
Determining Time of Queries for Re-ranking Search
Results?

Nattiya Kanhabua and Kjetil Nørvåg

Dept. of Computer Science,
Norwegian University of Science and Technology,

Trondheim, Norway

Abstract. Recent work on analyzing query logs shows that a significant frac-
tion of queries are temporal, i.e., relevancy is dependent on time, and temporal
queries play an important role in many domains, e.g., digital libraries and doc-
ument archives. Temporal queries can be divided into two types: 1) those with
temporal criteria explicitly provided by users, and 2) those with no temporal cri-
teria provided. In this paper, we deal with the latter type of queries, i.e., queries
that comprise only keywords, and their relevant documents are associated to par-
ticular time periods not given by the queries. We propose a number of methods
to determine the time of queries using temporal language models. After that, we
show how to increase the retrieval effectiveness by using the determined time of
queries to re-rank the search results. Through extensive experiments we show that
our proposed approaches improve retrieval effectiveness.

1 Introduction

An enormous amount of information is stored in the form of digital documents, ex-
amples include web pages harvested and stored in web archives as well as newspaper
articles stored in news archives. Information in such document repositories are useful
for both expert users, e.g., historians, librarians, and journalists, as well as for students
and other people searching for information needs. However, when searching in such
temporal document collections, it is difficult to achieve high accuracy using simple
keyword search because the contents are strongly time-dependent; documents are about
events that happened at a particular time period. In addition, accesses to the contents are
time-dependent too, i.e., time is a part of the information needs represented by temporal
queries.

In previous work [2, 10], searching temporal document collections has been per-
formed by issuing temporal queries composed of keywords, and the creation or update
date of documents (called temporal criteria). In that way, a system narrows down the
results by retrieving documents according to both text and temporal criteria. Temporal
queries can be divided into two categories: 1) those with temporal criteria explicitly
provided by users [2, 10], and 2) those with no temporal criteria provided. An exam-
ple of a query with temporal criteria explicitly provided is “the U.S. Presidential elec-
tion 2008”, while that of a query without temporal criteria provided is “Germany FIFA
? This work has been supported by the LongRec project, partially funded by the Norwegian

Research Council.

2 Nattiya Kanhabua, Kjetil Nørvåg

World Cup”. However, for the latter example, a user’s temporal intent is implicitly pro-
vided, i.e., referring to the world cup event in 2006. As mentioned in [1], an analysis
of web user query log shows that 1.5% of queries are explicitly provided with temporal
criteria [11], i.e., containing temporal expressions, while about 7% of web queries have
temporal intent implicitly provided [9].

In this paper, we focus on implicit temporal queries, i.e., temporal queries that com-
prise only keywords, and where relevant documents are associated to particular time
periods that are not given by the queries. Through a novel approach for determining the
time of queries, or implicit temporal intent, using temporal language models, we are
able to increase the retrieval effectiveness by using the determined time of queries to
re-rank search results. Thus, the main contributions of this paper are: 1) the first study
on how to determine the time of queries without temporal criteria provided, as well as
techniques for determining this time, 2) a study on how to incorporate the determined
time of queries into the re-ranking search results, and 3) an extensive evaluation of our
approaches for determining the time of queries, as well as of re-ranking search results
using the time of queries. It should be noted that our approach is language-independent:
the only requirement is the availability of a temporal document collection in the query
language, such a corpus can be easily obtained from, for example, a news archive.

The organization of the rest of the paper is as follows. In Sect. 2, we give an
overview of related work. In Sect. 3, we outline our of document and query models.
Then, we explain the use of temporal language models for document dating. In Sect. 4,
we present our approaches to determining the time of queries without temporal criteria
provided. In Sect. 5, we describe how to use the determined time to improve the re-
trieval effectiveness. In Sect. 6, we evaluate our proposed query dating, and re-ranking
methods. Finally, in Sect. 7, we conclude and outline our future work.

