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Abstract. The Web of Data describes objects, entities, or “things" in terms of
their attributes and their relationships, using RDF statements. There is a need to
make this wealth of knowledge easily accessible by means of keyword search.
Despite recent research efforts in this direction, there is a lack of understanding
of how structured semantic data is best represented for text-based entity retrieval.
The task we are addressing in this paper is ad-hoc entity search: the retrieval
of RDF resources that represent an entity described in the keyword query. We
build upon and formalise existing entity modeling approaches within a genera-
tive language modeling framework, and compare them experimentally using a
standard test collection, provided by the Semantic Search Challenge evaluation
series. We show that these models outperform the current state-of-the-art in terms
of retrieval effectiveness, however, this is done at the cost of abandoning a large
part of the semantics behind the data. We propose a novel entity model capable
of preserving the semantics associated with entities, without sacrificing retrieval
effectiveness.

1 Introduction

In recent years the Web of Data (WoD) has emerged as a way of exposing structured
data on the Web. The past three years in particular have seen a significant increase
both in the number of knowledge bases published as Linked Data (such as DBpe-
dia, Freebase, and others) and in the availability of metadata embedded inside web
pages (RDF, RDFa, Microformats, and others) [24]. These knowledge repositories typ-
ically contain entities (such as people, locations, organisations, etc.) and the relation-
ships between them (such as birthPlace, academicAdvisor, parentCompany, etc.). Each
entity is uniquely identified by its URI (Uniform Resource Identifier). WoD datasets
can be queried using formal, structured query languages such as SPARQL. Issuing
such queries, however, is beyond the capabilities of ordinary Web users as it requires
the knowledge of the underlying schema as well as that of the query language. Also,
SPARQL-like languages are often too restrictive, and Boolean-type matches cannot pro-
vide a ranked list of results that users would prefer seeing [14].

Keyword search, which has become the main paradigm to perform search tasks on
the Web, has recently emerged as a viable alternative. Indeed, there is a growing body
of work on adapting IR ranking models for searching in RDF data, e.g., [5, 14, 23].
The introduction of the Semantic Search (SemSearch) evaluation series [4, 15] has fur-
ther propelled research in this direction, by providing a common evaluation platform to

R. Baeza-Yates et al. (Eds.): ECIR 2012, LNCS 7224, pp. 133–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



134 R. Neumayer, K. Balog, and K. Nørvåg
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abstract

dbpedia:Category:Compact_executive_cars

dbpedia:Category:All_wheel_drive_vehicles
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car produced since late 1994 by the 

German car manufacturer Audi...

http://rdf.freebase.com/ns/m/030qmx

http://www4.wiwiss.fu-berlin.de/.../Audi_A4

sameAs

Fig. 1. Excerpt from an RDF graph. Rounded rectangles represent entities (i.e., URIs), rectangles
denote attributes (i.e., literal values). URIs are shortened and predicate prefixes are ignored.

empirically assess methods and algorithms devised for the task that has been termed ad-
hoc entity retrieval: “answering arbitrary information needs related to particular aspects
of objects [entities], expressed in unconstrained natural language and resolved using a
collection of structured data" [24]. Since WoD is inherently organised around objects
or entities, having entities as the unit of retrieval follows naturally.

Commonly, the ad-hoc entity retrieval task is approached by adapting standard doc-
ument retrieval methods. A textual representation (“pseudo document") is built for each
entity, and these representations can then be ranked using conventional IR models. The
main challenge, of course, is how to obtain these textual representations from structured
data. WoD conceptually forms a large, directed, labelled graph with nodes correspond-
ing to entities and edges denoting relationships, and is described in the form of subject-
predicate-object (SPO) triples of the RDF data model; Figure 1 shows a small excerpt
from an RDF graph centred around a given entity.

A natural solution would be to represent each entity using a fielded structure, where
fields correspond to predicates (i.e., arrows on Figure 1) and associated nodes (or rather,
the text extracted from them) are used as field values. These representations can then be
ranked using any fielded document retrieval model, such as BM25F [25] or the mixture
of language models (MLM) [20]. However, with this approach the number of document
fields soon becomes computationally prohibitive, making the estimation of field weights
intractable. A commonly used workaround is to group predicates together into a small
set of predefined categories, and as such, create documents comprising of only a handful
of fields. This grouping (or “predicate folding") can be based on, for example, the type
of predicates (attributes, in/out-relations, etc.) [23] or on their (manually determined)
importance [5]. This leads to a data model where the optimisation of field weights
is easily tractable, even using exhaustive search over the parameter space. While this
approach seems to work well in practice, it seriously limits the semantic expressivity of
entity models, as it is no longer possible to access the content of individual predicates
or might be too dependent on the data collection.

