
Top-k Dominating Queries, in Parallel, in Memory

Sean Chester, Orestis Gkorgkas, Kjetil Nørvåg
Norwegian University of Science and Technology (NTNU), Trondheim, Norway

{sean.chester,orestis,noervaag}@idi.ntnu.no

ABSTRACT
Top-k dominating queries return the k points that are better than
the largest number of other points. Current methods for answering
them focus on indexed data and sequential algorithms. To exploit
modern-day parallelism and obtain order-of-magnitude improve-
ments in execution time, we introduce three algorithms, the respec-
tive strengths and potential of which are revealed experimentally.

1. INTRODUCTION
Top-k dominating queries [6] elegantly fuse top-k queries [4]

with skyline queries [2] to produce ranked data without user inter-
vention. Intuitively, a point is ranked highly if it is unequivocally
better than many other points. Unsurprisingly, however, it is expen-
sive to evaluate which k points are better than the most others.

Given the recent emergence of manycore architectures, terabyte-
sized RAM, and low-latency, non-volatile memory, it is natural to
ask whether top-k dominating queries can be answered more ef-
ficiently in a shared, main-memory parallel context. Until now,
research has focused on sequential computation in high-latency,
disk-based settings [5, 8] and on parallel computation in large, dis-
tributed systems [1], or on applications such as web-service rank-
ing [7] and network analysis [5]. This paper investigates how sig-
nificant efficiency improves can be had on just a single machine.

More formally, a data point dominates another, distinct data point
if it has equal or better values on every attribute. The dominance
score of a point p is simply the number of other points that it dom-
inates. The responses to a top-k dominating query are the k points
with the highest dominance scores. Given an unindexed, memory-
resident dataset, we wish to find those k points as fast as possible.

This paper presents preliminary work towards that goal. In the
absence of previous ones, we define three quite distinct algorithms
for answering top-k dominating queries on multicore architectures
and explore their relative strengths experimentally. We find that
each shows promise for maturation, while already executing quickly.

2. THREE PROPOSED ALGORITHMS
For multicore top-k dominating queries, we introduce an adap-

tation of the sequential state-of-the-art and two novel algorithms.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

FILTER As a baseline, we adapt the sequential, filter-and-refine
algorithm for non-indexed data [8]. The algorithm consists of three
passes: 1) build a static grid over the data and calculate score
bounds for every grid cell; 2) for every cell that cannot be imme-
diately pruned, iterate the points in the cell and filter out those that
clearly cannot be in the solution; and 3) refine the solution by com-
puting the exact score for the remaining candidates. The counting
and refining steps parallelise readily, since processing is local to
each point, but the filtering step would incur a lot of write con-
tention between threads: processing for each point p will update
scores for other points in addition to p. Therefore, we select the
faster but ≈ 2× less effective filter option (Algorithm 5) of [8]
to adapt: within reason, it is better to process excess points in the
high-throughput refinement phase than filter them sequentially.

SORTED Our next algorithm maximises throughput, but with
heuristics to improve efficiency. We first sort the data by Manhat-
tan Norm. Then, for each point in parallel, we iterate the sorted list.
For a point p at index i, we conduct one-sided dominance tests with
points at index < i to count how often p is dominated. Clearly, if
p is dominated by at least k other points, it cannot be a top-k solu-
tion; so, we break if the count reaches k. Points that reach their own
index are candidates for the solution. Over the remaining indexes
> i, we flip the dominance test and instead count how many points
are dominated by p as a score. Finally, we re-sort the data based on
the scores; the solution consists of the first k sorted points.

PIVOTED Multicore skyline algorithms benefit from pivot-based
partitioning to identify incomparability in addition to dominance [3];
this algorithm attempts it for top-k dominating queries. We will se-
lect a series of pivot points (those with the largest dominance area)
one-by-one, and use them to globally, dynamically split the data
space into a non-uniform grid. We maintain the set of points inde-
pendently of the grid. Each pivot point newly partitions the entire
set of points and the number that end up in the resultant north-east
quadrant is exactly the dominance score of that pivot.1 Meanwhile,
the grid is further sub-divided and upper bounds of scores for points
in each sub-partition can be updated. Once no cell has an upper
bound score better than that of the k’th best pivot that we have
seen, we terminate. The intuition of the algorithm is that partition-
ing is easy to parallelise and that the continual fracturing of the data
space quickly introduces more knowledge of incomparability and
thus very quickly drives down all the upper bound estimates.

3. EXPERIMENTS
This section empirically compares our three parallel proposals.

Setup We implement the three algorithms in C++ using OpenMP
1We describe this in two dimensions for simplicity.

CORRELATED INDEPENDENT ANTICORRELATED
1 14 28 56 1 14 28 56 1 14 28 56

FILTER 1929 669 535 568 13412 2672 1935 1861 86369 21056 17762 16745
SORTED 376 313 323 326 5225 624 617 667 54603 4836 2535 1780

PIVOTED 812 715 732 789 964 810 842 833 48008 4870 3115 2579

Table 1: Execution time of each algorithm when run on a single core (t = 1), single socket (t = 14), all physical cores (t = 28), and all
virtual cores (t = 56). Data distribution varies, but n = 106, d = 3, and k = 16 are fixed to match [8]. Times are reported in milliseconds.