2 Related Work

Recently, a number of papers have described issues of temporal search [2, 10, 13]. In
the approaches described in [2, 10], a user explicitly specifies time as a part of query.
Typically, such a temporal query is composed of query keywords and temporal crite-
ria, which can be a point in time or a time interval. In general, temporal ranking can
be divided into two types: approaches based on link-based analysis and content-based
analysis. The first approach studies link structures of a document and uses this infor-
mation in a ranking process, whereas the second approach examines the contents of a
document instead of links. In our context, we will focus on analyzing contents only be-
cause information about links is not available in all domains, and content-based analysis
seems to be more practical for a general search application. Temporal ranking exploit-
ing document contents and temporal information are presented in [4, 5, 8, 12, 13].

In [8], Li and Croft incorporated time into language models, called time-based lan-
guage models, by assigning a document prior using an exponential decay function of
a document creation date. They focused on recency queries, such that the more recent
documents obtain the higher probabilities of relevance. In [4], Diaz and Jones also used
document creation dates to measure the distribution of retrieved documents and create
the temporal profile of a query. They showed that the temporal profile together with the

Determining Time of Queries for Re-ranking Search Results 3

contents of retrieved documents can improve average precision for the query by using
a set of different features for discriminating between temporal profiles. In [13], Sato et
al. defined a temporal query and proposed ranking taking into account time for fresh
information retrieval. In [5] an approach to rank documents by freshness and relevance
is presented. In [12], Perkiö et al. introduced a process of automatically detecting a top-
ical trend (the strength of a topic over time) within a document corpus by analyzing the
temporal behavior of documents using a statistic topic model.

Dating of documents has been previously studied by de Jong et al. [3], and their
approach later extended by Kanhabua and Nørvåg [6]. However, dating short queries
and employing the time in ranking has to our knowledge not been performed before.

The most related work to this paper is [1, 9]. Berberich et al. [1] integrated temporal
expressions into query-likelihood language modeling, which considers uncertainty in-
herent to temporal expressions in a query and documents, i.e., temporal expressions can
refer to the same time interval even they are not exactly equal. The work by Berberich
et al. and our work is similar in the sense that both incorporate time into a ranking
in order to improve the retrieval effectiveness for temporal search, however, in their
work, the temporal criteria are explicitly provided for a query. Metzler et al. [9] also
consider implicit temporal needs in queries. They proposed mining query logs and an-
alyze query frequencies over time in order to identify strongly time-related queries.
In addition, they presented a ranking concerning implicit temporal needs, and the ex-
perimental results showed that their approach improved the retrieval effectiveness of
temporal queries for web search. Rather than relying on user query logs, we propose an
alternative for determining the time of queries from the contents.

3 Preliminaries

In this section, we first briefly outline our document and query models. Then, we explain
the basic approach to document dating using temporal language models.

3.1 Temporal Document Model

In this paper, a document collection contains a number of corpus documents defined as
C = {d1, . . . , dn}. A document di can be seen as bag-of-word (an unordered list of
terms), and a creation or updated date. Note that, di can also be associated to tempo-
ral expressions containing in the contents. However, temporal expressions will not be
studied in this paper. Let Time(di) be a function that gives a creation or updated date
of di, so di can be represented as di = {{w1, . . . , wn} ,Time(di)}. If C is partitioned
wrt. a time granularity of interest, the associated time partition of di is a time interval
[tk, tk+1] containing Time(di), that is Time(di) ∈ [tk, tk+1]. For example, if we parti-
tion C using the 1-month granularity and Time(di) is 2010/03/05, the associated time
partition of di will be [2010/03/01, 2010/03/31].

3.2 Temporal Query Model

We define a temporal query q as composed of two parts: keywords qword and temporal
criteria qtime, where qword = {w1, . . . , wm}, and qtime = {t′1, . . . , t′l} where t′j is a time

4 Nattiya Kanhabua, Kjetil Nørvåg

interval, or t′j = [tj , tj+1]. In other words, q contains uncertain temporal intent that can
be represented by one or more time intervals. We can refer to qword as topical features,
and qtime as temporal features of q. Hence, our aim is to retrieve documents about the
topic of query where their creation dates are corresponding to time criteria.

