaching thisetisrequires development of
new approaches that will significantly reform the currembfef digital libraries. Key
issues in this process are [9]: the system architecturetamitditormation access means.
With respect to system architecture, peer-to-peer (P2iégistified as a topic of pri-
mary interest, as P2P architectures allow for loosely-taimtegration of information
services and sharing of information/knowledge [1,6,11].

In this paper, we present a scalable approach to P2P docsheantg and retrieval.
Because scalability and support for semantics can be dffficstructured P2P systems
based on DHTs, we instead base our approachmnstructured P2P networks. Such
systems, in their basic form, suffer very high search casterms of both consumed
bandwidth and latency, so in order to be useful for real aptibns, more sophisti-
cated search mechanisms are required. We solve this prdiyl@mployingsemantic
overlay networks (SONSs) [5], where peers containing related informatiorcamected
together in separate overlay networks. If SONs have beertettequeries can be for-
warded to only those peers containing documents that gdtisf constraints of the
guery context, for example based on topic, user profilesaiufes extracted from pre-
vious queries.



One of the problems of SONs is the actual construction oktbhesrlays, because in
a P2P context there is a lack of knowledge of both global ¢ursted network topology.
In a P2P architecture, each peer is initially aware onlysofiéighbors and their content.
Thus, finding other peers with similar contents, in ordertarf a SON, becomes a te-
dious problem. This contrasts to a centralized approachrevaill content is accessible
to a central authority, and clustering becomes a triviabfam, in the sense that only
the clustering algorithm (and its input parameter valuetgignines the quality of the
results.

The contribution of this paper isdistributed anddecentralized method for hierar-
chical SON construction (DESENT) that provides an efficraethanism for search in
unstructured P2P networks. Our strategy for creating SG@Nased on clustering peers
based on their content similarity. This is achieved by ar&ga process that starts on
the individual peers. Through applying a clustering algdpon on the documents stored
at the peer, one or more feature vectors are created for emrhgssentially one for
each topic a peer covers. Then representative peers, egamnggble for a number of
peers in azone are selected. These peers, henceforth cafigdhtors, will collect the
feature vectors from the members of the zone and use thessiaddr the next level of
clustering. This process is applied recursively, until \aeda number of feature vectors
covering all available documents.

The organization of the rest of this paper is as follows. loti®a 2, we give an
overview of related work. In Section 3, we present our metfooatreating SONs that
can be used in the search process (Section 4). In Section biseanalytical cost
models to study the cost and the time required for overlagtag, while, in Section 6,
we present the simulation results. Finally, in Section 7caeclude the paper.

2 Redated Work

Several techniques have been proposed that can improwvehseannstructured P2P
systems [2,8], including techniques for improved routihgttgive a direction towards
the requested document, like routing indices [4], and cotivity-based clustering that
creates topological clusters that can be used as startimgsgfor flooding [12]. An
approach to improve some of the problems of Gnutella-liketesys [2], is to use a
super-peer architecture [15], which can be also used tzecalhierarchical summary
index, as described in [13].

The concept of semantic overlay networks (SONSs) [5] is aldingtcting searches
only to a specific subset of peers with content relevant tajtrery. The advantage of
this approach is that it reduces the flooding cost in the casmstructured systems.
Crespo and Garcia-Molina [5] essentially base their apgram partly pre-classified
documents that only consist of information about the somgained in a particular file.
Also they do not provide any other algorithm for searchintgeothan flooding. In order
to be useful in a large system, unsupervised and decertalization of SONSs is nec-
essary, as well as efficient routing to the appropriate SPN{se DESENT approach
described in our paper solves these issues.

Although several papers describe how to use SON-like sirestfor P2P content
search [3,10], little work exists on the issue of how to alijuareate SONSs in an unsu-
pervised, decentralized and distributed way in unstrectmetworks. Distributed clus-



tering in itself is considered a challenge demanding focieffit and effective solutions.
In [14], a P2P architecture where nodes are logically omghinto a fixed number of
clusters is presented. The main focus of the paper is farwih respect to the load
of individual nodes. In contrast to our approach, the alioceof documents to clusters
is done by classification, it is not unsupervised, and ctasee not hierarchical. We
believe that current research in P2P digital libraries,[ll fcan benefit from the merits
of our approach.

