
Efficient Semantic Similarity Search over Spatio-textual Data
George S. Theodoropoulos

University of Piraeus
Piraeus, Greece
gstheo@unipi.gr

Kjetil Nørvåg
NTNU

Trondheim, Norway
noervaag@ntnu.no

Christos Doulkeridis
University of Piraeus

Piraeus, Greece
cdoulk@unipi.gr

ABSTRACT
In this paper, we address the problem of semantic similarity
search over spatio-textual data. In contrast with most existing
works on spatial-keyword search that rely on exact matching
of query keywords to textual descriptions, we focus on seman-
tic textual similarity using word embeddings, which have been
shown to capture semantic similarity exceptionally well in prac-
tice. To support efficient 𝑘-nearest neighbor (𝑘-NN) search over
a weighted combination of spatial and semantic dimensions, we
propose a novel indexing approach (called CSSI) that ensures
correctness of results, alongside its approximate variant (called
CSSIA) that introduces a small amount of error in exchange for im-
proved performance. Both variants are based on a hybrid cluster-
ing scheme that jointly indexes the spatial and textual/semantic
information, achieving high pruning percentages and improved
performance and scalability.

1 INTRODUCTION
Spatio-textual data [11] is generated today by GPS-enabled mo-
bile devices and social media apps at unprecedented rates. Despite
the wide potential of spatio-textual data analysis, existing ap-
proaches for querying spatio-textual data largely rely on exact
matching of query keywords to the textual descriptions [6, 7,
9, 28]. In consequence, retrieval results are of inferior quality,
as the semantic relationships between words cannot be accu-
rately captured. Motivated by this limitation, we employ word
embeddings, a state-of-the-art technique in natural language
processing that has been shown to work exceptionally well in
different domains [32].

Using word embeddings, a word can be represented as a dense,
real-valued vector of high dimensionality, so that vectors that are
close, correspond to words with similar meaning. The word em-
beddings are created based on a large corpus of text, typically ei-
ther by training a neural network, with prominent example being
Word2Vec [30], or using co-occurence matrices, like Glove [32].
In order to find semantically similar documents, we can employ
document embeddings. Document embeddings are also dense,
real-valued vectors of high dimensionality, with one vector for
each document (a document here meaning a text of one or more
words). They can be created by combining the word embeddings
of words in a document, for example by averaging the word em-
bedding vectors [36]. Then, by finding similar vectors based on a
similarity function, we can find documents that are likely to be
semantically similar [30].

Accordingly, we formulate the problem of semantic similarity
search over spatio-textual data. Given a query specified by a loca-
tion and a textual description (typically in the form of keywords),
the aim is to retrieve the 𝑘 objects that minimize a distance func-
tion defined as a linear, weighted combination of spatial with

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-094-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

semantic distance. The technical challenge is twofold. On the
one hand, the semantic vectors are high-dimensional, thus build-
ing an effective index that allows eager pruning of the search
space is extremely difficult. On the other hand, designing a query
processing algorithm that supports different ways of weighting
the contribution of the spatial and semantic distance is far from
trivial.

To address this problem, we propose a novel algorithm called
CSSI (Cluster-based Semantic Spatio-textual Indexing) for 𝑘-
nearest neighbor (𝑘-NN) search over spatio-textual data. The
gist of our approach is to group spatio-textual objects into hybrid
clusters, by combining two separate sets of clusters: spatial and
semantic. Capitalizing on this data organization, we are able to
define appropriate search bounds that allow pruning of clusters
that cannot contain query results. Moreover, for those clusters
that cannot be pruned a priori, we show that we can still prune
a significant portion of the enclosed objects. Compared to the
state-of-the-art S2R-tree [8] index that enriches an R-tree with
semantic information, we show that our algorithm is consis-
tently faster. Intuitively, the reason is that we jointly index the
spatial and the semantic space, whereas S2R-tree (similarly to
previous approaches) prioritizes the spatial domain by following
a spatial-first indexing, which often results in having to scan
the entire data set. Furthermore, we propose an approximate
algorithm CSSIA, which trades accuracy for performance, thus
greatly improving the execution time of CSSI while returning
the correct result set in most cases. The main technical novelty
of our work and differentiating factor with previous work is the
creation of a clustering-based index that is applicable to com-
plex, high-dimensional spatio-textual data, and the use of hybrid
clusters that jointly index the spatial and semantic domains.

In summary, we make the following contributions:
• We propose a novel indexing approach based on hybrid
clusters for semantic spatio-textual similarity search.
• We introduce an exact query processing algorithm (CSSI)
for this problem, alongwith the appropriate bounds, which
is provably correct (Sect. 4).
• To boost the performance of query processing, we propose
an extremely efficient algorithm (CSSIA) that retrieves
approximate results very fast, while keeping the error
lower than 1% in most cases (Sect. 5).
• We present the results of an extensive experimental evalu-
ation that demonstrates the efficiency and effectiveness
of our algorithms, for large real-world data sets and in
comparison with the state-of-the-art [8] (Sect. 7).

In addition, we review related work in Sect. 2, we formulate
the problem in Sect. 3, we discuss the complexity of our algorithm
and handling dynamic data in Sect. 6, and we conclude in Sect. 8.

2 RELATEDWORK
Spatial Keyword Search. Searching with a combination of
spatial and textual criteria has attracted increased attention re-
cently [6, 7, 9, 28]. Regarding textual matching, early attempts to

tackle spatial-keyword search focus primarily on exact match-
ing using Boolean constraints [6]. Relaxed variants of matching
based on partial keyword matching are also widely used, such as
ranked retrieval using a single distance function that combines
spatial with textual similarity [6, 12, 44], as well as using separate
similarity functions for spatial and textual matching [40]. Regard-
ing spatio-textual indexing, existing approaches can be classified
as spatial-first [15, 26], text-first [37, 42], or interleaved [27, 43].
Other related topics include proportionality in spatial-keyword
search [25], spatial object selection with diversity [18], spatial
group keyword queries [3, 4, 17], and error-tolerant spatio-textual
retrieval [46, 47]. Nevertheless, a common limitation of all these
works is that they fail to go beyond syntactic matching or (in
best case) fuzzy matching of keywords.
Semantic Representations of Text. The state-of-the-art se-
mantic text representations for data analytics is based on the
concept of word embeddings. In addition to on Word2Vec [30]
and Glove [32] as already mentioned, recently also context-aware
word embeddings methods have appeared, with some represen-
tative approaches being ELMo [33] and BERT [13], which take
into account the neighboring words in a phrase (the context)
in order to deal with polysemous words. More efficient support
for sentence-to-sentence similarity calculations has later been
introduced in SentenceBERT [36].
Semantic Spatio-textual Search. The state-of-the-art for se-
mantic spatio-textual search is the S2R-tree [8], which addresses
the same problem as in this paper. Practically, it is an exten-
sion of the R-tree built on top of spatial coordinates and very
low-dimensional semantic vectors that represent the text. The se-
mantic vectors are obtained by projecting the high-dimensional
word embeddings to an𝑚-dimensional space using a pivot-based
technique. Thus, each semantic vector is finally represented as
an 𝑚-dimensional vector (with 𝑚 as low as 2) that keeps the
distance of the specific vector from the 𝑚 pivots in the high-
dimensional space. The S2R-tree is built on spatial coordinates
(spatial layer), with every leaf being further built into an R-tree
that indexes the𝑚-dimensional representations (semantic layer).
Then, index nodes are augmented with 𝑚-dimensional MBBs
of semantic vectors in a bottom-up way. The query processing
algorithm performs best-first traversal of the index using a pri-
ority queue, which prioritizes access to nodes based on lower
bound of distance. The search terminates as soon as the element
at the top of the priority queue has larger distance than the top-𝑘
element found so far. However, an important shortcoming is that
it follows the spatial-first approach, as the index is built based on
spatial coordinates. Also, as will be shown in our experiments,
its performance is similar to a pure R-tree based solution that in-
dexes the spatial domain, and due to low pruning in the semantic
space it is often worse than a linear scan solution.

The NIQ-tree [34] is a multi-level indexing structure that also
belongs to the spatial-first approach. At the top level, a Quadtree
is built on the spatial coordinates and then, at the second level,
the objects of each leaf are indexed based on topic relevance. For
this, Latent Dirichlet Allocation (LDA) is used in order to create
a probabilistic topic model that captures semantics. Finally, at
the last level, 𝑛-gram inverted lists are constructed. Later, the
approach is extended by introducing another index, called LHQ-
tree [35]. The main difference to our work is the fact that they
use topic modelling for the semantic representation, instead of
word embeddings, and (in addition) they need to index text. More-
over, they follow a spatial-first approach too. It should also be

Symbol Description
O Data set of spatio-textual objects
𝑞 Query object with location (𝑞.𝑥,𝑞.𝑦) and text 𝑞.𝑡𝑒𝑥𝑡

𝑑𝑠 (𝑞,𝑜) Spatial distance of objects’ geographical coordinates
𝑑𝑡 (𝑞,𝑜) Semantic distance of objects’ textual representations
𝑑 ′𝑡 (𝑞,𝑜) Semantic distance in the projected space

_ Parameter balancing spatial and semantic distance
𝑑 (𝑞,𝑜) Distance between spatio-textual object 𝑜 and query 𝑞
𝑛 Dimensionality of semantic vectors
𝑚 Dimensionality of projected semantic vectors

(𝐶𝑠 , 𝑅𝑠) Spatial cluster with centroid𝐶𝑠 and radius 𝑅𝑠
(𝐶𝑡 , 𝑅𝑡) Semantic cluster with centroid𝐶𝑡 and radius 𝑅𝑡
𝐾𝑠 · 𝐾𝑡 Max. number of hybrid clusters (spatial · semantic)
𝐶 Hybrid cluster𝐶 = ⟨𝐶𝑠 , 𝑅𝑠 ,𝐶𝑡 , 𝑅𝑡 ⟩
H Set of hybrid clusters
𝐴𝑖 Sorted array of objects in the 𝑖-th hybrid cluster

𝐿 (𝑞,𝐶) Lower bound of distance of 𝑞 to hybrid cluster𝐶
𝑜𝑛𝑛 The current 𝑘-th nearest neighbor

Table 1: Main symbols used in the paper.

noted that in [8], the S2R-tree has been compared with an adapta-
tion of NIQ-tree (an approach based on spatial-first, followed by
search in semantic dimensions), and the S2R-tree shows superior
performance.