Recall that temporal queries can be divided into two types: 1) those with temporal
criteria explicitly provided by a user, and 2) those with no temporal criteria provided.
An example of the first type is “Summer Olympics 2008” where the user interests in
documents about “Summer Olympics” written in 2008. In this case, qtime is equal to
{[2008/01/01, 2008/12/31]} given the 1-year time granularity. Queries in the sec-
ond type can be implicitly associated with particular time especially queries related
to periodic, or outbreak events. The query “Boxing Day tsunami” is associated with
the year “2004”, qtime = {[2004/01/01, 2004/12/31]}, and the query “the U.S. presi-
dential election” can be associated with the years “2000”, “2004”, and “2008”, so that
qtime = {[2000/01/01, 2000/12/31] , . . . , [2008/01/01, 2008/12/31]}. When the time
qtime is not given explicitly by the user, it has to be determined by the system, as will be
described later in this paper.

3.3 Temporal Language Models

The document dating approach is based on the temporal language model presented in
[3], which is a variant of the time-based model in [8]. The idea is to assign a probability
to a time partition according to word usage or word statistics over time.

A normalized log-likelihood ratio [7] is used to compute the similarity between two
language models. Given a partitioned corpus, it is possible to determine the timestamp
of a non-timestamped document di by comparing the language model of di with each
corpus time partition pj using the following equation:

Score(di, pj) =
∑
w∈di

P (w|di)× log
P (w|pj)
P (w|C)

(1)

where C is the background model estimated on the entire collection. Smoothing will be
employed to avoid the zero probability of unseen words. The timestamp of the document
is the time partition maximizing a score according to the equation above.

In order to build temporal language models, a temporal corpus is needed. The tem-
poral corpus can be any document collection where 1) the documents are timestamped
with creation time, 2) covering a certain time period (at least the period of the queries
collections), and 3) containing enough documents to make robust models. A good basis
for such a corpus is a news archive. We will use the New York Times annotated corpus1

since it is readily available for research purposes. However, any corpus with similar
characteristics can be employed, including non-English corpora for performing dating
of non-English texts. We will in the following denote a temporal corpus as DN .

1 http://www.ldc.upenn.edu/Catalog/docs/LDC2008T19/new_york_
times_annotated_corpus.pdf

Determining Time of Queries for Re-ranking Search Results 5

Table 1. Example of contents of temporal language models

Time Term Frequency
2001 World Trade Center 1545
2002 Terrorism 2236
2003 Iraq 1510
2004 Euro 2004 750
2004 Athens 1213
2005 Terrorism 1990
2005 Tsunami 3528
2005 Hurricane Katrina 1012
2008 Obama 2030

4 Determining Time of Queries using Temporal Language Models

In this section, we describe three approaches to determining the time of queries when no
temporal criteria are provided. The first two approaches use temporal language models
(cf. Sect. 3) as basis, and the last approach uses no language models. The first approach
performs dating queries using keywords only. The second approach takes into account
the fact that in general queries are short, and aims at solving this problem with a tech-
nique inspired by pseudo-relevance feedback (PRF) that uses the top-k retrieved docu-
ments in dating queries. The third approach also uses the top-k retrieved documents by
PRF and assumes their creation dates as the time of queries.

All approaches will return a set of determined time intervals and their weights,
which will be used in re-ranking documents in order to improve the retrieval effective-
ness as described in more detail in Sect. 5.

4.1 Dating Query using Keywords

Our basic technique for query dating is based on using keywords only, and it is de-
scribed formally in Algorithm 1.

The first step is to build temporal language models TLM from the temporal document
corpus (line 5), which essentially is the statistics of word usage (raw frequencies) in all
time intervals, which are partitioned wrt. the selected time granularity g. Table 1 illus-
trates a subset of temporal language models. Creating the temporal language models
(basically aggregating statistics grouped on time periods) is obviously a costly process,
and will be done just once as an off-line process and then only the statistics have to be
retrieved at query time.