3 Overlay Network Creation

In this section, we describe SON generation, assuming sersg digital content
and being connected in an unstructured P2P network. Eadhr@eesents a digital
library node and in this paper we focus on peers that storerdents, though other
data representations can also be supported. The approaelses on creating local
zones of peers, forming semantic clusters based on da&isiarthese peers, and then
merging zones and clusters recursively until global zomelsciusters are obtained.

3.1 Decentralized and Distributed Cluster Creation

The peer clustering process is divided into 5 phases: 1) ébustering, 2) zone initiator
selection, 3) zone creation, 4) intra-zone clustering,8ridter-zone clustering.

Phase 1: Local Clustering. In the process of determining sites that contain related
documentsfeature vectors are used instead of the actual documents because of the
large amounts of data involved. A feature vecigris a vector of tuples, each tuple
containing a feature (wordj; and a weightov;. The feature vectors are created using
a feature extraction process (more on the feature extraptiocess in section 6). By
performing clustering of the document collection at eatd si set of document clusters

is created, each cluster represented by a feature vector.

Phase 2: Initiator Selection. In order to be able to create zones, a subset of the peers
have to be designated the role zuihe initiators that can perform the zone creation
process and subsequently initiate and control the clugtgniocess within the zone.

The process of choosing initiators is completely distiéouand ideally would be
performed at all peers concurrently, in order to have apprately Sz peers in each
zoné. However, this concurrency is not necessary, since thefusene partitioning at
the next phase eliminates the danger of excessive zone sizes

Assuming the IP of a peeP; is IPp, and the time isI" (rounded to nearest,?),

a peer will discover that it is an initiator iPp, + 7') MOD Sz = 0. The aim of
the function is to select initiators that are uniformly steout in the network and an
appropriate number of initiators relative to the total nembf peers in the network.

1 n order to avoid some initiators being overloaded, the aito ihave as uniform zone sizes as
possible. Note that although uniform zone size and haviit@giar in the center of the zone
are desired for load-balancing reasons, this is not créicigdhe correctness or quality of the
overlay construction.

2 Assuming that each peer has a clock that is accurate withimtain amount of time,,, note
that DESENT itself can be used to improve the accuracy.



Fig. 1. Step-wise zone creation given the three initiators A, B, @nd

By including time in the function we ensure that we obtairfatiént initiators each
time the clustering algorithm is run. This tackles the peobbf being stuck with faulty
initiators, as well as reduces the problem of permanenttehea

If no initiator is selected by the above strategy, this wil discovered from the
fact that the subsequent zone creation phase is not staittéid @ given time (i.e., no
message received from an initiator). In this case, a ursdelscrease of the modulo-
parameter is performed, by dividing by an appropriate pnmamber, as many times
as necessary, in order to increase the chance of selectitepaés) one peer at the next
iteration.
Phase 3: Zone Creation. After a peerP; has discovered that it is an initiator, it uses
a probe-based technique to create its zone. An example ef @eation is illustrated
in Fig. 1. This zone creation algorithm has a low cost wrt. umber of messages (see
Section 5), and in the case of excessive zone sizes, thatimitan decide to partition
its zone, thus sharing its load with other peers. When tigigsrthm terminates, 1) each
initiator has assembled a set of peBrsand their capabilities, in terms of resources they
possess, 2) each peer knows the initiator responsiblesfaoite and 3) each initiator
knows the identities of its neighboring initiators. An irgeting characteristic of this
algorithm is that it ensures that all peers in the network kel contacted, as long as
they are connected to the network. This is essential, ofkerthere may exist peers
whose content will never be retrieved. We refer to the ex¢éenakrsion of this paper for
more details on initiator selection and zone creation [7].
Phase 4. Intra-zone Clustering. After the zones and their initiators have been deter-
mined, global clustering starts by collecting feature gecfrom the peers (one feature
vector for each cluster on a peer) and creating clustersiaséhese feature vectors:

1. The initiator of each zonesends probe messagegecProbeto all peers inz;.

2. When a peeP,; receives & VecProbe it sends its set of feature vectofg'} to the
initiator of the zone.

3. The initiator performs clustering on the received featactors. The result is a set
of clusters represented by a new set of feature vedtbrs, where anF; consists
of the top# features of cluste€’;. Note that a peer can belong to more than one
cluster. In order to limit the computations that have to bégrened in later stages
at other peers, when clusters from more than one peer have ¢orisidered, the
clustering should result in at most? such basic clusters\{, is controlled by
the clustering algorithm). The result of this process issiitated in the left part of
Fig. 2.

4. The initiator selects a representative p&egrfor each cluster, based on resource
information that is provided during Phase 3, like peer badtwconnectivity, etc.
One of the purposes of a representative peer is to represtrstar at search time.



Level 4 initiators:

Level 3 initiators:

Level 3 zone

Fig.2. Left: Possible result of intra-zone clustering of zone Asuléng in the four
clustersCy, Cq, Cs, andCs. Right: Hierarchy of zones and initiators.

5. The result kept at the initiator is a set of cluster desions (CDs), one for each
clusterC;. A CD consists of the cluster identifi€r;, a feature vectoF;, the set
of peers{ P} belonging to the cluster, and the representafivef the cluster, i.e.,
CD,; = (C;, F;,{P}, R). For example, the CD of clustér, in Fig. 2 (assuming
Av is the cluster representative) would be £B (Cs, Fo, { A5, A7, As, Ag}, A7).

6. Each of the representative peers are informed by thatoitabout the assignment
and receive a copy of the CDs (@ clusters in the zone). The representatives then
inform peers on their cluster membership by sending thensages of the type
(CZ‘, Fi, R)

Phase 5: Inter-zone Clustering. At this point, each initiator has identified the clusters
in its zone. These clusters can be employed to reduce thawrdshcrease the quality
of answers to queries involving the peers in one zone. How@venany cases peers in
other zones will be able to provide more relevant resporsgsi¢ries. Thus, we need
to create an overlay that can help in routing queries to efash remote zones. In order
to achieve this, we recursively apply merging of zones tgdaand larger super-zones,
and at the same time merge clusters that are sufficientlyasinto super-clusters: first
a set of neighboring zones are combined to a super-zonen#ighboring super-zones
are combined to a larger super-zone, etc. The result igréitezl in the right part of
Fig. 2 as a hierarchy of zones and initiators. Note that {¢weitiators are a subset of
the level{i — 1) initiators.

This creation of the inter-zone cluster overlay is perfadras follows:

1. From the previous level of zone creation, each initiataimains knowledge about
its neighboring zones (and their initiators). Thus, theem@ssentially form a zone-
to-zone network resembling the P2P network that was théreigyoint.

2. Alevel< zone should consist of a number of neighboring leiéel- 1) zones, on
average|SZ| in each (whereSZ denotes a set of zones, ap$lZ| the number
of zones in the set). This implies th%fj‘ of the level{: — 1) initiators should be
level< initiators. This is achieved by using the same techniquinfoator selection
as described in Phase 2, except that in this case only peeeslglchosen to be
initiators at levelti — 1) in the previous phase are eligible for this role.

3. The leveli initiators create super-zones using the algorithm of PBakethe same
way, these level-initiators will become aware of their neighboring supenes.



4. In a similar way to how feature vectors were collectedmyithe basic clustering,
the approximatelyN¢|SZ| CDs created at the previous level are collected by the
level< initiator (whereN¢ denotes the number of clusters per initiator at the pre-
vious level). Clustering is performed again and a set of sgjsters is generated.
Each of the newly formed super-clusters is representediy features produced
by merging the toge feature vectors of the individual clusters. The result abttr
merging is a set of super-clusters. A peer inside the supster (not necessarily
one of the representatives of the cluster) is chosen assemiaive for the super-
cluster. The result is a new set of CDs, CB (C;, F;, { P}, R), where the set of
peers{P} contains the representatives of the clusters forming tise b&athe new
super-cluster.