The overall research question we address in this paper is how to represent entities
in the Web of Data for the purpose of text-based retrieval. As our first step on the path
to investigating this issue, in Section 2 we formalise the aforementioned two entity
modeling strategies within a generative language modeling framework. One approach
(Unstructured Entity Model) collapses all text associated with the entity into a single
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flat-text representation. The other approach (Structured Entity Model) groups predicates
together into a small number of categories and considers their weighted combination.
We perform an experimental evaluation of the two models using the 2010 and 2011 test
sets of the Semantic Search Challenge evaluation campaign in Section 3. We find that
these models outperform the current state-of-the-art in terms of retrieval effectiveness
on these collections. However, this is done at the cost of abandoning a large part of
the semantics behind the data. Subsequently, in Section 4, we propose a novel entity
model (Hierarchical Entity Model) capable of preserving the semantics associated with
entities. It uses the idea of having a two-level hierarchy for entity representation, one
based on the predicate types, another based on the individual predicates. We report on
experiments using our hierarchical model in Section 5 and show that modeling individ-
ual predicates of a given type is more effective than folding their contents into a flat
representation. We put our work in a broader context in Section 6. Finally, we conclude
with a discussion of our findings and outline our plans for future research in Section 7.

2 Baseline Entity Models

In this section we formalise and draw upon two existing entity modeling approaches
within a generative language modeling framework.

2.1 Retrieval Framework

Language models (LMs) are attractive because of their solid theoretical foundations that
couples with good empirical performance [26]. LMs have been successfully applied to
a wide range of entity-related search tasks; see, e.g., [1, 8, 14, 18].

We rank candidate entities (e) according to their probability of being relevant given
query q: P (e|q). Instead of estimating this probability directly, we apply Bayes’ rule and
drop the denominator as it does not influence the ranking (for a given query): P (e|q) =
P (q|e)P (e)

P (q)

rank
= P (q|e)P (e). Here, P (e) is the prior probability of choosing a particular

entity e, that we subsequently attempt to draw the query q from, with probabilityP (q|e).
Here, we assume that P (e) is uniform, thus, does not affect the ranking. Priors could
otherwise be used to incorporate query-independent features [6, 10].

Each entity e is represented by a multinomial probability distribution over the vo-
cabulary of terms. The entity model θe is used to predict how likely the entity would
produce a given term t, that is, P (t|θe). Assuming that query terms are sampled iden-
tically and independently, the query likelihood is obtained by taking the product across
all the terms in the query, such that: P (q|θe) =

∏
t∈q P (t|θe)tf(t,q), where tf(t, q) is

the (raw) frequency of term t in the query. Note that P (t|θe) > 0 must be ensured for
all vocabulary terms, otherwise the product might end up being zero.

The main question we will be concerned with for the remainder of this paper is the
estimation of the entity model, i.e., the probability distribution, P (t|θe).

2.2 Unstructured Entity Model

The simplest approach to constructing entity models is to fold all text associated with
the entity into one “bag-of-words"; see Figure 2(a) for an illustration. Following the
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Text

Audi A4
1996 2002 2005 2007
The Audi A4 is a compact executive car...
Volkswagen Group
Compact executive cars
All wheel drive vehicles
Front wheel drive vehicles
Product
Audi A4
Audi 80
Audi A5
Audi A4

(a) Unstructured Entity Model

Pred. type Value

Name Audi A4
Attributes 1996 2002 2005 2007

The Audi A4 is a compact executive car...
OutRelations Volkswagen Group

Compact executive cars
All wheel drive vehicles
Front wheel drive vehicles
Product
Audi A4

InRelations Audi 80
Audi A5
Audi A4

(b) Structured Entity Model

Fig. 2. Examples of baseline entity models corresponding to Figure 1. URIs are resolved (i.e.,
replaced with the name of the corresponding entity).

standard language modeling approach to document retrieval, we implement the entity
model as a Dirichlet-smoothed multinomial distribution:

P (t|θe) = tf(t, e) + μP (t|θc)
|e|+ μ

, (1)

where tf(t, e) is the raw frequency of term t in the representation of e and |e| is the size
of this representation, i.e.,

∑
t tf(t, e). The smoothing parameter μ is set to the average

entity representation size in the collection. The term generation process is shown in
Figure 3 (Left).