A different approach to semantic search is followed in [5,
39, 45] using a probabilistic topic model (LDA). Sun et al. [39]
enhance spatial keyword queries with semantics, but they use
LDA to extract semantic representations. To address the problems
(a) that queries are short and LDA cannot infer the semantics,
and (b) of semantic ambiguity, they rely on user interactions
(feedback) on query results. This is different from our approach,
which does not require user interaction. In [5, 45], the authors
also consider semantic retrieval along with spatial proximity,
however they also use LDA. More importantly, their query is
different than ours as they try to find a set of (at most) 𝑘 objects
that collectively optimize a distance function, where 𝑘 is set by
the number of query keywords. As such, these approaches are
not directly comparable to out work.
High-dimensional 𝑘-NN Search. Recently, several approaches
for 𝑘-NN search in high-dimensional data have been proposed,
the state-of-the-art being HNSW [29], provided by, e.g., the Faiss
library [24]. Although very efficient for approximate𝑘-NN search,
they are not applicable in the context of multi-aspect distance
functions, as in the case of combining spatial and semantic dis-
tances. The reason is that a separate index would need to be
built for each possible combination of spatial and semantic dis-
tances. Also, recent approaches based on learned indexes [38, 41]
either cannot be trivially become applicable to our setting [38] or
their performance for really high-dimensional data still remains
unclear [41].
Multi-metric indexing. Our work is also relevant to multi-
metric indexing, where combined search can be performed over
multiple metric spaces. Notable methods include the M2-tree [10],
the methodology of [2] for adapting metric indexes, the RR∗-
tree [16] and most recently DESIRE [48]. We provide a compari-
son with the latter two works in Sect. 7.

3 PROBLEM FORMULATION
In this paper, we address the problem of semantic similarity
search over spatio-textual data. That is, given a collection of
spatio-textual objects {𝑜𝑖 } ∈ O consisting of a location (𝑜𝑖 .𝑥, 𝑜𝑖 .𝑦)

and a textual description 𝑜𝑖 .𝑡𝑒𝑥𝑡 and a query 𝑞 with a location
(𝑞.𝑥, 𝑞.𝑦) and a textual description 𝑞.𝑡𝑒𝑥𝑡 , retrieve the 𝑘 objects
in O that minimize the distance function 𝑑 (𝑞, 𝑜) that takes into
account both the semantic and the spatial distances of any object
to the query.

As such, the distance function 𝑑 (𝑞, 𝑜) includes two compo-
nents. The first component is the spatial distance 𝑑𝑠 (𝑞, 𝑜) of the
query location (𝑞.𝑥, 𝑞.𝑦) to an object’s location (𝑜.𝑥, 𝑜 .𝑦). We use
a normalized variant of the Euclidean distance for 𝑑𝑠 (𝑞, 𝑜), ob-
tained by dividing with the maximum possible Euclidean distance
𝐷𝑚𝑎𝑥𝑠 of any two objects in the data set:

𝑑𝑠 (𝑞, 𝑜) =
√︁
(𝑞.𝑥 − 𝑜.𝑥)2 + (𝑞.𝑦 − 𝑜.𝑦)2

𝐷𝑚𝑎𝑥𝑠

The second component is the semantic distance 𝑑𝑡 (𝑞, 𝑜) be-
tween 𝑞.𝑡𝑒𝑥𝑡 and 𝑜𝑖 .𝑡𝑒𝑥𝑡 . To define this distance, we use word em-
beddings to represent the textual description of a spatio-textual
object 𝑜 as a dense 𝑛-dimensional vector: {𝑜 [1], 𝑜 [2], . . . , 𝑜 [𝑛]}.
This vector is called the semantic representation (or semantic
vector) of the spatio-textual object. In principle, any method for
word embeddings can be used, e.g., Word2Vec [30] or Glove [32],
as our algorithms do not make any assumption on the specific
method. Then, the semantic distance 𝑑𝑡 (𝑞, 𝑜) is defined as the
normalized Euclidean distance applied on the semantic vectors
of 𝑞 and 𝑜 , divided by 𝐷𝑚𝑎𝑥𝑡 (the maximum possible Euclidean
distance)1:

𝑑𝑡 (𝑞, 𝑜) =
√︁
(𝑞 [1] − 𝑜 [1])2 + · · · + (𝑞 [𝑛] − 𝑜 [𝑛])2

𝐷𝑚𝑎𝑥𝑡

Having both constituent parts normalized in [0, 1], we con-
sider the following equation for the distance function:

𝑑 (𝑞, 𝑜) = _ · 𝑑𝑠 (𝑞, 𝑜) + (1 − _) · 𝑑𝑡 (𝑞, 𝑜) (1)

where _ ∈ [0, 1] is an user-dependent parameter that balances
the contribution of the two parts to the final distance function.

Problem 1. (Semantic Spatio-textual Similarity Search) Given a
collection of spatio-textual objects {𝑜𝑖 } ∈ O and a query object
𝑞, retrieve the 𝑘 objects O𝑘 = {𝑜1, . . . , 𝑜𝑘 }, such that: 𝑑 (𝑞, 𝑜𝑖) ≤
𝑑 (𝑞, 𝑜 𝑗),∀𝑜𝑖 ∈ O𝑘 and ∀𝑜 𝑗 ∈ O − O𝑘 .

4 THE CSSI ALGORITHM
In this section, we present our approach, called CSSI (Cluster-
based Semantic Spatio-textual Indexing), for efficient semantic
indexing and search of spatio-textual data.

4.1 Index Construction
In order to support efficient search, we organize data based on
both spatial and textual dimensions. We argue in favor of joint
indexing of the two domains, because the spatial-first approach
(e.g., [8, 35]) that prioritizes the easily indexed spatial domain
would result in identifying objects that are spatially close to the
query, but would have practically no information about their se-
mantic similarity to the query (and vice-versa). Thus, we propose
a highly descriptive “hybrid” representation that combines both
domains, grouping together objects that are both spatially close
and semantically similar.

1Since finding the exact values of 𝐷𝑚𝑎𝑥
𝑡 and 𝐷𝑚𝑎𝑥

𝑠 is not scalable, we use a
conservative estimate based on distance from a virtual point having the minimum
of the values of each dimension in the data set, to a point having maximum values.

Algorithm 1 Index construction of CSSI
1: function CreateIndex(O, 𝐾𝑠 , 𝐾𝑡 ,𝑚)
2: C𝑠 ← K-Means(𝜋𝑥,𝑦 (O) , 𝐾𝑠) ⊲ Spatial clustering
3: {𝐶𝑠

𝑖
} ← C𝑠 .cluster_centers

4: {𝑅𝑠
𝑖
} ← max{𝑑𝑠 (𝑜,𝐶𝑠

𝑖
) }, ∀𝑜 ∈ 𝐶𝑠

𝑖

5: O𝑡𝑒𝑥𝑡 ←WordEmbeddings(𝜋𝑡𝑒𝑥𝑡 (O))
6: O′𝑡𝑒𝑥𝑡 ← 𝑃𝐶𝐴(O𝑡𝑒𝑥𝑡 ,𝑚) ⊲ Dimensionality reduction
7: C𝑡 ← K-Means(O′𝑡𝑒𝑥𝑡 , 𝐾𝑡) ⊲ Textual clustering
8: {𝐶𝑡

𝑖
} ← C𝑡 .cluster_centers

9: {𝑅𝑡
𝑖
} ← max{𝑑𝑡 (𝑜,𝐶𝑡

𝑖
) }, ∀𝑜 ∈ 𝐶𝑡

𝑖

10: H ← {(𝐶𝑠
𝑖
, 𝑅𝑠

𝑖
), (𝐶𝑡

𝑗
, 𝑅𝑡

𝑗
) } ⊲ Initialize hybrid clusters

11: for 𝑜 ∈ O do ⊲ Object assignment
12: assign 𝑜 to its hybrid cluster
13: for 𝑖 ∈ [1, 𝐾𝑠 · 𝐾𝑡] do ⊲ For each hybrid cluster
14: create array 𝐴𝑖 ⊲ Organize objects in 𝑖-th hybrid cluster
15: return H

Spatial clustering. We perform two separate clustering algo-
rithms to the spatio-textual data set. First, regarding the spatial
information, we group together objects based on their location by
applying spatial clustering. We obtain a set of 𝐾𝑠 spatial clusters,
each represented by a centroid 𝐶𝑠

𝑖
and a radius 𝑅𝑠

𝑖
that is equal

to the distance between𝐶𝑠
𝑖
and the furthest point assigned to𝐶𝑠

𝑖
:

𝑅𝑠𝑖 = max{𝑑𝑠 (𝑜,𝐶𝑠𝑖)}
Semantic clustering. Regarding the textual information, we

make use of pre-trained models that produce high-quality word
embeddings, obtaining high-dimensional dense semantic vec-
tors that represent the aforementioned object. These semantic
vectors are 𝑛-dimensional, with 𝑛 in the order of hundreds. Un-
fortunately, grouping such high-dimensional data by computing
pairwise distances is known to be ineffective due to the curse of
dimensionality [1, 21]. To tackle this problem, we apply Principal
Component Analysis (PCA) in order to project the 𝑛-dimensional
word embeddings to meaningful𝑚-dimensional (𝑚 << 𝑛) vec-
tors. The choice of PCA is due to its salient property of maximiz-
ing the total variance of the projection. Then, we apply K-Means
on the projected vectors, which produces 𝐾𝑡 semantic (textual)
clusters. Note that any clustering algorithm producing spherical
clusters can be used and we choose K-Means for its efficiency.