For each time partition pj in TLM, the similarity score between qword and pj is com-
puted (line 7). The similarity score is calculated using a normalized log-likelihood ratio
according to Equation 1. Each time partition pj and its computed score will be stored
in C, or the set of time intervals and scores (line 8). After computing the scores for all
time partitions, the contents of C will be sorted by similarity score, and then the top-m
time intervals are selected as the output set A (line 10).

Finally, the determined time intervals resulting from Algorithm 1 will be assigned
weights indicating their importance. In our approach, we simply give a weight to each
time interval using its reverse ranked number. For example, if the output set A contains
top-5 ranked time intervals, the intervals ranked 1, 2, 3, 4, and 5 will have the weights
5, 4, 3, 2, and 1 respectively.

6 Nattiya Kanhabua, Kjetil Nørvåg

Algorithm 1 DateQueryKeywords(qword, g,m,DN)
1: INPUT: Query qword, time granularity g, number of time intervals m, and temporal corpus
DN

2: OUTPUT: Set of time intervals associated to qword

3: A← ∅ // Set of time intervals
4: C ← ∅ // Set of time intervals and scores
5: TLM ← BuildTemporalLM(g,DN)
6: for each {pj ∈ TLM} do
7: scorepj ← CalSimScore(qword, pj) // Compute similarity score of qword and pj
8: C ← C ∪ {(pj , scorepj)} // Store pj and its similarity score
9: end for

10: A← C.selectTopMIntervals(m) // Select top-m intervals ranked by scores
11: return A

4.2 Dating a Query using Top-k Documents

In our second approach to query dating, the idea is that instead of dating query keywords
qword directly, we will instead date the top-k retrieved documents of the (non-temporal)
query qword. The resulting time of the query will be the combination of determined times
of each top-k document.

The algorithm for dating a query using top-k retrieved documents is given in Al-
gorithm 2. First, we retrieve documents by issuing a (non-temporal) query qword, and
retrieve only the top-k result documents (line 5). Then, temporal language models TLM

are built as described previously (line 6). For each document di in DTopK, compute its
similarity score with each time partition pj in TLM (lines 10-13). After computing scores
for di for all time partitions, sort the contents of C by similarity score, and select only
top-m time intervals as the results of di (line 14).

The next step is to update the set B with a set of time results Ctmp obtained from
dating di. This is performed as follows: For each time interval pk in Ctmp, check if B
already contains pk (line 16). If pk exists in B, get a frequency of pk and increase the
frequency by 1 (lines 17-18). If pk does not exist in B, add pk into B as a new time
interval and set its frequency to 1 (line 20). After dating all documents in DTopK, sort
the contents of B by frequency, and select only the top-m time intervals as the output
set A (line 25).

The weights of time intervals will be their reverse ranked number. Note that it can
be only one time interval in each rank of an output obtained from Algorithm 1, while it
can be more than one time interval in each rank in case of Algorithm 2.

4.3 Using Timestamp of Top-k Documents

The last approach is a variant of the dating using top-k documents described above. The
idea is similar in the use of the top-k retrieved documents of the (non-temporal) query
qword. The resulting time of the query will be the creation date (or timestamps) of each
top-k document. In this case, no temporal language models are used.

Determining Time of Queries for Re-ranking Search Results 7

Algorithm 2 DateQueryWithTopkDoc(qword, g,m, k,DN)
1: INPUT: Query qword , time granularity g, number of intervals and documents m, k, temporal

corpus DN
2: OUTPUT: Set of time intervals associated to qword

3: A← ∅ // Set of time intervals
4: B ← ∅ // Set of time intervals and their frequencies
5: DTopK ← RetrieveTopKDoc(qword, k) // Retrieve top-k documents
6: TLM ← BuildTemporalLM(g,DN)
7: for each {di ∈ DTopK} do
8: C ← ∅ // Set of time intervals and scores
9: Ctmp ← ∅ // Set of time intervals