Several SemSearch participants employed variations of this approach: considering
only triples where the entity stands as a subjects (thereby ignoring incoming rela-
tions) [3, 8, 19] or extracting text only from the subject itself [13].

2.3 Structured Entity Model Using Predicate-Folding

Instead of folding all predicates together, they might be grouped into multiple categories
in order to preserve some of the original structure. Prior work presents examples of such
grouping based on the type of the predicates [3, 8, 16, 23] or based on their manually
determined importance [5]. We group RDF triples into four main predicate types pt for
a given entity e as follows:

– Name: the subject is e, the object is a literal, and the predicate comes from a prede-
fined list (e.g., foaf:name or rdfs:label) or ends with “name," “label," or “title".

– Attributes: the subject is e, the object is a literal, and the predicate is not of type
name.

– OutRelations: the subject is e and the object is a URI. We resolve the URI by
replacing it with the name of the corresponding entity; see Section 3.1 for details.

– InRelations: e stands as the object; the subject entity URI is resolved.

Figure 2(b) presents an example. A separate language model θpt
e is estimated for each

predicate type from all predicates of that type (associated with the given entity):

P (t|θpt
e ) =

tf(t, pt, e) + μptP (t|θpt
c )

|pt, e|+ μpt

, (2)
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where tf(t, pt, e) is the sum of the term frequencies for t for all predicates of type pt as-
sociated with e, and |pt, e| =

∑
t tf(t, pt, e). Essentially, we concatenate all text from

the predicates of type pt and then apply Dirichlet smoothing using a collection-wide
background model P (t|θpt

c ) (that is, a maximum-likelihood estimate from all predi-
cates of that type in the collection). The smoothing parameter μpt is set to the average
predicate type representation length in the collection.

The entity model is a linear mixture of the predicate type language models (P (t|θpt
e )),

weighted with the importance of that predicate type (P (pt)):

P (t|θe) =
∑

pt

P (t|θpt
e )P (pt) (3)

Figure 3 (Middle) illustrates the term generation process. Viewing entities as documents
and predicate types as document fields, this model is equivalent with the Mixture of
Language Models approach by Ogilvie and Callan [20].

3 Evaluation of Baseline Entity Models

In this section we first introduce our experimental setup, then perform an evaluation of
our baseline entity models.

3.1 Experimental Setup

We use the test suites of the 2010 and 2011 editions of the Semantic Search (SemSearch)
Challenge [4, 15]. The task we address is ad-hoc entity search: given a keyword query,
targeting a particular entity, provide a ranked list of relevant entities, identified by their
URIs. The data set, queries, and relevance assessments are publicly available.1

Data set. The data collection used is the Billion Triple Challenge 2009 dataset. It was
mainly crawled during February/March 2009 and comprises about 1.14 billion RDF
statements and describes entities from domains like dbpedia.org, livejournal.com or
geonames.org.2 In our evaluations we considered the 500 most frequent predicates.

Topics and relevance assessments. There are two topic sets, consisting of 92 and
50 keyword queries for years 2010 and 2011, respectively. The queries were sampled
from web search engine logs. Relevance judgments were obtained using Amazon’s Me-
chanical Turk. Human assessors were presented with a simplified HTML summary of
entities and had to judge relevance on a 3-point scale (excellent, fair, and irrelevant).

Evaluation metrics. We use standard IR evaluation metrics: Mean Average Pre-
cision (MAP), Precision at rank 10 (P@10), and Normalized Discounted Cumulative
Gain (NDCG).3 To check for significant differences between runs, we use a two-tailed
paired t-test and write †/‡ to denote significance at the 0.05/0.01 levels, respectively.

Resource resolution. If a relation (predicate targeted at a URI rather than a literal
value) points to an entity within the collection, we replace the URI with that entity’s
name. Otherwise, we extract terms from the relative part of the URI.