Nevertheless, we emphasize that the representations of the
semantic clusters are based on the original 𝑛-dimensional space.
In more detail, each semantic cluster is represented by a centroid
𝐶𝑡
𝑖
which is the mean vector for all 𝑛-dimensional vectors in the

cluster, and by a radius 𝑅𝑡
𝑖
, which is equal to distance (in the

original 𝑛-dimensional space) between 𝐶𝑡
𝑖
and the furthest point

that belongs to the cluster: 𝑅𝑡
𝑖
= max{𝑑𝑡 (𝑜,𝐶𝑡𝑖)}.

Building the Index. Algorithm 1 describes the complete pro-
cess of index construction for CSSI. Essentially, the index consists
of a set of hybrid (spatio-textual) clusters H that organize the
data objects of data set O. In the first step, we obtain a spatial
clustering (denoted C𝑠) by applying K-Means to the spatial coordi-
nates (by projecting O, denoted as 𝜋𝑥,𝑦 (O)) of each 𝑜 ∈ O (line 2).
Then, we obtain semantic textual vectors (O𝑡𝑒𝑥𝑡) by applying
word embeddings on the projected textual descriptions 𝜋𝑡𝑒𝑥𝑡 (O).
By applying PCA we obtain highly descriptive low-dimensional
representations, denoted by O′𝑡𝑒𝑥𝑡 , which result in a clustering
of high quality. In the next step, the semantic clustering (denoted
C𝑡) is obtained by applying K-Means to the low-dimensional rep-
resentations (line 7). Then, we initialize the set of hybrid clusters
H by forming combinations of spatial (𝐶𝑠

𝑖
, 𝑅𝑠
𝑖
) with semantic

clusters (𝐶𝑡
𝑗
, 𝑅𝑡
𝑗
) (line 10). Finally, each object 𝑜 is assigned to

a single hybrid cluster, which is the one formed by 𝑜’s spatial
and semantic clusters respectively. For the centroid of a hybrid
cluster, we use𝐶𝑠 ⊚𝐶𝑡 to represent the concatenation of the spa-
tial centroid 𝐶𝑠 and the textual centroid 𝐶𝑡 respectively2. Then,
the distance of an object 𝑜 to the centroid of its hybrid cluster is:
𝑑 (𝑜,𝐶𝑠 ⊚𝐶𝑡) = _ · 𝑑𝑠 (𝑜,𝐶𝑠) + (1 − _) · 𝑑𝑡 (𝑜,𝐶𝑡).

Hybrid Objects
cluster
𝐶𝑠1 ⊚𝐶

𝑡
1 𝑜4, 𝑜5

𝐶𝑠2 ⊚𝐶
𝑡
1 𝑜2, 𝑜3

𝐶𝑠3 ⊚𝐶
𝑡
1 𝑜1

𝐶𝑠1 ⊚𝐶
𝑡
2 𝑜6, 𝑜7

𝐶𝑠2 ⊚𝐶
𝑡
2 -

𝐶𝑠3 ⊚𝐶
𝑡
2 𝑜8, 𝑜9, 𝑜10

Figure 1: Example of 6 hybrid clusters.

Example 4.1. Fig. 1 presents an illustrative example of how
the hybrid clusters are formed. In the example, we have 𝐾𝑠 = 3
spatial clusters {(𝐶𝑠1, 𝑅𝑠1), (𝐶𝑠2, 𝑅𝑠2), (𝐶𝑠3, 𝑅𝑠3)} and 𝐾𝑡 = 2 semantic
clusters {(𝐶𝑡1, 𝑅𝑡1), (𝐶𝑡2, 𝑅𝑡2)}. As a result,𝐾𝑠 ·𝐾𝑡 = 6 hybrid clusters
can be formed. We make two observations: (a) the hybrid cluster
(𝐶𝑠2, 𝑅𝑠2), (𝐶𝑡2, 𝑅𝑡2) is not actually formed, since there exists no data
object that belongs to both clusters, and (b) each spatio-textual
data object is eventually assigned to a single hybrid cluster.

In order to make the index more efficient, we organize objects
within a hybrid cluster in such a way that will allow pruning
of unnecessary objects at query time. However, notice that _ is
user-dependent (i.e., that can differ for each query), and therefore
cannot be exploited during index construction. Thus, we can
organize the objects in two sorted lists 𝐿𝑡 and 𝐿𝑠 , one sorted
on distance 𝑑𝑡 (𝑜,𝐶𝑡) to the semantic cluster centroid, and the
second on distance 𝑑𝑠 (𝑜,𝐶𝑠) to the spatial cluster centroid (each
object in the cluster will be a member once in each list). Then,
we can apply Fagin’s Threshold Algorithm (TA) [14] using _
at query time, which allows access to the next object based on
distance 𝑑 (𝑜,𝐶𝑠 ⊚𝐶𝑡) and supports early termination without
exhaustively accessing all objects.

In more detail, when the Threshold Algorithm is applied at
query time, the lists 𝐿𝑡 and 𝐿𝑠 will be processed in parallel, one
object from each list, and distance to centroid will be calculated.
However, an object already seen in one of the lists might later be
seen in the other list. A second distance calculation will then be
redundant, as its distance has already been calculated. In order
to avoid this, as well as reduce memory usage, we create a single
array 𝐴𝑖 for cluster 𝑖 (line 14, Alg. 1), which is used during query
processing, that has only one element per object. Each element is
a tuple consisting of an object, and spatial and semantic distances.
The array is created by traversing the two sorted lists 𝐿𝑡 and 𝐿𝑠
in parallel, processing a pair of objects at a time. For each of the
objects 𝑜 ∈ 𝐿𝑠 , 𝑜′ ∈ 𝐿𝑡 in the pair, a new element is added to the
array only if this is the object’s first occurrence. The new element
consists of three parts: the seen object A𝑖 [𝑗] .𝑜 , the spatial distance
A𝑖 [𝑗] .𝑑𝑠 = 𝑑𝑠 (𝑜,𝐶𝑠) for the one object 𝑜 in the pair from the list
sorted by distance to spatial cluster centroid, and the semantic
distance A𝑖 [𝑗] .𝑑𝑡 = 𝑑𝑡 (𝑜′,𝐶𝑡) for the other object 𝑜′ in the pair
2For convenience, we omit the subscript 𝑖, 𝑗 from a cluster centroid and radius
when we refer to a single cluster.

(a) Lower bound on distance. (b) Intra-cluster pruning.

Figure 2: Illustration of pruning.

from the list sorted by distance to semantic cluster centroid (i.e.,
one of the distances will be from the other object in the pair). As
such, for each pair of objects, two, one, or zero elements might be
added to the array, depending on whether the objects have been
seen before or not. The resulting array has one element for each
object in the cluster, and is thus only half the size as the sum of
the original two lists, and can be processed very efficiently at
query time.

4.2 Lower Bound on Distance to Cluster
The question that needs to be answered next is how these hybrid
clusters can be exploited during query processing in order to
efficiently retrieve the 𝑘 nearest neighbors of a given query object
𝑞. To this end, we use the concept of a lower bound that represents
the minimum distance between a query point 𝑞 and any object 𝑜
that belongs to the hybrid cluster. We note that our theoretical
results hold for arbitrary metric spaces.

For clarity, we first explain the concept of lower bound for a
query 𝑞 and a cluster (𝐶, 𝑅) with centroid𝐶 and radius 𝑅, assum-
ing that 𝑞 is not within distance 𝑅 from 𝐶 (𝑞 is located outside a
sphere centered at 𝐶 with radius 𝑅).

Lemma 4.2. Given a query 𝑞 that is not enclosed in a cluster
(𝐶 ,𝑅), the distance of 𝑞 to any object 𝑜 that belongs to this cluster is
at least equal to 𝐿(𝑞,𝐶, 𝑅) = 𝑑 (𝑞,𝐶) − 𝑅:

𝑑 (𝑞, 𝑜) ≥ 𝐿(𝑞,𝐶, 𝑅)
Our first observation is that Lemma 4.2 is only valid when 𝑞 is

not enclosed in the cluster, i.e., 𝑑 (𝑞,𝐶) ≥ 𝑅. In case 𝑞 is enclosed
in the cluster (𝐶 ,𝑅), we cannot derive a meaningful (i.e., non-zero)
lower bound for 𝑑 (𝑞, 𝑜).

We stress that Lemma 4.2 holds for any metric distance func-
tion 𝑑 (), as is relies on the triangular inequality, also illustrated in
Fig. 2a. It is straightforward to show that this bounding scheme
is applicable both for spatial as well as for semantic clusters. In
other words, we can define the spatial lower bound 𝐿(𝑞,𝐶𝑠 , 𝑅𝑠)
and the semantic lower bound 𝐿(𝑞,𝐶𝑡 , 𝑅𝑡) accordingly:

𝑑𝑠 (𝑞, 𝑜) ≥ 𝐿(𝑞,𝐶𝑠 , 𝑅𝑠) = 𝑑𝑠 (𝑞,𝐶𝑠) − 𝑅𝑠 (2)
𝑑𝑡 (𝑞, 𝑜) ≥ 𝐿(𝑞,𝐶𝑡 , 𝑅𝑡) = 𝑑𝑡 (𝑞,𝐶𝑡) − 𝑅𝑡 (3)

Now, we are ready to formulate a lower bound 𝐿(𝑞,𝐶) for a
query object and a hybrid cluster𝐶 = ⟨𝐶𝑠 , 𝑅𝑠 ,𝐶𝑡 , 𝑅𝑡 ⟩ that consists
of a spatial (𝐶𝑠 , 𝑅𝑠) and a semantic cluster (𝐶𝑡 , 𝑅𝑡). We consider
the cases: 1 𝑑𝑠 (𝑞,𝐶𝑠) ≥ 𝑅𝑠 ∧ 𝑑𝑡 (𝑞,𝐶𝑡) ≥ 𝑅𝑡 , 2 𝑑𝑠 (𝑞,𝐶𝑠) ≥
𝑅𝑠 ∧𝑑𝑡 (𝑞,𝐶𝑡) < 𝑅𝑡 , 3 𝑑𝑠 (𝑞,𝐶𝑠) < 𝑅𝑠 ∧𝑑𝑡 (𝑞,𝐶𝑡) ≥ 𝑅𝑡 , and 4
𝑑𝑠 (𝑞,𝐶𝑠) < 𝑅𝑠 ∧ 𝑑𝑡 (𝑞,𝐶𝑡) < 𝑅𝑡 .