10: for each {pj ∈ TLM} do
11: scorepj ← CalSimScore(di, pj) // Compute similarity score of di and pj
12: C ← C ∪ {(pj , scorepj)} // Store pj and its similarity score
13: end for
14: Ctmp ← C.selectTopMIntervals(m) // Select top-m intervals by scores
15: for each {pk ∈ Ctmp} do
16: if B has pk then
17: freq← B.getFreqForTInterval(pk) // Get frequency of pk
18: B ← B.updateFreqForTInterval(pk, freq + 1) // Increase frequency by 1
19: else
20: B ← B.addTInterval(pk, 1) // Add a new time interval and set its frequency to 1
21: end if
22: end for
23: end for
24: A← B.selectTopMIntervals(m) // Select top-m intervals ranked by frequency
25: return A

5 Re-ranking Documents using the Determined Time of Queries

In this section, we will describe how to use the time of queries determined by our
approaches to improve the retrieval effectiveness. The idea is that, in addition to the
documents’ scores wrt. keywords, we will also take into account the documents’ scores
wrt. the implicit time of queries. Intuitively, documents with creation dates that closely
match with the time of queries are more relevant and should be ranked higher.

There are a number of methods to combine a time score with existing text-based
weighting models. For example, a time score can be combined with TF-IDF weighting
using a linear combination, or it can be integrated into language modeling using a doc-
ument prior probability as in [8]. In this paper, we propose to use a mixture model of
a keyword score and a time score. Given a temporal query q with the determined time
qtime, the score of a document d can be computed as follows:

S(q, d) = (1− α) · S′(qword, dword) + α · S′′(qtime, dtime) (2)

where α is a parameter underlining the importance of a keyword score S′(qword, dword)
and a time score S′′(qtime, dtime). A keyword score S′(qword, dword) can be implemented
using any of existing text-based weighting models, and it can be normalized as

8 Nattiya Kanhabua, Kjetil Nørvåg

S′norm(qword, dword) = S′(qword,dword)
maxS′(qword,dword,i)

where maxS′(qword, dword,i) is the maximum
keyword score among all documents.

For a time score S′′(qtime, dtime), we formulate the probability of generating the time
of query qtime given the associated time partition of document dtime as:

S′′(qtime, dtime) = P (qtime|dtime)

= P ({t′1, . . . , t′n} |dtime)

=
1

|qtime|
∑
t′j∈qtime

P (t′j |dtime)
(3)

where qtime is a set of time intervals {t′1, . . . , t′n} and (t′1 ∩ t′2 ∩ . . . ∩ t′n) = ∅. So,
P (qtime|dtime) is an average of the probability of generating a time interval, orP (t′j |dtime),
over all the number of time intervals in qtime, or |qtime|.

The probability of generating a time interval t′j given the time partition of docu-
ment dtime can be defined in two ways as proposed in [1]: 1) ignoring uncertainty, and
2) taking uncertainty into account. By ignoring uncertainty, P (t′j |dtime) is defined as:

P (t′j |dtime) =

{
0 if dtime 6= t′j ,

1 if dtime = t′j .
(4)

In this case, the probability of generating query time will be equal to 1 only if dtime

is exactly the same as t′j . By taking into account a weight of each time interval t′j ,
P (t′j |dtime) with uncertainty-ignorant becomes

P (t′j |dtime) =

0 if dtime 6= t′j ,
w(t′j)∑

t′
k
∈qtime

w(t′k)
if dtime = t′j .

(5)

where w(t′j) is a function giving a weight for a time interval t′j , which is normalized by
the sum of all weights

∑
t′k∈qtime

w(t′k).
In the case where uncertainty is concerned, P (t′j |dtime) is defined using an exponen-

tial decay function:

P (t′j |dtime) = DecayRateλ·|t
′
j−dtime| (6)

where DecayRate and λ are constant, 0 < DecayRate < 1 and λ > 0. Intuitively,
this function gives a probability that decreases proportional to the difference between
a time interval t′j and the time partition of document dtime. A document with its time
partition closer to t′j will receive a higher probability than a document with its time
partition farther from t′j . By incorporating a weight of each time interval t′j , P (t