5. The CDs are communicated to the appropriate represezgalihe representatives
of the merged clusters (the peers{ift} in the new CDs) are informed about the
merging by the super-cluster representative, so thatwstet representatives know
about both their representativedow as well as the representatiabove in the
hierarchy. Note that although the same information couldtitained by traversing
the initiator/super-initiator hierarchy, the use of crstepresentatives distributes
the load more evenly and facilitates efficient searching.

This algorithm terminates when only one initiator is lefeé.j when an initiator has no
neighbors. Unlike the initiators at the previous leveld therformed clustering opera-
tions, the only purpose of the final initiator is to decide ldneel of the final hierarchy.
The aim is to have at the top level a number of initiators thiédlige enough to provide
load-balancing and resilience to failures, but at the same kow enough to keep the
cost of exchanging clustering information between theninduthe overlay creation to
a manageable level. Note that there can be one or more |lezlels the top-level initia-
tor that have too few peers. The top-level peer probes ligd-down the tree in order
to find the number of peers at each level until it reaches lewath appropriate number
ming of peers. The levej-initiators are then informed about the decision and they are
given the identifiers of the other initiators at that level,order to send their CDs to
them. Finally, all levels initiators have knowledge about the clusters in zones ealer
by the other level initiators.

3.2 Final Organization

To summarize, the result of the zone- and cluster-creatioogss are two hierarchies:

Hierarchy of peers: Starting with individual peers at the bottom level, formaunes
around the initiating peer which acts as a zone controlleighboring zones recursively
form super-zones (see right part of Fig. 2), finally endingrup level where the top
of the hierarchies have replicated the cluster informatibthe other initiators at that
level. This is a forest of trees. The peers maintain the fotig information about the
rest of the overlay network: 1) Each peer knows its initia2pA level-1 initiator knows
the peers in its zone as well as the lefehitiator of the super-zone it is covered by.
3) Alevel- initiator (fori > 1) knows the identifiers of the levél-— 1) initiators of the
zones that constitute the super-zone as well as the (éydl} initiator of the super-zone
it is covered by. 4) Each initiator knows all cluster reprgagves in its zone.



Hierarchy of clusters. Each peer is member of one or more clusters at the bottom

level. Each cluster has one of its peers as representatideofOmore clusters constitute

a super-cluster, which again recursively form new supestelrs. At the top level a
number of global clusters exist. The peers store the foligwhformation about the
cluster hierarchy: 1) Each peer knows the cluster(s) it isgfaand the representative
peers of these clusters. 2) A representative also knowslérgifiers of the peers in its
cluster, as well as the identifier of the representative efsihper cluster it belongs to.

3) A representative for a super-cluster knows the identiffehe representative at the
level above as well as the representatives of the level below

3.3 Peer Join

A peer P; that joins the network first establishes connection to oneare peers as
part of the basic P2P bootstrapping protocol. These neightn@vide P; with their
zone initiators. Through one of these zone initiatdPg,is able to reach one of the
top-level nodes in the zone hierarchy and through a searsimdards find the most
appropriate lowest-level cluster, whidh; will then subsequently join. Note that no
reclustering will be performed, so after a while a clustesadiption might not be ac-
curate, but that cannot be enforced in any way in a largeesdghamic peer-to-peer
system, given the lack of total knowledge. However, the glatustering process is
performed at regular intervals and will then create a newteling that reflects also
the contents of new nodes (as well as new documents that haveged the individ-
ual peer’s feature vectors). This strategy consideralglyces the maintenance cost, in
terms of communication bandwidth compared with incremeetzdustering, and also
avoids the significant cost of continuous reclustering.