𝐿(𝑞,𝐶) =

_ · 𝐿(𝑞,𝐶𝑠 , 𝑅𝑠) + (1 − _) · 𝐿(𝑞,𝐶𝑡 , 𝑅𝑡) 1
_ · 𝐿(𝑞,𝐶𝑠 , 𝑅𝑠) 2
(1 - _) · 𝐿(𝑞,𝐶𝑡 , 𝑅𝑡) 3
0 4

(4)

Lemma 4.3. (Lower bound on distance) Given a query 𝑞 and a
hybrid cluster𝐶 = ⟨𝐶𝑠 , 𝑅𝑠 ,𝐶𝑡 , 𝑅𝑡 ⟩, the distance of any object 𝑜 ∈ 𝐶
to the query 𝑞 is at least equal to 𝐿(𝑞,𝐶):

𝑑 (𝑞, 𝑜) ≥ 𝐿(𝑞,𝐶)
Proof. By contradiction. Assume that there exists an object

𝑜 ∈ 𝐶 such that: 𝑑 (𝑞, 𝑜) < 𝐿(𝑞,𝐶). By definition 𝑑 (𝑞, 𝑜) = _ ·
𝑑𝑠 (𝑞, 𝑜) + (1 − _) · 𝑑𝑡 (𝑞, 𝑜). We separate the following cases:
Case 1: 𝑞 is not enclosed in (𝐶𝑠 , 𝑅𝑠) nor in (𝐶𝑡 , 𝑅𝑡): Then, by sub-
stitution based on Eq. 2 and 3: 𝑑 (𝑞, 𝑜) ≥ _ · (𝑑𝑠 (𝑞,𝐶𝑠) − 𝑅𝑠)) +
(1− _) · (𝑑𝑡 (𝑞,𝐶𝑡) −𝑅𝑡)) and 𝑑 (𝑞, 𝑜) ≥ _ · 𝐿(𝑞,𝐶𝑠 , 𝑅𝑠) + (1− _) ·
𝐿(𝑞,𝐶𝑡 , 𝑅𝑡), which leads to 𝑑 (𝑞, 𝑜) ≥ 𝐿(𝑞,𝐶) (contradiction).
Case 2: 𝑞 is enclosed in (𝐶𝑠 , 𝑅𝑠) but not in (𝐶𝑡 , 𝑅𝑡): Then, by sub-
stitution based on Eq. 2: 𝑑 (𝑞, 𝑜) ≥ _ · (𝑑𝑠 (𝑞,𝐶𝑠) − 𝑅𝑠)) + (1 −
_) · 𝑑𝑡 (𝑞, 𝑜) and 𝑑 (𝑞, 𝑜) ≥ _ · 𝐿(𝑞,𝐶𝑠 , 𝑅𝑠) + (1 − _) · 𝑑𝑡 (𝑞, 𝑜) ≥
_ · 𝐿(𝑞,𝐶𝑠 , 𝑅𝑠) (since (1 − _) · 𝑑𝑡 (𝑞, 𝑜) ≥ 0), which leads to
𝑑 (𝑞, 𝑜) ≥ 𝐿(𝑞,𝐶) (contradiction).
Case 3: 𝑞 is enclosed in (𝐶𝑡 , 𝑅𝑡) but not in (𝐶𝑠 , 𝑅𝑠): This is sym-
metric to Case 2.

□

4.3 Inter- and Intra-cluster Pruning
Let 𝑜𝑛𝑛 denote the (currently found) 𝑘-th nearest neighbor at any
stage of query processing and 𝑑 (𝑞, 𝑜𝑛𝑛) denote its distance to the
query point𝑞. Obviously, in the beginning of query processing, no
objects have been accessed and 𝑜𝑛𝑛 is undefined, which implies
that 𝑑 (𝑞, 𝑜𝑛𝑛) = ∞. Also, it follows that in order to initialize 𝑜𝑛𝑛 ,
it is necessary to have accessed at least 𝑘 data objects.

In brief, our approach examines each hybrid cluster according
to an ordering, and attempts to stop processing and report the
𝑘-nearest neighbors without exhaustively searching all of the
hybrid clusters and their contents. In the following, we present
the pruning properties used by our approach. First, we explain
how to prune complete hybrid clusters from processing (inter-
cluster pruning). Then, we present how we can avoid processing
all objects within a hybrid cluster (intra-cluster pruning).

Inter-cluster Pruning. In order to prune a hybrid cluster
𝐶 from processing, the condition that must hold is that no ob-
ject within the cluster can have a smaller distance than the one
between 𝑞 and the current 𝑘-th nearest neighbor 𝑜𝑛𝑛 .

Lemma 4.4. (Pruning property 1) A hybrid cluster 𝐶 can be
safely pruned, if its lower bound 𝐿(𝑞,𝐶) with respect to query object
𝑞 is greater than the distance 𝑑 (𝑞, 𝑜𝑛𝑛) between 𝑞 and the current
𝑘-th nearest neighbor:

𝐿(𝑞,𝐶) ≥ 𝑑 (𝑞, 𝑜𝑛𝑛)
Intra-cluster Pruning. In addition to pruning an entire hy-

brid cluster based on its derived lower bound, we also provide
a method that can prune some objects of a cluster by indexing
the distance to the centroid [23]. To achieve this, we would need
to access the data objects belonging to a hybrid cluster based on
descending distance 𝑑 (𝑜,𝐶) to the cluster centroid. At any point
during this process, we can stop accessing further data objects if
the following condition holds.

Lemma 4.5. (Pruning property 2) During accessing the objects 𝑜
of a hybrid cluster 𝐶 in descending order of distance to the centroid
𝑑 (𝑜,𝐶), we can terminate processing of 𝐶 safely if:

𝑑 (𝑞,𝐶) − 𝑑 (𝑜,𝐶) > 𝑑 (𝑞, 𝑜𝑛𝑛)
Proof. By contradiction. Assume that there exists an object

𝑜′ with smaller distance to the centroid than the current object 𝑜 :

Algorithm 2 Query processing CSSI
1: function CSSI(H, 𝑞, 𝑘)
2: R ← ∅ ⊲ Result set of size 𝑘
3: 𝑈 ←∞ ⊲ Distance to the current 𝑘-NN
4: sort H based on 𝐿 (𝑞,𝐶) ascending
5: for each hybrid cluster𝐶 ∈ H do
6: if 𝐿 (𝑞,𝐶) ≥ 𝑈 then
7: break ⊲ Pruning Property 1
8: for each element 𝑒 ∈ 𝐴 of𝐶 (let 𝑜 = 𝑒.𝑜) do
9: if 𝑞 is not enclosed in cluster𝐶 then
10: 𝑏𝑜𝑢𝑛𝑑 ← _ · 𝑒.𝑑𝑠 + (1 − _) · 𝑒.𝑑𝑡
11: if 𝑑 (𝑞,𝐶) − 𝑏𝑜𝑢𝑛𝑑 > 𝑈 then
12: break ⊲ Pruning Property 2
13: if 𝑑 (𝑞,𝑜) < 𝑈 then
14: R ← R ∪ {𝑜 }
15: if R .𝑠𝑖𝑧𝑒 > 𝑘 then
16: R ← R \ {𝑜′ }, 𝑜′ = argmax𝑜𝑖 ∈R 𝑑 (𝑞,𝑜𝑖)
17: if R .𝑠𝑖𝑧𝑒 = 𝑘 then
18: 𝑈 ← max𝑜𝑖 ∈R 𝑑 (𝑞,𝑜𝑖)
19: return R

𝑑 (𝑜′,𝐶) < 𝑑 (𝑜,𝐶), and that this object belongs to the 𝑘-nearest
neighbors: 𝑑 (𝑞, 𝑜′) < 𝑑 (𝑞, 𝑜𝑛𝑛). Starting from: 𝑑 (𝑞,𝐶) −𝑑 (𝑜,𝐶) >
𝑑 (𝑞, 𝑜𝑛𝑛) > 𝑑 (𝑞, 𝑜′), which can be rewritten as:𝑑 (𝑞,𝐶)−𝑑 (𝑞, 𝑜′) >
𝑑 (𝑜,𝐶) > 𝑑 (𝑜′,𝐶). Thus, we have: 𝑑 (𝑞,𝐶) > 𝑑 (𝑞, 𝑜′) +𝑑 (𝑜′,𝐶), a
contradiction, since it violates the triangular inequality. □

Example 4.6. In Fig. 2b, the circle centered at 𝑞 with radius
𝑑 (𝑞, 𝑜𝑛𝑛) indicates the area in which we could potentially find a
better object than the 𝑘-nearest neighbors so far. The grey area
inside the cluster indicates exactly those objects of the cluster
(𝐶, 𝑅) that need to be examined, assuming access order based on
descending distance to the centroid, as any of those could be a
better result. The white area inside the cluster is defined by the
value 𝑑 (𝑞, 𝑜𝑛𝑛) and it indicates the area that can be safely pruned
based on Lemma 4.5.