1 http://km.aifb.kit.edu/ws/semsearch{10|11}
2 http://vmlion25.deri.ie/
3 Note that the two editions used different gain values for computing NDCG scores: 3 and 2

(2010) vs. 2 and 1 (2011) for excellent and fair, respectively. We use these values unchanged.

http://km.aifb.kit.edu/ws/semsearch{10|11}
http://vmlion25.deri.ie/
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Table 1. Retrieval results using the Unstructured Entity Model. Significance is tested against the
ALL setting (first line). Best scores for each topic set are typeset boldface

2010 2011
Predicate types MAP P@10 NDCG MAP P@10 NDCG

ALL 0.2069 0.3141 0.3827 0.2072 0.1880 0.2947
Name-only 0.2054† 0.3043 0.3969 0.2004 0.1900 0.3097
Attributes-only 0.2058‡ 0.3391† 0.3915 0.2200† 0.1900 0.3330†

OutRelations-only 0.0866‡ 0.1761‡ 0.2185‡ 0.0935‡ 0.1020‡ 0.1667‡

InRelations-only 0.0955‡ 0.1967‡ 0.2257‡ 0.0689‡ 0.0980‡ 0.1540‡

ALL-but-Name 0.1568‡ 0.2620‡ 0.3210‡ 0.1563‡ 0.1440‡ 0.2467‡

ALL-but-Attributes 0.1820‡ 0.2859‡ 0.3416‡ 0.1637‡ 0.1600‡ 0.2419‡

ALL-but-OutRelations 0.2029‡ 0.3109 0.3685‡ 0.2002‡ 0.1800 0.2826
ALL-but-InRelations 0.2125 0.3196 0.3848 0.2037‡ 0.1900 0.2826

3.2 Unstructured Entity Model

Recall that this model creates an unstructured entity representation by collapsing text
associated with the entity into one bag-of-words. We perform three sets of experiments,
and report the results in Table 1. First, identified by the ‘ALL’ row, we consider all
four predicate types. Next, shown in the ‘field type-only’ rows, we use only a single
predicate type at a time. Finally, in the rows named ‘ALL-but-field type,’ we present
results by omitting one of the types in turn.

Our findings are as follows. The absolute performance of the ALL model (that simply
uses all text associated with the entity) is remarkable; on the 2010 topic set it outper-
forms the best SemSearch 2010 submission (MAP=0.1919) [15], while on the 2011 set
it would have ranked third (best was MAP=0.2346) [4]. As for the individual predi-
cate types, Name and Attributes perform best, with only minor differences between the
two; in fact, either of these predicates types alone is on a par with the ALL model. The
scores for incoming and outgoing relations are much lower. Looking at the combina-
tions of all but one predicate types, Name contributes the most and Attributes comes
second; without either, the scores drop substantially. Removing either incoming or out-
going relations has hardly any overall impact; in the ‘ALL-but-InRelations,’ 2010 case
the scores marginally improve, but the difference is not statistically significant.

3.3 Structured Entity Model

Our second baseline model employs a weighted combination of four language models,
corresponding to predicate types. We consider three different configurations in Table 2:
(1) equal weights on all types, (2) all weights allocated to Name and Attributes, in equal
proportion, and (3) most of the weights assigned to Name and Attributes, again, but
this time taking relations too into account. In the lack of training data or any back-
ground knowledge about the collection or queries, (1) is a natural choice. (2) and (3)
are motivated by the results from the previous subsection; however, knowing from the
task definition that each query targets a particular entity, one could intuitively argue for
such weight distributions. Note that when a single predicate type is used, the Structured
Entity Model is equivalent to the unstructured case (Table 1, middle block).
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Table 2. Retrieval results using Structured Entity Models. Significance is tested against the ALL
setting of the Unstructured Entity Model (Table 1, first line). Best scores are typeset boldface

Pred. type weights 2010 2011
Name Attr OutRel InRel MAP P@10 NDCG MAP P@10 NDCG

.25 .25 .25 .25 0.2816‡ 0.3989‡ 0.4943‡ 0.2605‡ 0.2420‡ 0.3966‡

.5 .5 0.2490‡ 0.3663‡ 0.4608‡ 0.2506‡ 0.2300‡ 0.3845‡

.35 .35 .15 .15 0.2804‡ 0.4043‡ 0.4934‡ 0.2614‡ 0.2300‡ 0.3968‡

All settings improve significantly and substantially over the unstructured baseline.
We find, somewhat surprisingly, that the uniform weighting performs best of all; these
numbers are the highest that were ever reported for either topic sets (which are: MAP=
0.2705 for 2010 [5] and MAP=0.2346 for 2011 [4]). Even though Name and Attributes
were shown to be the two most ‘useful’ predicate types, using them without relational
information is clearly suboptimal (row 2 vs. rows 1 and 3). The third setting (row 3)
suggests that as long as all predicate types are considered, the model is robust with re-
spect to the actual weight distribution used. We experimented with other configurations
too, but none of them improved significantly over the uniform weighting.