4 Searching

In this section we provide an overview of query processin@ESENT. A queryQ@

in the network originates from one of the peétsand it is continually expanded until
satisfactory results, in terms of number and quality, haentgenerated. All results that
are found as the query is forwarded are returnel tQuery processing can terminate
at any of the steps below if the result is satisfactory:

1. The query is evaluated locally on the originating pBer

2. A peeris a member of one or more clust€ts TheC; which has the highest sim-
ilarity sim(Q, C;) with the query is chosen, and the query is sent to and evaluate
by the other peers in this cluster.

3. @ is sent to one of the top-level initiators (remember thatheafcthe top-level
initiators knows about all the top-level clusters). At th@nt we employ two alter-
natives for searching:

(&) The most appropriate top-level cluster is determinegt®an a similarity mea-
sure, andy is forwarded to the representative of that cluster. Néx routed
down the cluster hierarchy until the query is actually exeduat the peers in
a lowest-level cluster. The path is chosen based on highesiQ, C;) of the
actual sub-clusters of a levékluster. If the number of results is insufficient,
then backtracking is performed in order to extend the quemdre clusters.



Default Default
Parameter Value Parameter Value

B Minimum bandwidth available |1 KB/s N; |# of peers/zones at level (SN—ZP)i
Do |Avg. # of neighbors atlevel 0 |4 Np |Total # of peers in the netwofk000000
D; |Avg. # of neighbors at level Sz r Max zone radius 20
L # of initiator levels LlogSZ Np|||Scp|Size ofaCD ~ 1.55F
ming |Min. # of trees in top-level fores6 z /4 Sr |Size of feature vector 200 bytes
N |# of clusters per peer 10 Swm |Size of packet overhead 60 bytes
Né # of clusters per level-initiator |100 Sz |Avg. zone size 100
Np |#oftrees in top-level forest > Sz /4 ta Time between synch. points|60 seconds

Table 1. Parameters and default values used in the cost models.

(b) All top-level clusters that have some similaritym (Q, C;) > 0 to the quen@
are found and the query is forwardedaib cluster representatives. The query
is routed down aaéll paths of the cluster hierarchy until level-0. Practicadly,
subtrees that belong to a matching top-level cluster amelsed extensively.

The first approach reduces query latency, since the mostarglsubset of peers
will be identified with a small cost of messages. However thmber of returned doc-
uments will probably be restricted, since the search widlfoon a local area only. This

approach is more suitable for tdpgueries. The second approach can access peers re-

siding at remote areas (i.e. remote zones), with acceptabé!, however this results

in a larger number messages. It is more suitable for cases wkeare interested in

the completeness of the search (retrieval of as many reldeauments as possible). In
the following, we provide simulation results only for thecead scenario, since we are
mainly interested in testing the recall of our approach.

5 Feasbility Analysis

We have studied the feasibility of applying DESENT in a reakd P2P system through
analytical cost models. Due to lack of space, we presentdrdyehe main results of the
analytical study, whereas the actual cost models are destim detail in the extended
version of this paper [7]. The parameters and default valsed in the cost models are
summarized in Table 1. These are typical values (pracfisike and performance) or
values based on observations and conclusions from siroofati

A very important concern is the burden the DESENT creatiquoises on participat-
ing nodes. We assume that the communication cost is thetpadteottleneck and hence
the most relevant metric, and we consider the cost of crg&@BSENT acceptable if
the cost it imposes is relatively small compared to the @didlocument-delivery load
on a web server.

In studying the feasibility of DESENT, it is important thaetaverage communica-
tion cost for each peer is acceptable, but most importahiisiaximum cost that can
be incurred for a peer, i.e., the cost for the initiators amtibp level of the hierarchy.
In order to study the maximum co&t, for a particular peer to participate in the cre-
ation of the overlay network, both received and sent datalldhme counted because
both pose a burden on the peer. Fig. 3 (left) illustrdtgs for different values ofVp



10000

7000 . . i
B=100KB/s,'S,=50 —+—
B=100KB/S, 5,510 -

1000 F 6000 -

100 . 5000 -

10 ¢ 4000 -

cyMB

1" 3000 -

Tc/seconds

0.1+ El 2000 -

0.01 El 1000

0.001 0
1000 10000 100000 1e+06 1le+07 0 10 20 30 40 50 60

Np ty/seconds

Fig. 3. Left: maximum cost of participation in overlay network ctiea for different
values of network sizé&Vp and zone siz& ;. Right: TimeT¢ to create DESENT as a
function oft, for different zone sizes and bandwidths.