However, 𝑑 (𝑜,𝐶) relies on the value of _ which may vary for
different queries. Therefore, we cannot have an ordering at in-
dexing time based on 𝑑 (𝑜,𝐶). To solve this problem, we use the
sorted array 𝐴, which uses an ordering based on 𝑑𝑠 (𝑜,𝐶𝑠) and
𝑑𝑡 (𝑜,𝐶𝑡), as described in Sect. 4.1. It is easy to show that the dis-
tance computed for an element 𝑒 of the array 𝐴 is a conservative
approximation of 𝑑 (𝑜,𝐶), i.e., 𝑑 (𝑜,𝐶) ≤ _ · 𝑒.𝑑𝑠 + (1 − _) · 𝑒.𝑑𝑡 .
By using this conservative approximation during query process-
ing, we can save many distance computations and still obtain a
correct result.

4.4 Query Processing
Algorithm 2 presents how query processing is performed exploit-
ing the set of hybrid clustersH . We use a heap R for maintaining
the 𝑘-nearest neighbors so far, organized based on distance to 𝑞.
Also, we use 𝑈 to denote the distance 𝑑 (𝑞, 𝑜𝑛𝑛) between 𝑞 and
the current 𝑘-th nearest neighbor 𝑜𝑛𝑛 , and initialize its value to
be equal to infinity. The value𝑈 will be updated as soon as we
have accessed 𝑘 data objects. Practically, 𝑈 serves as an upper
bound for distance (i.e., objects with higher distance 𝑑 (𝑞, 𝑜) > 𝑈
can be safely discarded).

The first step is to sort the setH based on the lower bound
𝐿(𝑞,𝐶) of distance to the query in ascending order (line 4). This
prioritizes access to the hybrid clusters that are closer to the

0.0 0.2 0.4 0.6 0.8 1.0
Distance

0

1

2

3

4

5

of

 o
bj

ec
ts

1e3
n m = 2

Figure 3: Distribution of distances to a random query in
the original (𝑛) and in the projected (𝑚 = 2) space.

query object, thus yielding higher probability to contain the 𝑘-
nearest neighbors. Then, each hybrid cluster is accessed based on
the sorted order. As soon as we encounter a hybrid cluster with
lower bound larger or equal to the distance𝑈 , we can terminate
processing based on pruning property 1 (Lemma 4.4, inter-cluster
pruning).

For each hybrid cluster 𝐶 that cannot be pruned, we start
examining each object that belongs to 𝐶 . Recall that the order of
accessing data objects is based on the sorted array 𝐴 that keeps
the objects of the hybrid cluster 𝐶 . If 𝑞 is not inside 𝐶’s bounds
(line 9), we can try to prune some of the data objects that are
part of 𝐶 (intra-cluster pruning). More concretely, as soon as we
access a data object that satisfies the condition at line 11, then
it also satisfies pruning property 2, and we can safely terminate
processing of this cluster based on Lemma 4.5. In case we cannot
prune the current data object 𝑜 , we compute its distance 𝑑 (𝑞, 𝑜)
and if it is greater than the distance of the current 𝑘-th nearest
neighbor 𝑑 (𝑞, 𝑜𝑛𝑛) we proceed to the next data object (line 13).
Otherwise, we add 𝑜 to R and if it contains 𝑘 + 1 neighbors,
we remove the object that is the furthest away from 𝑞 (line 16).
Finally, we update the value of 𝑑 (𝑞, 𝑜𝑛𝑛) to reflect the distance
to the current 𝑘-th nearest neighbor (line 18).

Lemma 4.7. (Correctness) CSSI returns the correct result.

Proof. By contradiction. Consider that the 𝑘-th nearest neigh-
bor 𝑜𝑛𝑛 is false positive, i.e., it is returned by the algorithm in
set R, yet there exists another object 𝑜′ ∉ R such that 𝑑 (𝑞, 𝑜′) <
𝑑 (𝑞, 𝑜𝑛𝑛). Then, 𝑜′ must have been pruned either by pruning
property 1 or 2 or by the check in line 13. Pruning property 1
cannot prune 𝑜′, since 𝑜′ would be in a cluster 𝐶 with 𝐿(𝑞,𝐶) ≤
𝑑 (𝑞, 𝑜′) < 𝑑 (𝑞, 𝑜𝑛𝑛) (contradiction). Similarly, pruning property
2 cannot prune 𝑜′ because 𝑑 (𝑞,𝐶) − 𝑑 (𝑜′,𝐶) < 𝑑 (𝑞, 𝑜𝑛𝑛) (based
on the triangular inequality). Finally, the check in line 13 would
be evaluated to true for 𝑜′, which means that 𝑑 (𝑞, 𝑜′) < 𝑑 (𝑞, 𝑜𝑛𝑛)
(contradiction). □

5 AN APPROXIMATE ALGORITHM: CSSIA
In this section we present CSSIA, an algorithm that returns highly
accurate results while being significantly faster than CSSI. In-
tuitively, CSSIA relies on the same hybrid clustering scheme as
CSSI, but CSSIA’s cluster representations of the semantic vectors
are based on the projected 𝑚-dimensional space. This means
that we can no longer offer theoretical guarantees of correctness,
yet – in practice – CSSIA’s results are highly accurate, with the
subsequent error rate being less than 1% in most cases.

n < = 2

0 10 20 30 40

0.1

0.2

0.3

0.4

0.5

0.6

of hybrid clusters (x103)

di
am

et
er

(a) Average diameter of clus-
ters.

n < = 2

0 10 20 30 40
0

20

40

60

80

of hybrid clusters (x103)

%
of

cl
us
te
rs

(b) % of clusters enclosing 𝑞.

Figure 4: Overlap of hybrid clusters for increasing number
of clusters (5M tweets, default parameters, cf. Sect. 7).

5.1 Intuition
Conceptually, having hybrid clusters represented in the origi-
nal high-dimensional space presents two shortcomings: (a) low
variance of distance distribution, an inherent characteristic of
high-dimensional vectors, and (b) large-sized clusters that capture
significant amount of space, thus leading to highly overlapping
clusters. Both of these factors affect the quality of any object
grouping method and make pruning harder. We justify these
observations using two experiments, as outlined below. In turn,
these findings motivate the design of CSSIA.

Fig. 3 shows two histograms of the distribution of distances
to a random query, at the original 𝑛-dimensional space (𝑛=100)
and for the𝑚-dimensional projection (𝑚=2) respectively, for a
data set of 1M tweets (as described in Sect. 7). As we can see,
the distance distribution is much narrower in the 𝑛-dimensional
space, something that is bound to happen as the variance of the
score is relatively low, equal to 0.0046. On the other hand, the
histogram for𝑚 = 2 is much wider, with its variance being more
than double of the 𝑛-dimensional one at 0.01. This difference
in variance greatly affects the quality of any grouping method
applied to the underlying data, thus affecting any index that relies
on that grouping as well.

Fig. 4a shows the average diameter of hybrid clusters, for an
increasing number of clusters (x-axis). Fig. 4b shows the percent-
age of hybrid clusters that enclose a random query. In both cases,
we compare the 𝑛-dimensional vectors with the𝑚-dimensional
(𝑚=2) ones. For the 𝑛-dimensional vectors, the rate of decrease of
the cluster diameter is almost negligible if more than 5K clusters
are created (Fig. 4a). At the same time, the overall percentage of
clusters that enclose the query is between 55% and 60% for up
to 40K clusters (Fig. 4b). On the other hand, for𝑚=2, we observe
that the rate of decrease in overlap is much greater, with the
percentage of clusters enclosing the query being close to 0% for
5K clusters or more.

Consequently, the hybrid clusters in 𝑛 dimensions will have
a lot of overlap, something expected due to the low variance of
the distribution of distances and the large area that is covered in
the 𝑛-dimensional space. This will make pruning clusters harder
for CSSI. In contrast, the pruning in CSSIA is improved because
the representations of hybrid clusters will have smaller overlap.

5.2 Index Construction
CSSIA adopts the same hybrid clustering scheme as CSSI, as
explained in Sect. 4.1. However, the cluster representations in the
semantic domain are instead based on the projected space. More

Algorithm 3 Query processing CSSIA

1: function CSSIA(H, 𝑞, 𝑘)
2: R ← ∅ ⊲ Result set of size 𝑘
3: 𝑈 ←∞ ⊲ Distance to current 𝑘-NN in original space
4: 𝑈 ′ ←∞ ⊲ Distance to current 𝑘-NN in projected space
5: sort H based on 𝐿′ (𝑞,𝐶) ascending
6: for each hybrid cluster𝐶 ∈ H do
7: if 𝐿′ (𝑞,𝐶) ≥ 𝑈 ′ then
8: break ⊲ Revised Pruning Property 1
9: for each element 𝑒 ∈ 𝐴 of𝐶 (let 𝑜 = 𝑒.𝑜) do
10: if 𝑞 is not enclosed in cluster𝐶 then
11: 𝑏𝑜𝑢𝑛𝑑 ← _ · 𝑒.𝑑𝑠 + (1 − _) · 𝑒.𝑑𝑡
12: if 𝑑 (𝑞,𝐶) − 𝑏𝑜𝑢𝑛𝑑 > 𝑈 then
13: break ⊲ Pruning Property 2
14: if 𝑑 (𝑞,𝑜) < 𝑈 then
15: R ← R ∪ {𝑜 }
16: if R .𝑠𝑖𝑧𝑒 > 𝑘 then
17: R ← R \ {𝑜′ }, 𝑜′ = argmax𝑜𝑖 ∈R 𝑑 (𝑞,𝑜𝑖)
18: if R .𝑠𝑖𝑧𝑒 = 𝑘 then
19: 𝑈 ← max𝑜𝑖 ∈R 𝑑 (𝑞,𝑜𝑖)
20: 𝑈 ′ ← max𝑜𝑖 ∈R 𝑑 ′ (𝑞,𝑜𝑖)
21: return R

concretely, the cluster centroid 𝐶𝑡
𝑖
is computed by averaging

all the𝑚-dimensional projected data objects in O. The cluster
radius 𝑅𝑡

𝑖
is also computed based on the projections, that is: 𝑅𝑡

𝑖
=

max{𝑑′𝑡 (𝑜,𝐶𝑡𝑖)}, where the distance function 𝑑′𝑡 () refers to the
projected space.