′
j |dtime)

with uncertainty-aware becomes

P (t′j |dtime) =
w(t′j)∑

t′k∈qtime
w(t′k)

×DecayRateλ·|t
′
j−dtime| (7)

The normalization of S′′norm(qtime, dtime) can be computed in two ways: 1) uncertainty-
ignorant usingP (t′j |dtime) defined in Equation 5, and 2) uncertainty-aware usingP (t′j |dtime)

Determining Time of Queries for Re-ranking Search Results 9

defined in Equation 7. Finally, the normalized value of S′′norm(qtime, dtime) will be substi-
tuted S′′(qtime, dtime) in Equation 8 yielding the normalized score of a document d given
a temporal query q with determined time qtime as follows:

Snorm(q, d) = (1− α) · S′norm(qword, dword) + α · S′′norm(qtime, dtime) (8)

6 Experiments

In this section, we will perform two experiments in order to evaluate our proposed
approaches: 1) determining the time of queries using temporal language models, and
2) re-ranking search results using the determined time. In this section, we will describe
the setting for each of the experiments, and then the results.

6.1 Experimental Setting

As we mentioned earlier, we can use any news archive collection to create temporal
language models. In this paper, we used the New York Times annotated corpus as the
temporal corpus. This collection contains over 1.8 million articles covering a period of
January 1987 to June 2007. The temporal language models were created and stored in
databases using Oracle Berkeley DB version 4.7.25.

To evaluate the query dating approaches, we obtained queries from Robust2004,
which is a standard test collection for the TREC Robust Track containing 250 topics
(topics 301-450 and topics 601-700). As reported in [8], some TREC queries favor
documents in particular time periods. Similarly, we analyzed a distribution of relevant
documents of the Robust2004 queries over time, and we randomly selected 30 strongly
time-related queries (with the topic number: 302, 306, 315, 321, 324, 330, 335, 337,
340, 352, 355, 357, 404, 415, 428, 435, 439, 446, 450, 628, 648, 649, 652, 653, 656,
667, 670, 676, 683, 695). Time intervals of relevant documents were assumed as the cor-
rect time of queries. We measured the performance using precision, recall and F-score.
Precision is the fraction of determined time intervals that are correct, while recall indi-
cates the fraction of correct time intervals that are determined. F-score is the weighted
harmonic mean of precision and recall, where we set β = 2 in order to emphasize re-
call. For query dating parameters, we used the top-m interval with m = 5, and the time
granularity g and the top-k documents were variable in the experiments.

To evaluate the re-ranking approaches, the Terrier search engine was employed, and
we used the BM25 probabilistic model with Generic Divergence From Randomness
(DFR) weighting as our retrieval model. For the simplicity, we used default parameter
settings for the weighting function. Terrier provides a mechanism to alter scores for
retrieved documents by giving prior scores to the documents. In this way, we re-ranked
search results at the end of retrieval by combining a keyword score S′(qword, dword) and
a time score S′′(qtime, dtime) as defined in Equation 8. We conducted re-ranking experi-
ments using two collections: 1) the Robust2004 collection, and 2) the New York Times
annotated corpus. For the Robust2004 collection, we used the 30 queries as temporal
queries without time explicitly provided. The retrieval effectiveness of temporal search
using the Robust2004 collection is measured by Mean Average Precision (MAP), and

10 Nattiya Kanhabua, Kjetil Nørvåg

Table 2. Example of the Google zeitgeist queries and associated time intervals

Query Time Query Time
diana car crash 1997 madrid bombing 2005
world trade center 2001 pope john paul ii 2005
osama bin laden 2001 tsunami 2005
london congestion charges 2003 germany soccer world cup 2006
john kerry 2004 torino games 2006
tsa guidelines liquids 2004 subprime crisis 2007
athens olympics games 2004 obama presidential campaign 2008

R-precision. For the New York Times annotated corpus, we selected 24 queries from a
historical collection of aggregated search queries, or the Google zeitgeist2. An example
of temporal queries are shown in Table 2. The temporal searches were conducted by
human judgment. Performance measures are the precision at 5, 10, and 15 documents,
or P@5, P@10, and P@15 respectively. For re-ranking parameters, we used an expo-
nential decay rate DecayRate = 0.5, and λ = 0.5. A mixture model parameter was
obtained from the experiments, where α = 0.05 and 0.10 for uncertainty-ignorant and
uncertainty-aware methods respectively.