4 Hierarchical Entity Model

In this section we introduce a novel entity modeling approach. Before presenting our
proposal, we briefly review the considerations leading to the choice of this particular
model. (1) In a heterogeneous environment the number of distinct predicates is huge.
It is not feasible to optimise their weights directly (because of the computational com-
plexity and because of the enormous amounts of training material it would require).
(2) Entities are sparse with respect to the different predicates, i.e., most entities have
only a handful of distinct predicates associated with them. (3) As we have shown with
the Structured Entity Model, folding predicates based on their type is a viable alterna-
tive that works well in practice. Nevertheless, we need a different solution if we wish
to preserve the semantics in the entity model, i.e., keep individual predicates and their
contents accessible (and possibly exploit this information in the retrieval model). Users
can only be offered to make use of single predicates if they are preserved individu-
ally, such kind of faceted search may not improve effectiveness in the context of the
Semantic Search Challenge, but might be a requirement given from the user side.

The main idea behind our model is to organise information belonging to a given en-
tity into a hierarchy of two levels, with predicate types (i.e., name, attributes, incoming
and outgoing relations) on the first level and individual predicates of that type on the
second level. This preserves the original structure associated with the given entity, and
allows for setting the importance individual predicates conditioned on their type and on
the entity. Formally, this is expressed as follows:

P (t|θe) =
∑

pt

P (t|pt, e)P (pt|e) (4)

=
∑

pt

( ∑

p∈pt

P (t|p, pt)P (p|pt, e)
)
P (pt|e) (5)
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Fig. 3. Graphical representations of entity models: (Left) Unstructured Entity Model, (Middle)
Structured Entity Model using Predicate-folding, (Right) Hierarchical Entity Model

The term generation process under this model is shown in Figure 3 (Right). Next, we
discuss the three components from Eq. 5: term generation (P (t|p, pt)), predicate gen-
eration (P (p|pt, e)), and predicate type generation (P (pt|e)).

Term Generation. The importance of a term is jointly determined by the predicate in
which it occurs as well as all other predicates of that type associated with the entity:

P (t|p, pt) = (1− λ)P (t|p) + λP (t|θpt
e ), (6)

where P (t|p) is a maximum-likelihood estimate (i.e., the relative frequency of term t in
predicate p) and P (t|θpt

e ) is the Dirichlet-smoothed LM for predicate type pt, estimated
using Eq. 2. The parameter λ ∈ [0..1] controls the influence of the predicate type model.
For the sake of simplicity, we set λ to 0.5 in our experiments.

Predicate Generation. The importance of a given predicate p is conditioned on the
type of the predicate pt and the entity e: P (p|pt, e). We consider four natural options:4

– Uniform. All the predicates of the same type are treated equally important:
P (p|pt, e) = 1/n(e, pt), where n(e, pt) is the number of predicates of type pt
assigned to e.5

– Length. The probability mass is allocated to predicates proportional to their length:
P (p|pt, e) = |p, e|/|pt, e|, where |p, e| and |pt, e| are the lengths of p and pt, re-
spectively, measured in the number of terms they contain.

– Average length. We use the average length of the predicate p in the collection rela-
tive to the average length of all predicates of type pt.

– Popularity. We regard popular predicates more important, where popularity is mea-
sured in terms of the number of triples that have the given predicate: P (p|pt, e) =
n(p)/n(pt), where n(p) and n(pt) are the total number of triples in the collection
with predicate p and predicate type pt, respectively.

4 It is by design that predicate importance is independent of the query; this way other, possibly
computationally heavy, alternatives for setting this probability could be estimated offline.