Regarding the ordering of data objects within each cluster,
we use the identical ordering as in CSSI. Thus, distances are
computed in the original𝑛-dimensional space. In summary, CSSIA
organizes the data objects of a cluster in the same way as CSSI.
The difference is in the way clusters are represented, namely
based on the projected (𝑚-dimensional) space. In turn, this affects
the way pruning is performed, as indicated next.

5.3 Revisiting the Pruning Properties
Intra-cluster pruning (pruning property 2) is performed in the
exact same way as in CSSI. This means that we use the distances
in the original 𝑛-dimensional space. Regarding inter-cluster prun-
ing, since the cluster is represented in𝑚-dimensional space, we
need to use the distances 𝑑′ () in the projected space to prune
clusters. Therefore, we replace Equation 3 with the following one
which defines a semantic lower bound in the projected space:

𝑑′𝑡 (𝑞, 𝑜) ≥ 𝑑′𝑡 (𝑞,𝐶𝑡) − 𝑅𝑡 = 𝐿′ (𝑞,𝐶𝑡 , 𝑅𝑡) (5)

Based on this, we define 𝐿′ (𝑞,𝐶) in accordance with Equa-
tion 4, only replacing the distance 𝑑𝑡 () with 𝑑′𝑡 () as above. There-
fore, we replace pruning property 1 as defined in Lemma 4.4 with
the condition: 𝐿′ (𝑞,𝐶) ≥ 𝑑′ (𝑞, 𝑜𝑛𝑛), where the right part of the
inequality corresponds to 𝑑′ (𝑞, 𝑜𝑛𝑛) = _ · 𝑑𝑠 (𝑞, 𝑜𝑛𝑛) + (1 − _) ·
𝑑′𝑡 (𝑞, 𝑜𝑛𝑛), but it is computed based on 𝑑′𝑡 () in the projected space.
As a result, inter-cluster pruning is performed in the projected
space.

5.4 Query Processing
Algorithm 3 describes the query processing procedure for CSSIA.
To begin with, all hybrid clusters are ordered based on their lower
bound 𝐿′ (𝑞,𝐶) with respect to 𝑞, in an ascending manner. We
also set two types of bounds to infinity, one for each pruning
property (𝑈 ′ for inter-cluster and 𝑈 for intra-cluster pruning).

Then, we iterate over each hybrid cluster 𝐶 in 𝐻 . If the lower
bound for𝐶 is greater than the inter-cluster bound𝑈 ′, the cluster
is pruned and none of its objects will be accessed. For each cluster
that is not pruned, we access all of its objects from the outermost
to the innermost ones. If 𝑞 is not spatially covered by 𝐶 , we
check whether pruning property 2 (intra-cluster) applies for each
accessed object in𝐶 . If that is not the case (i.e., 𝑑 (𝑞,𝐶) −𝑏𝑜𝑢𝑛𝑑 ≤
𝑈), we have to compute the distance between 𝑜 and 𝑞. If 𝑑 (𝑞, 𝑜)
is less than the current intra-cluster upper bound 𝑈 , then 𝑜 is
added to the list of neighbors. If that list grows larger than 𝑘 , the
furthest neighbor is discarded and both𝑈 and𝑈 ′ are updated.

6 COMPLEXITY AND INDEX
MAINTENANCE

In this section, we analyze the space and time complexity of our
algorithms (Sect. 6.1), and we discuss how index maintenance is
performed for dynamic data (Sect. 6.2).

6.1 Space and Time Complexity
Space Complexity. The main factors are (a) the representations
of the spatio-textual data objects (spatial coordinates and seman-
tic vectors), (b) the representations of the hybrid clusters, and
(c) the priority queue R which is of size 𝑘 (typically 𝑘 ≪ |O|).
Regarding the data objects, for a data set O of spatio-textual
objects, we consider for each data object 𝑜 ∈ O its spatial 2D
representation, the 𝑛-dimensional semantic representation and
the distances of each object to the two centroids, therefore we
need (𝑛 + 4) · |O| space.

For the 𝐾 = 𝐾𝑠 · 𝐾𝑡 hybrid clusters in CSSI, we use (𝑛 + 2)
dimensions for the centroid plus the two radii, so (𝑛+4) ·𝐾 space.
Assuming that 𝐾 is much smaller than |O|, we have:

(𝑛 + 4) · |O| + (𝑛 + 4) · 𝐾 + 𝑘 = 𝑂 (𝑛 · |O|)
which means that space is linear to the size of the data set and
the dimensionality of the semantic vectors. For CSSIA, we need
additional (𝑚 + 4) · 𝐾 space for each hybrid cluster. Also, we
keep the low-dimensional projections of data objects, which is an
additional𝑚 · |O|. Despite that, the complexity is again𝑂 (𝑛 · |O|),
since𝑚 ≪ 𝑛.

Query Time Complexity. The cost is expressed as number of
floating point operations. The query algorithm (a) sorts the hybrid
clusters based on 𝑞, (b) computes distances between 𝑞 and the
subset of the objects that cannot be pruned, and (c) adds/removes
objects to/from the priority queue R. The cost of sorting the
𝐾 hybrid clusters is 𝑂 (𝐾 log𝐾) · (𝑛 + 2) for CSSI. The cost of
computing the distances is in worst case 𝑂 (𝑛 · |𝑂 |), since we
have |O| objects with (𝑛 + 2) dimensions. Also, in worst case,
all objects may be inserted to the priority queue, so additional
|O| · log𝑘 . Thus, for CSSI:
𝐾 log𝐾 · (𝑛 + 2) + 𝑛 · |O| + |O| · log𝑘 = 𝑂 (𝑛 · (|O| + 𝐾 log𝐾))
For CSSIA, the sorting cost is 𝐾 log𝐾 · (𝑚 + 2) and the cost of

the priority queue is |O| · 𝑘 , because when the queue is updated
we traverse all 𝑘 objects to compute both 𝑑 (𝑞, 𝑜𝑛𝑛) and 𝑑′ (𝑞, 𝑜𝑛𝑛).

Indexing Time Complexity. The time complexity of index
creation basically consists of the execution of K-Means (twice),
deriving the semantic vector for each object, the execution of
PCA, and the assignment of objects to hybrid clusters. K-means
converges fast, and can in practice be considered linear for a
small fixed number of iterations 𝑖 and small number of clusters,
i.e., 𝑂 (𝑖 · 𝐾𝑠 · |O|) and 𝑂 (𝑖 · 𝐾𝑡 ·𝑚 · |O|). Embeddings are stored
in a lookup-table using word as key, ensuring fast access for

Alg. Space/Time Complexity
CSSI Space (Index) 𝑂 (𝑛 · | O |)
CSSIA Space (Index) 𝑂 (𝑛 · | O |)
CSSI Time (Query) 𝑂 ((𝑛 + log𝑘) · | O | + 𝑛 · 𝐾 log𝐾)
CSSIA Time (Query) 𝑂 ((𝑛 + 𝑘) · | O | +𝑚 · 𝐾 log𝐾)
CSSI Time (Index) 𝑂 (𝑛 · 𝐾 · | O |)
CSSIA Time (Index) 𝑂 (𝑛 · 𝐾 · | O |)

Table 2: Space and time complexity of CSSI and CSSIA.

creating the semantic vector for a document, i.e., 𝑂 (|O|). The
scikit-learn implementation of PCA makes use of a randomized
SVD algorithm [20] that is very efficient when the number of
principal components𝑚 is small, as in our case, i.e.,𝑂 (𝑚 ·𝑛 · |O|).
Finally, the assignment step has complexity 𝑂 (𝑛 · 𝐾 · |O|) for
CSSI and 𝑂 ((𝑚 + 𝑛) · 𝐾 · |O|) for CSSIA, but𝑚 + 𝑛 ≈ 𝑛. Putting
all together, the dominant cost is 𝑂 (𝑛 · 𝐾 · |O|). The results are
summarized in Table 2.

6.2 Inserts, Deletes, Updates
In the case of dynamic data, our indexes are robust to object
insertions, deletions or updates. Insertions correspond to the
case where new data objects are added to the index, whereas
deletions correspond to some objects becoming obsolete (e.g., a
point of interest, such as a restaurant no longer operates). Updates
typically involve a modification in the textual description of the
objects, however it is also possible to have updates of the spatial
coordinates.

Regarding insertions, a new data object 𝑜𝑖𝑛𝑠 needs to be as-
signed to a hybrid cluster. In turn, this means that 𝑜𝑖𝑛𝑠 needs to
be assigned to both a spatial and a semantic cluster. In both cases,
the selected cluster is the one with minimum distance (spatial
or semantic) between 𝑜𝑖𝑛𝑠 and the cluster centroid 𝐶 . In case the
distance between 𝐶 and 𝑜𝑖𝑛𝑠 is larger than the current radius
𝑅, we additionally update the radius (although that is not some-
thing that is expected to happen frequently). As a result, 𝑜𝑖𝑛𝑠 is
assigned to a hybrid cluster.

Object deletions are handled by removing the object that needs
to be deleted from the hybrid cluster that it belongs to. However,
in the infrequent case that the deleted object 𝑜𝑑𝑒𝑙 is the one that
determines the cluster’s radius (i.e., the farthest point from its
cluster centroid), we need to update the cluster’s radius. Again,
this is common both for spatial as well as for semantic clusters.
Finally, an update can be thought of as a deletion followed by an
insertion.