The description of different approaches is given as follows. QW determines time us-
ing keywords plus uncertainty-ignorant re-ranking. QW-U determines time using key-
words plus uncertainty-aware re-ranking. PRF determines time using top-k retrieved
documents plus uncertainty-ignorant re-ranking. PRF-U determines time using top-k
retrieved documents plus uncertainty-aware re-ranking. NLM assumes creation dates
of top-k retrieved documents as the time of queries (no language models used) plus
uncertainty-ignorant re-ranking. NLM-U assumes creation dates of top-k retrieved doc-
uments as the time of queries (no language models used) plus uncertainty-aware re-
ranking. Top-k documents were retrieved using pseudo relevance feedback, i.e., the
result documents after performing query expansion using Rocchio algorithm.

6.2 Experimental Results

The performance of query dating methods are shown in Table 3. NLM performs best
in precision for all time granularities whereas PRF performs best in recall (only for
12-month). NLM and PRF give the best F-score results for 6-month and 12-month re-
spectively. In general, the smaller k tends to give the better results, while 12-month
yields higher performance compared to 6-month. Finally, the performance of QW seems
to be robust for 12-month regardless of dating solely short keywords.

To evaluate re-ranking, the baseline of our experiments is a retrieval model without
taking into account the time of queries, i.e., pseudo relevance feedback using Rocchio
algorithm. For the Robust2004 queries, the baseline performance are MAP=0.3568 and
R-precision=0.3909. Experimental results of MAP and R-precision are shown in Ta-
ble 4. The results show that QW,QW-U,PRF,PRF-U outperformed the baseline in both
MAP and R-precision for 12-month, and NLM,NLM-U outperformed the baseline in
all cases. PRF-U always performed better than PRF in both MAP and R-precision for
12-month, while QW-U performed better than QW in R-precision for 12-month only.

2 http://www.google.com/intl/en/press/zeitgeist/index.html

Determining Time of Queries for Re-ranking Search Results 11

Table 3. Query dating performance using precision, recall and F-score

Method
Precision Recall F-score(β = 2)
6-month 12-month 6-month 12-month 6-month 12-month

QW .56 .67 .34 .64 .37 .65
PRF (k=5) .55 .63 .47 .79 .48 .75
PRF (k=10) .56 .60 .46 .74 .48 .71
PRF (k=15) .54 .60 .42 .70 .44 .68
NLM (k=5) .92 .97 .35 .44 .40 .49
NLM (k=10) .90 .95 .48 .56 .53 .61
NLM (k=15) .89 .93 .56 .63 .61 .67

Table 4. Re-ranking performance using MAP and R-precision with the baseline performance
0.3568 and 0.3909 respectively (the Robust2004 collection)

Method
MAP R-precision
6-month 12-month 6-month 12-month

QW .3565 .3576 .3897 .3924
QW-U .3556 .3573 .3925 .3943
PRF (k=5) .3564 .3570 .3885 .3926
PRF (k=10) .3568 .3570 .3913 .3919
PRF (k=15) .3566 .3567 .3912 .3921
PRF-U (k=5) .3548 .3574 .3903 .3950
PRF-U (k=10) .3538 .3576 .3904 .3935
PRF-U (k=15) .3538 .3572 .3893 .3940
NLM (k=5) .3585 .3589 .3924 .3917
NLM (k=10) .3586 .3591 .3918 .3925
NLM (k=15) .3584 .3596 .3898 .3934
NLM-U (k=5) .3604 .3608 .3975 .3978
NLM-U (k=10) .3604 .3610 .3953 .3961
NLM-U (k=15) .3606 .3620 .3943 .3967

NLM, NLM-U always outperformed the baseline and the other proposed approaches
because using the creation dates of documents is more accurate than those obtained
from the dating process. This depicts that taking time into re-ranking can better the
retrieval effectiveness. Hence, if query dating is improved with a high accuracy, the
retrieval effectiveness will be improved significantly.