SORTED PIVOTED FILTER

1 16 64

101

103

105

#
of

ca
nd

id
at

es
/p

iv
ot

s

Result size (k)

1 2 4 8

Input size (n)

2 6 10

Dimensions (d)

Figure 1: The number of candidates generated by each algorithm
as a function of the input data and result size. Independent data.

by extending the openly available SkyBench suite [3] and com-
pile with GNU gcc-4.9.3. We run experiments on a dual socket,
28-core Intel Xeon E5-2683 v3 at 2 GHz that is running Ubuntu
14.04 and has hyperthreading enabled. Time is measured for each
algorithm after loading the input from files into a flat array. Ties in
dominance score are broken by the order in which candidate points
are processed so as not to bias the preferred order of any algorithm.

For comparability with Section 8.3 of [8], we use standard syn-
thetic datasets with defaults of k = 16, n = 106, and d = 3.

Performance of algorithms Table 1 shows the execution time
of the three algorithms relative to the data distribution and number
of threads. In general, we observe the typical pattern that all algo-
rithms perform best on correlated data and worst on anticorrelated
data. This is unsurprising because: a) the dominance scores for
the top-k points is higher on correlated data, increasing the bounds
used for pruning; and b) more points are dominated by at least k
other points and so can be discarded from processing earlier. With
additional computational work on anticorrelated data more paral-
lelism can be exposed, thereby achieving more parallel scalability.

The PIVOTED algorithm typically performs best at low thread
counts, whereas the SORTED algorithm exhibits very good paral-
lel scalability, even across NUMA nodes, and is consistently the
fastest when using all threads. The FILTER method is limited by
Amdahl’s Law because of the sequential second phase, so experi-
ences diminishing returns with increasing thread counts. The PIV-
OTED method struggles to utilise all threads on such low-dimensional
correlated and independent data, because there are not enough par-
titions to iterate and the partitions are quite imbalanced.

The performance of PIVOTED on anticorrelated data is disap-
pointing, given the success that other pivot-based methods (e.g., [3])
have had for standard skyline queries. We will in the future inves-
tigate whether better choices of pivot points and the discarding of

some unpromising partitions can improve performance here. Sim-
ilarly, somehow parallelising the second phase of FILTER could
yield sizeable improvements for that algorithm.

On filters and pivots Figure 1 internally inspects the perfor-
mance of the algorithms by counting "important" points. For PIV-
OTED, these are the pivots. For the other methods, these are the
candidate points that cannot be pruned. The pivots and candidates
are exactly those points for which the dominance score is expen-
sively, explicitly computed. We study how variations in k, n (mea-
sured in millions), and d (all on independent data) affect this value.

While it is clear from Figure 1 that PIVOTED computes by far
the fewest exact scores, each pivot additionally further partitions
the grid, creating much more overhead than evaluating candidates
in the other algorithms; so, it is dangerous to compare these values
directly across algorithms. Nonetheless, the low number of explicit
counts required does suggest that PIVOTED could emerge as the
clear best algorithm if the partitioning overhead can be reduced.

The filtering of the other methods is very sensitive to d, filtering
less than 65% of the input at d = 10, but for d ≤ 5, both prune
≥ 99%. This indicates a reasonable trade-off for FILTER, because
sophisticated pruning replaces parallel work with sequential work.

Summary and future work SORTED outperforms the other meth-
ods on account of good throughput, but we plan to further develop
FILTER (perhaps by trading off more filtering granularity for par-
allelism) and PIVOTED (trying to bridle the exponential growth of
explicitly managed partitions) to see if this result can be overturned.
The strong single-threaded performance of PIVOTED in particular,
especially on less extreme workloads, suggests that improving its
parallel scalability could lead to an extremely fast algorithm.

4. REFERENCES
[1] D. Amagata, Y. Sasaki, T. Hara, and S. Nishio. Efficient

processing of top-k dominating queries in distibuted
environments. In Proc. of WWW, 2015.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In Proc. of ICDE, pages 421–430, 2001.

[3] S. Chester, D. Šidlauskas, I. Assent, and K. S. Bøgh. Scalable
parallelization of skyline computation for multi-core
processors. In Proc. ICDE, pages 1083–1094, 2015.

[4] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k
query processing techniques in relational database systems.
ACM Comput. Surv., 40(4), 2008.

[5] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos.
Continuous top-k dominating queries. IEEE Trans. Knowl.
Data Eng., 24(5):840–853, 2012.

[6] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline
computation in database systems. TODS, 30(1):41–82, 2005.

[7] D. Skoutas, D. Sacharidis, A. Simitsis, V. Kantere, and T. K.
Sellis. Top-k dominant web services under multi-criteria
matching. In Proc. of EDBT, pages 898–909, 2009.

[8] M. L. Yiu and N. Mamoulis. Multi-dimensional top-k
dominating queries. VLDB J., 18(3):695–718, 2009.

	Introduction
	Three proposed algorithms
	Experiments
	References