and zone siz&5z. We see that a large zone size results in higher cost, butveith
high variance. The situations in which this happens, is wthennumber of top-level
peers is just below thming threshold so that the level below will be used as top level
instead. With a large zone size this level will contain aéangimber of peers, and the
final exchange of clusters information between the roothisfforest will be expensive.
However, in practice this could be solved by merging of zaatdhis level. Regarding
the maximum cost, if we consider a zone sizeéSgf = 100, the maximum cost is just
above 100 MB. Compared with the load of a typical web servaickvis some GB of
delivered documents per d&ythis is acceptable even in the case of daily reclustering.
However, considering the fact that the role of the uppeell@nitiators changes every
time the overlay network is created, it could even be feadibperform this clustering
more often. In addition to the cost described above, thellealgio be a certain cost
for maintaining replicas and peer dynamics in the networdweler, this cost will be
relatively small compared to the upper-level exchange o$.CD

In order to ensure freshness of the search results, it isritapiothat the duration
of the DESENT creation itself is not too long. The resultsisirated in Fig. 3 (right),
show the time needed to create DESENT for different valuesi@timum assumed
clock deviation, zone siz8z, and minimum available bandwidth for DESENT partic-
ipation B. For typical parameter values ahgd= 30s, the time needed to construct the
DESENT overlay network is between 3000 and 4000 secondsapproximately one
hour. This means that the DESENT creation could run sevienakta day, if desired.
An important point is that even if the construction takes gate time, the average
load the construction imposes on peers will be relatively. lost of the time is used
to ensure that events are synchronized, without havingeéacasmmunication for this
purpose. Regarding values of parameters, it should besstighat the actuaumber
of peers has only minimal impact on the construction time, becauseh#fight of the
tree is the important factor, and this increases only lalyanically with the number of
peers.

8 Using a web server in our department as example, it delivettssi order of 4 GB per day, and
a large fraction of this data is requested by search engia@ding the web.



6 DESENT Simulation Results

We have developed a simulation environment in Java, whieersoall intermediate
phases of the overlay network generation as well as thetsegrpart. We ran all our
experiments on Pentium IV computers with 3GHz processaisla?GB of RAM.

At initialization of the P2P network, a topology &fp interconnected peers is cre-
ated. We used the GT-ITM topology generéttr create random graphs of peers (we
also used power-law topologies with the same results, duketdact that the under-
lying topology only affects the zone creation phase), andoaun SQUARE topology,
which is similar to GT-ITM, only the connectivity degree isrstant and neighboring
peers shar8-5 common neighbors, i.e., the network is more dense than GI-A
collection of Np documents is distributed to peers, so that each peer retginsvp
distinct documents. Every peer runs a clustering algoritimits local documents re-
sulting in a set of initial clusters. In our experiments wesh the Reuter21578 text
categorization test collectiohand we use&000 pre-classified documents that belong
to 60 distinct categories, as well as a different setu@@f00 documents. We tried
different experimental setups wit000, 8000 and 20000 peers. We then performed
feature extraction (tokenization, stemming, stop-wordgeal and finally keeping the
top-k features based on their TF/IBFalue and kept a feature vector of tédeatures
for each document as a compact document description). €agh,documentis repre-
sented by a tof-feature vector. Initiators retrieve the feature vectorallgbeers within
their zone, in order to execute intra-zone clustering. Weduserarchical agglomera-
tive clustering (HAC) to create clusters of documents. &lisg is based on computing
document similarities and merging feature vectors, byniglie union of the clusters’
features and keeping the tépreatures with higher TF/IDF values. We used the cosine
similarity with parameter the similarity threshdld for merging. Clusters are created
by grouping together sufficiently similar documents anchedaster is also represented
by a top# feature vector. Obviously, other clustering algorithnssyell as other simi-
larity measures can be used.