5 Since predicates encoding the entity name are all equally important, we do not vary their
importance, hence we always use the uniform distribution for pt = “name”.
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Table 3. Retrieval results using Hierarchical Entity Models using a single predicate type

Predicate Predicate 2010 2011
type weighting MAP P@10 NDCG MAP P@10 NDCG

Attributes Uniform 0.2350‡ 0.3261 0.4403‡ 0.2423‡ 0.2140 0.3738
Length 0.2116‡ 0.2870‡ 0.4149 0.2292‡ 0.2060 0.3477
AvgLength 0.2129‡ 0.2859‡ 0.4144 0.2287‡ 0.2060 0.3511
Popularity 0.2318‡ 0.3109† 0.4385‡ 0.2514‡ 0.2140 0.3791

OutRelations Uniform 0.1185‡ 0.1783 0.2607 0.1221‡ 0.1220† 0.2046‡

Length 0.0915‡ 0.1663 0.2122 0.0980‡ 0.0920 0.1647
AvgLength 0.0908‡ 0.1533† 0.2131 0.0958‡ 0.0940 0.1677
Popularity 0.1067‡ 0.1674 0.2439 0.1233‡ 0.1260† 0.2070‡

InRelations Uniform 0.1073‡ 0.2054† 0.2387 0.0800‡ 0.1160† 0.1749‡

Length 0.0941‡ 0.1793† 0.2188 0.0703 0.0940 0.1593
AvgLength 0.0921‡ 0.1696‡ 0.2212 0.0776‡ 0.0980 0.1751‡

Popularity 0.1117‡ 0.2022 0.2452† 0.0891‡ 0.1240† 0.1903‡

Table 4. Retrieval results using Hierarchical Entity Models and uniform term weighting. Signif-
icance is tested against the Structured Entity Model (corresponding row in Table 2). Best scores
for each year are typeset boldface.

Pred. type 2010 2011
Name Att OutRel InRel MAP P@10 NDCG MAP P@10 NDCG

.25 .25 .25 .25 0.2349‡ 0.3261‡ 0.4394‡ 0.2423‡ 0.2140‡ 0.3738†

.5 .5 0.2242‡ 0.3359‡ 0.4125‡ 0.2038‡ 0.2000‡ 0.3195‡

.35 .35 .15 .15 0.2561‡ 0.3641‡ 0.4614‡ 0.2436‡ 0.2240 0.3717†

Predicate Type Generation. The model in Eq. 5 allows us to set predicate type impor-
tance on a per-entity basis. To simplify matters, however, we make the conditional in-
dependence assumption between predicate types and entities, hence P (pt|e) = P (pt).
This allows us to use estimation methods (or the actual values) from the Structured
Entity Model, as this component is identical in the two models (cf. Eq. 3).

5 Evaluation of the Hierarchical Entity Model

In order to evaluate the hierarchical entity model, we first show the results obtained for
each of the predicate types in turn, analogous to the second block in Table 1. This is also
the baseline we test against. Table 3 presents the results for each of the predicate types
and different weighting models for individual predicates. As indicated, improvements
are significant in the majority of cases. We show improvements over the results reported
for the unstructured model in every category, illustrating that the additional level of
normalisation can cover the structure of the entities. The ‘uniform’ weighting strategy
performs best for all types with ‘popularity’ coming second. Therefore we omit the
results for the remaining predicate weighting strategies in Table 4, where we show the
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effect of using multiple field types and combine them. We can not improve results here,
which we attribute to a certain inability of the model to exploit the semantic information.
This is somewhat surprising since we showed we can cover for individual predicate
types and as such can contribute to better predicate modeling (as shown in Table 3).

6 Related Work

It has been shown that that over 40% of Web search queries target entities [24]. Fol-
lowing up on this trend, a range of commercial providers now support entity-oriented
search, dealing with a broad range of entity types such as people, companies, services,
or locations. This shows that the problem studied in this paper, searching entities in
structured semantic data, “has direct relevance to the operation of Web search engines,
which increasingly incorporate structured data in their search results pages" [5].

Research on entity retrieval in IR got a major boost with the introduction of the
expert finding task at the TREC Enterprise track in 2005 [7]. The task requests a ranked
list of experts returned for a given query topic. A separate Entity search track started at
TREC in 2009 and defined the related entity finding task: return a ranked list of entities
(of a specified type) that engage in a given relationship with a given source entity [2].
Common to both tasks is that entities are not directly represented as retrievable units;
one of the challenges is to recognise entities in the document collection, then aggregate
the textual information associated with them for the purpose of retrieval [1]. INEX has
also featured an Entity Ranking track between 2007 and 2009 [9, 11]. There, entities
are represented by their corresponding Wikipedia article. The availability of category
information and the rich link structure of Wikipedia clearly distinguishes this task from
plain document retrieval [12].