The results of evaluate the Google zeitgeist queries are shows in Table 5. In this
case, we fix the number of top-k to 15 only. Table 5 illustrated the precision at 5, 10 and
15 documents. The baseline performance is P@5=0.35, P@10=0.30 and P@15=0.27.
The results show that our proposed approaches perform better than the baseline in all
cases. NLM, NLM-U performs the best among all proposed approaches.

7 Conclusions and Future Work

In this paper, we have studied implicit temporal queries where no temporal criteria is
provided, and how to increase retrieval effectiveness for such queries. The effectiveness

12 Nattiya Kanhabua, Kjetil Nørvåg

Table 5. Re-ranking performance using P@5, P@10, and P@15 with the baseline performance
0.35, 0.30 and 0.27 respectively * indicates statistically improvement over the baselines using
t-test with significant at p < 0.05 (the NYT collection)

Method
P@5 P@10 P@15
6-month 12-month 6-month 12-month 6-month 12-month

QW .42 .45 .37 .39 .32 .33
QW-U .40 .42 .35 .36 .30 .32
PRF (k=15) .42 .46 .38 .42 .35 .39
PRF-U (k=15) .41 .45 .36 .40 .33 .37
NLM (k=15) .50 .52 .47 .49 .42 .44
NLM-U (k=15) .53 .55* .48 .50* .45 .46*

has been improved by determining the implicit time of the queries and employing this
to re-rank the query results. Through extensive experiments we show that our proposed
approach improves retrieval effectiveness.

Although using our approach shows improvement on retrieval effectiveness, the
quality of the actual query dating processing is a limitation when aiming at further
increase in effectiveness. Future work includes further improvement on the query dating
based on external knowledge from sources like Wikipedia.

References

1. K. Berberich, S. Bedathur, O. Alonso, and G. Weikum. A language modeling approach for
temporal information needs. In Proceedings of ECIR’2010, 2010.

2. K. Berberich, S. J. Bedathur, T. Neumann, and G. Weikum. A time machine for text search.
In Proceedings of SIGIR’2007, 2007.

3. F. de Jong, H. Rode, and D. Hiemstra. Temporal language models for the disclosure of
historical text. In Proceedings of AHC’2005 (History and Computing), 2005.

4. F. Diaz and R. Jones. Using temporal profiles of queries for precision prediction. In Pro-
ceedings of the 27th SIGIR, 2004.

5. A. Jatowt, Y. Kawai, and K. Tanaka. Temporal ranking of search engine results. In Proceed-
ings of WISE, 2005.

6. N. Kanhabua and K. Nørvåg. Improving temporal language models for determining time of
non-timestamped documents. In Proceedings of ECDL’2008, 2008.

7. W. Kraaij. Variations on language modeling for information retrieval. SIGIR Forum,
39(1):61, 2005.

8. X. Li and W. B. Croft. Time-based language models. In Proceedings of CIKM, 2003.
9. D. Metzler, R. Jones, F. Peng, and R. Zhang. Improving search relevance for implicitly

temporal queries. In Proceedings of SIGIR’2009, 2009.
10. K. Nørvåg. Supporting temporal text-containment queries in temporal document databases.

Journal of Data & Knowledge Engineering, 49(1):105–125, 2004.
11. S. Nunes, C. Ribeiro, and G. David. Use of temporal expressions in web search. In Proceed-

ings of ECIR’2008, 2008.
12. J. Perkiö, W. Buntine, and H. Tirri. A temporally adaptive content-based relevance ranking

algorithm. In Proceedings of the 28th SIGIR, 2005.
13. N. Sato, M. Uehara, and Y. Sakai. Temporal ranking for fresh information retrieval. In

Proceedings of the 6th IRAL, 2003.