The above approach to handle dynamic data is an incremen-
tal approach that avoids the cost of re-building the clusters for
every update. For most object insertions/deletions/updates, es-
pecially when they follow the data distribution, this incremen-
tal process does not cause any performance degradation, since
the clusters are not affected. However, after many object inser-
tions/deletions/updates, it is possible that the data distribution
has changed significantly, so in this case we need to rebuild the
clusters.

7 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our algorithms
CSSI/CSSIA using fairly large, real-world data sets.

Parameter Values
Twitter Data set size | O | 5M, 10M, 16M, 35M
Yelp Data set size | O | 0.5M, 1M, 2.5M, 5M
Dimensions of original space 𝑛 100
Dimensions of reduced space𝑚 1, 2, 3, 5, 7, 9, 11, 13, 20, 30
Number of nearest neighbors 𝑘 5, 10, 25, 50, 100
Multiplier 𝑓 0.1, 0.3, 0.5, 0.7, 0.9
Balancing parameter _ 0 – 1, step: 0.1, def: 0.5

Table 3: Parameters ranges and their default values.

7.1 Experimental Setup
Code and Platform. Our algorithms are memory-resident and
implemented in C++ using g++ ver. 11.4.0, while data set pre-
processing is implemented in Python3, whereas index creation in
Rust. Our code is publicly available3. The implementations of the
metric indexes comes from the authors of [48].4 The experiments
are run on a server with dual 12-core 2.30GHz Intel Xeon Gold
5118 CPUs, with 128GB RAM, using Ubuntu 22.04.3.

Algorithms. We examine the efficiency and quality of five
indexing methods, including the two methods that we propose
(CSSI and CSSIA). The first one is a linear scan algorithm (denoted
Scan) that calculates the distances between the query and all the
objects in the data set, included because in high dimensions linear
scan often outperforms index-based algorithms. The second one
is an index-based algorithm (denoted R-tree) that builds an R-tree
on the spatial coordinates of each object, with semantic vectors
located in the leaves, practically a spatial-only index. It performs
a best-first k-NN search [22] where mindist is calculated based
on the assumption that in worst case semantic distance is zero,
as there can always be a semantic vector with semantic distance
equal to zero located in some non-visited leaf node. Moreover,
we compare against the state-of-the-art algorithm [8] (denoted
S2R). Last, but not least, we compare against two approaches for
multi-metric indexing, DESIRE [48] and RR∗-tree [16].

Data sets and Index creation.We use two data sets: Twitter
and Yelp. The former consists of geo-tagged tweets from the US,
written in English, that were collected using the public Twitter
API5. The location is given by metadata attached to the tweet,
provided by the API. The Yelp data set6 consists of user reviews
from 11 metropolitan areas, all reviews being for a particular
business (e.g., cafe, restaurant, hotel, shop) with known location.
Of the approx. 7M reviews in the data set, we use 5M. Notice that
our largest data set is approximately two orders of magnitude
larger than what is used in related work [8, 35]. In both data sets,
the spatial coordinates are normalized in [0, 1] × [0, 1].

Regarding pre-processing and index creation, the textual part
of each tweet or Yelp review is embedded in a 𝑛-dimensional
space (also mentioned as original space) and is represented as
a semantic vector. We use pre-trained vectors by the authors of
Glove [32] with 𝑛=100, which is the dimensionality used in [8]
too. To produce a single semantic vector per object, we average
the embedding of each word in the tweet or review. Terms that do
not exist in the vocabulary and common stop-words are dropped.
Every tweet or review that includes fewer than 3 words is also
dropped. With respect to clustering, we apply K-Means to 10%
of the data set to obtain centroids and radii (using a 10% sample

3https://github.com/noervaag/CSSI
4https://github.com/ZJU-DAILY/DESIRE
5https://developer.twitter.com/en/docs/twitter-api
6https://www.yelp.com/dataset

https://github.com/noervaag/CSSI
https://github.com/ZJU-DAILY/DESIRE
https://developer.twitter.com/en/docs/twitter-api
https://www.yelp.com/dataset

Scan R-tree S2R
CSSI CSSIA

5 10 15 20 25 30 35

103

104

|O| (x106)

Q
ue
ry

tim
e
in

m
se
c(
lo
g)

(a) Query time.

Scan R-tree S2R
CSSI CSSIA

5 10 15 20 25 30 35
106

107

|O| (x106)

#
of

vi
sit
ed

ob
je
ct
s(
lo
g)

(b) Visited objects.

Figure 5: Scalability (Twitter).

Scan R-tree S2R
CSSI CSSIA

0 20 40 60 80 100

102

103

𝑘

Q
ue
ry

tim
e
in

m
se
c(
lo
g)

(a) Query time.

Scan R-tree S2R
CSSI CSSIA

0 20 40 60 80 100

106

𝑘

#
of

vi
sit
ed

ob
je
ct
s(
lo
g)

(b) Visited objects.

Figure 6: Varying 𝑘 (Twitter).

gave similar results as using the whole data set). Then, we assign
the remaining 90% of the objects to the nearest cluster, updating
both centroids and radii, if needed. For the computation of PCA,
we use the randomized SVD provided in scikit-learn [31] (based
on the method of Halko et al. [19]), which is very efficient when
the number of principal components is much smaller than data
set size, as in our case.

Parameters. One significant parameter is the number of clus-
ters for a given data set. Having too many clusters induces over-
head for data management of their descriptions, whereas too
few clusters have a negative effect on pruning. In our exper-
iments, we set the number of clusters based on the formula:
𝐾𝑠 = 𝐾𝑡 =

√︁
|O| · 0.01 · 𝑓 , which was shown experimentally to

produce a reasonable number of clusters for different values |O|
(e.g., for the default setup, this gives a total of 4,489 hybrid clus-
ters). The multiplier 𝑓 can be used to further control the number
of clusters, and we evaluate different values of 𝑓 . It is important
to note that our goal is not to find the optimal number of clusters
for each field, but to introduce a parameter that can increase
or decrease the granularity of the underlying partitioning that
is obtained. We vary the size of the data set |O|, the projection
dimensionality𝑚, the value of 𝑘-NN, and the parameter _ of the
distance function. Table 3 lists the parameters.

Metrics. The main metric is query execution time. Also, we
report the number of visited (accessed) objects by each algorithm,
which indicates how well pruning is performed. For our algo-
rithms CSSI/CSSIA, we additionally report the number of objects
pruned during intra- and inter-cluster processing. Also, we report
the error rate of CSSIA measured as the number of objects in the
result set of the exact algorithm(s) that are not in the result set
of the approximate algorithm, divided by the result set size 𝑘 .

CSSIA

5 10 15 20 25 30 350.0

0.2

0.4

0.6

0.8

1.0

|O| (x106)

Er
ro
r%

(a) Varying | O |.

CSSIA

0 20 40 60 80 1000.0

2.0

4.0

6.0

8.0

:

Er
ro
r%

(b) Varying 𝑘 .

Figure 7: Error of CSSIA (Twitter).

Queries. For each experiment, we randomly select 100 objects
from the data set as queries and we report the average values. For
the error measurements of CSSIA, we use 5, 000 queries because
of the error rate being very low.

7.2 Comparative Evaluation on Twitter Data
Fig. 5 shows the scalability of the algorithms with data set size,
from 5M to 35M objects. In Fig. 5a, the query time is depicted
in log scale, whereas the number of visited (accessed) objects
by each algorithm is shown in Fig. 5b. Overall, CSSIA is shown
to be significantly faster than CSSI, typically x2–x3 times faster,
and this gain increases for larger data sets (notice the log scale).
CSSIA owes its superior performance to the better pruning, as
it needs to access the fewest data objects. Scan accesses all data
objects, followed by the index-based algorithms: R-tree and S2R,
which also access a large number of objects. However, R-tree is
slower than Scan, because of the overhead for traversing the index
structure and less efficient memory access (the tree-based index-
structures do not benefit from efficient prefetching from memory
to the extent that linear scan can do). Interestingly, S2R also
performs as bad as R-tree, as it accesses almost the same number
of objects. Despite its enhancement of index nodes with semantic
bounding boxes, S2R cannot prune large portions of the index,
as discussed in Sect. 2. The reason is that it follows a spatial-first
approach, organizing index nodes based on spatial coordinates
and then adds to them semantic bounding boxes which may
cover the entire space, as there may exist no correlation of spatial
location with semantic vectors. As can be seen also in [8], the
difference between S2R and R-tree decreases with increasing
cardinality, and for our significantly larger data sets (the largest
data set used in [8] contains only 250K objects), the difference in
performance is only marginal.

Fig. 6 shows the effect of the value of𝑘 , the number of retrieved
nearest neighbors. Increasing values of 𝑘 after a certain point
have a minor effect on query time and visited objects, therefore
all lines become almost straight for 𝑘 > 50. Notice that for low
values of𝑘 , which are typical inmost applications, CSSIA achieves
a significant performance gain, by accessing much fewer data
objects.

Fig. 7 shows the error of CSSIA when varying |O| (Fig. 7a)
and 𝑘 (Fig. 7b). For clarity, if the algorithm retrieves 𝑘 − 1 correct
nearest neighbors and 1 false neighbor, the error should be 1

𝑘
·

100%. For the default value of 𝑘 = 50, having 1 false results in
50 would mean 2% error. As will be shown, the error of CSSIA
is typically much lower. In particular, in Fig. 7a, for all data set
sizes, the error is always smaller than 1%, indicating that for most
of the queries CSSIA returns the correct result and only misses

Scan R-tree S2R
CSSI CSSIA

0 0.2 0.4 0.6 0.8 1

100

101

102

103

_

Q
ue
ry

tim
e
in

m
se
c(
lo
g)

(a) Query time.

Scan R-tree S2R
CSSI CSSIA

0 0.2 0.4 0.6 0.8 1

103

104

105

106

107

_

#
of

vi
sit
ed

ob
je
ct
s(
lo
g)

(b) Visited objects.