The ad-hoc entity retrieval task over RDF data we studied in this paper was pro-
posed and formalised in [24]. This task bears some resemblance to keyword search in
relational databases [22] and to XML retrieval [17]. The former has no direct relevance
as methods developed for structured databases are not directly applicable to RDF data.
As for the latter, Kim et al. [18] presented a probabilistic retrieval model for semi-
structured data (PRM-S) that allows for a weighted mapping of query terms to (entity)
attributes. Dalton and Huston [8] tested this model on the SemSearch 2010 data set
and found that a key limitation of the PRM-S approach is that “it assumes a collection
with a single or very few clearly defined entity types." Unlike the IMDB and Monster
collections used in [18], the BTC-2009 corpus is very heterogeneous. Additionally, two
specific problems were identified: (1) computing the query term to attribute mapping
probabilities suffers from attribute sparsity, and (2) mapping probabilities are estimated
for each query term independently. Finally, Ogilvie and Callan [21] considered model-
ing documents with a hierarchical structure for XML retrieval. Our Hierarchical Entity
Model has been developed in a similar spirit, but hierarchy in [21] is defined by doc-
ument structure (markup), while in our case it is organised around semantic relation-
ships. Both works estimate language models on the component levels and incorporate
evidence from multiple levels within the hierarchy, but the task addressed in [21] (XML
component retrieval), and hence the actual models, are very different from ours.
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7 Discussion and Conclusions

We have addressed the task of ad-hoc entity retrieval in the Web of Data: returning a
ranked list of RDF resources that represent an entity described in the keyword query.
The main research question we have been concerned with is the modeling of entities,
described in the form of subject-predicate-object triples, for text-based retrieval. Prior
work suggested two main directions: (1) collapsing all text associated with the entity
into a single flat-text representation and then using standard IR models for document
retrieval, and (2) grouping predicates together into a small number of categories, repre-
senting them as document fields, and applying fielded extensions of document retrieval
methods. We formalised both strategies using generative language models and termed
them Unstructured Entity Model (UEM) and Structured Entity Model (SEM). Exper-
imental evaluation was performed using the 2010 and 2011 test sets of the Semantic
Search Challenge evaluation campaign. The structured approach was shown to outper-
form a very strong baseline provided by the unstructured model.

Specifically, we grouped predicates based on their types into four categories: name,
attributes, outgoing, and incoming relations. Out of these, name and attributes proved
to be the most useful ones for our task. The combination of multiple predicate types
failed in the unstructured case; incorporating relations did not bring in any improve-
ments over using names or attributes alone. The reason for this behavior is that there
is more textual content for relation type predicates (35.5 and 13.3 terms on average for
in- and out-relations, respectively) than for name (3.95) or attributes (26.6), and this
way the entity language model may lose the focus from the entity itself. The structured
model represents predicate types as language models and considers their weighted lin-
ear combination. Taking all types with equal weights delivers very strong results and
outperforms the existing state-of-the-art. Importantly, we showed that relations can con-
tribute to overall performance under this approach.

While the above two models perform well empirically, they suffer from a severe
limitation: they abandon a large part of the semantics behind the data. We propose a
novel approach, referred to as Hierarchical Entity Model (HEM), that is capable of pre-
serving the semantics associated with entities. It organises predicates into a two-level
structure with predicate types on the top level and individual predicates on the bottom
level. The weight of predicate types can be set similarly to the SEM model, while the
importance of individual predicates can be estimated in an unsupervised way. Our ex-
periments showed that modeling individual predicates of a given type is more effective
than folding their contents into a flat representation. When multiple predicate types are
combined for the entity, the HEM model delivers substantially higher results than the
UEM baseline, but fails to outperform SEM. One issue for future investigation is to
find out why the combination does not benefit from the improved component models. It
may be the case that the entity model is now more semantically informed but the query
representation and retrieval model are yet unable to exploit this fact. Future work will
mainly be concerned with extending the current approach by segmenting the query and
mapping its components to individual predicates within the hierarchical entity model.
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