6.1 ZoneCreation

We studied the average zone size after the zone creatioe phésvel 1. The network
topology consists ofVp = 20000 peers, each having0 neighbors on average and
Sz = 100. We run the experiment with and without the zone partitigmmechanism.
The simulations brought out the value of zone partitiongigce this mechanism keeps
all zones smaller thafz, while most are of size30 — 100. However, when there is no
zone partitioning, abow0% of the total zones have sizes greater ti$an and some
are twice larger thalz, thus imposing a cumbersome load on several initiators.

“http://ww. cc. gatech. edu/ projects/gtitm

Shttp://ww. davi ddl ewi s. cond r esources/t estcol | ecti ons/
reut ers21578/

5 Notice that the inverse document frequency (IDF) is notlafée, since no peer has global
knowledge of the document corpus, so we use the TF/IDF vglteuced on each peer lo-
cally, taking only the local documents into account.



DESENT clustering quality relative to Recall

centralized clustering

0.8

0.6 m DESENT
0.4 O Flooding

0.2 4

Np=2000  Np=2000 Np=8000  Np=8000 GTITM  GTITM  GTITM SQUARE SQUARE SQUARE
k=50 k=70 k=50 k=70 k=25 k=50 k=70 k=25 k=50 k=70

Fig. 4. Simulation results: Cluster quality, compared to cerggaliclustering, for dif-
ferent network sizes and values/ofleft), and average recall compared to normalized
flooding using the same number of messages (right).

6.2 Clustering Results Quality

Measuring the quality of the DESENT clustering results ieesial for the value of the
approach. As clustering quality in our context, we definesih@larity of the results of
our clustering algorithmd;), with respect to an optimal clustering(¢). We used in
our experiments the F-measure as a cluster quality medsumeasure ranges between
0 and1, with higher values corresponding to better clustering.

We compare the clustering quality of our approach to theraénéd clustering
results. The average values of DESENT F-measure relativertalized clustering are
illustrated in the left part of Fig 4, and show that DESENT iaehs high clustering
quality. Also note that the results exhibit a relativelymdéabehavior as the network size
increases. This indicates that DESENT scales well with tnaber of participating
peers. This conveys that the proposed system achieves aajitygn forming SONs
despite of the lack of global knowledge and the high distidyuof the content.

6.3 Quality and Cost of Searching

In order to study the quality of searching in DESENT, we cdaesias baseline the
search that retrieves all documents that contain all kegiaiiora query. We measure the
searching quality using recall, representing the percentd the relevant documents
found. Note that, for the assumed baseline, precision Wwilags be100% in our ap-
proach, since the returned documents will always be retedae to the exact matching
of all keywords. We generated a synthetic query workloadsisbimg of queries with
term count averag®.0 and standard deviation0. We selected query terms from the
documents randomly (ignoring terms with frequency lesa t#a). The querying peer
was selected randomly.

In the right part of Fig. 4, we show the average recall of oprapch compared to
normalized flooding using the same number of messages feretlit values of, for
the GT-ITM topology and the SQUARE topology f8000 peers. Normalized flood-
ing [8] is a variation of naive flooding that is widely used iraptice, in which each
peer forwards a query t@ neighbors, instead of all neighbors, wheres usually the
minimum connectivity degree of any peer in the network. Ti@tshows that with the



same number of messages, our approach improves recall lsthars-5 times for GT-
ITM, and more than 0 for SQUARE, compared to normalized flooding. Furthermore,
the absolute recall values increase withsince more queries can match the enriched
(with more features) cluster descriptions. Also noticet thar approach presents the
same recall independent of the underlying network topalogy

7 Conclusionsand Further Work

In this paper, we have presented algorithms for distribatedidecentralized construc-
tion of hierarchical SONs, for supporting searches in a Ba2sed digital library context.

Future work includes performance and quality measurenfehesearch algorithm us-

ing large document collections, studying the use of othasteking algorithms as well

as the use of caching techniques and ranking to increaserffic
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