CSSIA

0 0.2 0.4 0.6 0.8 10.0

0.1

0.2

0.3

0.4

_

Er
ro
r%

(c) Error.

Figure 8: Varying _ (Twitter).

CSSI CSSIA

1 5 10 20 300

100

200

300

400

𝑚

Q
ue
ry

tim
e
in

m
se
c

(a) Query time.

CSSI CSSIA

1 5 10 20 300

1

2

3

𝑚

#
of

vi
sit
ed

ob
je
ct
s(
x1
06
)

(b) Visited objects.

Figure 9: Varying𝑚 (Twitter).

CSSI CSSIA

0.2 0.4 0.6 0.80

100

200

300

𝑓

Q
ue
ry

tim
e
in

m
se
c

(a) Query time.

CSSI CSSIA

0.2 0.4 0.6 0.80

0.5

1

1.5

2

2.5

𝑓

#
of

vi
sit
ed

ob
je
ct
s(
x1
06
)

(b) Visited objects.

Figure 10: Varying 𝑓 (Twitter).

one object in few queries. Even for small values of 𝑘 (Fig. 7b), the
error is at most 4%.

Fig. 8 shows the effect of the balancing factor _. Recall that for
_ = 0 the problem becomes equivalent to 𝑘-NN search of high-
dimensional vectors, while for _ = 1 it is reduced to spatial 𝑘-NN.
Interestingly, for small values of _, our algorithms outperform
the competitors. Obviously, Scan is not affected by _ and appears
as a straight line. In particular, the index-based methods exhibit
worse performance than Scan (as both S2R and R-tree rely on
spatial indexing or spatial-first indexing). For high values of _ our
algorithms and the index-based solutions have similar behavior.
It is also noteworthy that only for _ > 0.7 do the index-based
solutions outperform Scan. Regarding the error of CSSIA, this
is always smaller than 0.3% and for the special case of spatial
𝑘-NN the error is equal to zero, indicating that CSSIA returns the
correct result.

7.3 Sensitivity Analysis using Twitter Data
Fig. 9 shows the effect of the projection dimensionality𝑚 on both
CSSI and CSSIA. Our first observation is that CSSI performs bet-
ter for values of𝑚 up to 10, where its performance is stabilized.
This is explained by the fact that the clustering used by CSSI
produces better clusters for𝑚 > 2, and this affects the perfor-
mance of query processing. Also, it is worth pointing out that
for small values of𝑚, i.e., smaller than 5, CSSIA is faster than
CSSI, while for larger values their performance becomes com-
parable. For low values of𝑚, CSSIA prunes significantly more
objects than CSSI, which verifies the intuition of Sect. 5.1. Also,
for𝑚 = 2− 5, it is evident that pruning gets worse for CSSIA, and
the lines for both algorithms converge for𝑚 = 5. That is the case
because the more principal components that are used, the larger
the projected space gets and, thus, the variance of the distances
in that space approaches the relatively low variance value of the
𝑛-dimensional one.

Fig. 10 presents the effect of the parameter 𝑓 , which deter-
mines the number of hybrid clusters. Using larger values for 𝑓
results in more hybrid clusters. In principle, having more clusters
leads to more fine-grained and compact clusters, which leads to
better pruning and improved performance. This holds as long as
the number of clusters does not exceed a specific number, i.e.,
in case of too many clusters this may have a negative effect on
performance due to (a) the cost of sorting, and (b) the extra cost
associated with examining these clusters. CSSI does not improve
for larger values of 𝑓 because after some point its pruning does
not improve. Eventually the larger overhead outweighs the negli-
gible gain from pruning and CSSI becomes slower. Instead, CSSIA
improves its pruning even for the largest values of 𝑓 , thus improv-
ing its performance. These findings are justified by inspecting
the number of visited objects.

Fig. 11 shows the error of CSSIA when increasing 𝑚 and 𝑓 .
Regarding the value of projection dimensionality𝑚, the error
is large (close to 40%) only for the special case of𝑚 = 1. This
indicates that projecting to one-dimensional values is insufficient
for building a qualitative index. For𝑚 > 2, the error of CSSIA is
very small (smaller than 1%). Combined with the result of Fig. 9a,
it seems that using𝑚 = 2 is the best choice for CSSIA, as it results
in low processing time and low error. Fig. 11b shows that for
all values of 𝑓 the error is smaller than 0.8%. Larger values of 𝑓
result in higher number of clusters and this seems to increase the
error of CSSIA. The rationale behind the default value 𝑓 = 0.3
is that it offers the best performance for CSSI, while CSSIA also
performs well enough.

CSSIA

1 5 10 20 300.0

10.0

20.0

30.0

40.0

<

Er
ro
r%

(a) Varying𝑚.

CSSIA

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

𝑓

Er
ro
r%

(b) Varying 𝑓 .

Figure 11: Error of CSSIA (Twitter).

CSSI-inter CSSI-intra
CSSIA-inter CSSIA-intra

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

_

#
ob
je
ct
s(
x1
06
)

(a) Varying _.

CSSI-inter CSSI-intra
CSSIA-inter CSSIA-intra

5 10 15 20 25 30 35
0

10

20

30

|O| (x106)

#
ob
je
ct
s(
x1
06
)

(b) Varying | O |.

Figure 12: Pruning (Twitter).

Fig. 12 reveals how well the two pruning properties of our
algorithms perform. For each algorithm (say CSSI), we report
the number of pruned objects due to intra-cluster pruning (CSSI-
intra) and due to whole clusters being pruned (CSSI-inter). By
adding these two numbers and number of visited objects (Fig. 5b
and Fig. 8b), we always get back |O|, the cardinality of the data
set. All figures show that CSSIA relies a lot more on inter-cluster
pruning (i.e., prunes entire clusters more frequently) than CSSI.
In contrast, in CSSI both inter-cluster and intra-cluster pruning
seem to contribute equally to the cumulative pruning achieved.

7.4 Comparative Evaluation on Yelp Data
Fig. 13 shows the performance of all algorithms when increasing
the size of the Yelp data set from 500K to 5M data objects. Notice
the use of log-scale on the y-axis. Again, our algorithms out-
perform all competitors. However, an interesting observation is
that the index-based algorithms (R-tree and S2R) outperform the
Scan algorithm, whereas the opposite was observed in the case of
Twitter data. This is attributed to the fact that in Yelp the spatial
locations form dense clusters in some cities, and this favors the
algorithms that follow a spatial-first indexing approach. This
shows that the index-based algorithms, including the state-of-
the-art (S2R), outperform Scan for certain data sets only (when
there is strong spatial clustering). In contrast, our algorithms rely
on hybrid clusters, thus always outperforming the competitors
(both Scan and index-based).

Fig. 14 shows how changing the value of _ affects the perfor-
mance of query processing. Interestingly, for reasonable values
of _ (i.e., larger than 0 and smaller than 1) our algorithms out-
perform all competitors. For _ = 1, the problem is reduced to
spatial 𝑘-NN and combined with the strong spatial clustering
of the Yelp data set, this results in better performance for the

Scan R-tree S2R
CSSI CSSIA

1 2 3 4 5

0.01

0.1

1

|O| (x106)

Q
ue
ry

tim
e
in

se
c(
lo
g)

(a) Query time.

Scan R-tree S2R
CSSI CSSIA

1 2 3 4 5

105

106

|O| (x106)

#
of

vi
sit
ed

ob
je
ct
s(
lo
g)

(b) Visited objects.

Figure 13: Scalability (Yelp).

Scan R-tree S2R
CSSI CSSIA

0 0.2 0.4 0.6 0.8 1
10−4

10−3

10−2

10−1

100

_

Q
ue
ry

tim
e
in

se
c(
lo
g)

(a) Query time.

Scan R-tree S2R
CSSI CSSIA

0 0.2 0.4 0.6 0.8 1

103

104

105

106

107

_

#
of

vi
sit
ed

ob
je
ct
s(
lo
g)

(b) Visited objects.

Figure 14: Varying _ (Yelp).

index-based algorithms. On the other extreme, for _ = 0, CSSIA
is the best-performing algorithm, while CSSI behaves similarly
as Scan, and the index-based algorithms are worse than Scan.
Finally, in the case of Yelp, the error of CSSIA is always smaller
than 0.2%.

7.5 Cost of Index Creation

5 10 16 350

1

2

3

4

5

|O| (x106)

Ti
m
e
in

se
c(
x1
03
)

PCA K-Means Hybrid clusters

Figure 15: Index creation (Twit-
ter).

The indexing cost for
both CSSI and CSSIA is
almost identical and can
be split into: the cost
of PCA, the cost of K-
Means, and the forma-
tion of hybrid clusters.

Fig. 15 shows the
time for index creation
using a sample size of
10% for different sizes
(|O|) of the Twitter data
set. Evenwhen |O|=35M,
indexing as a whole
only takes around 4, 500
seconds (approx. 75min-
utes). The two most time-consuming parts, K-Means and the for-
mation of hybrid clusters, can easily be parallelized, thus signifi-
cantly reducing the cost. Note that the reason behind non-linear
scaling in the chart is that we increase the number of clusters
with data set size, according to the formula in Sect. 7.1.

7.6 Effect of Inserts and Updates
In order to study the efficiency of index after inserts, we compare
query performance: 1) using an index created based on the whole

10M 15M 20M 35M
CSSI-Full 3,926,072 5,523,278 7,342,543 12,565,492
CSSI-Partial 3,938,545 5,565,072 7,370,274 12,673,968
CSSI Increase 0.318% 0.757% 0.378% 0.863%
CSSIA-Full 1,301,884 1,825,084 2,570,055 4,485,555
CSSIA-Partial 1,334,685 1,857,023 2,601,536 4,658,100
CSSIA Increase 2.520% 1.750 % 1.225% 3.847%

Table 4: Effect of inserts on index efficiency.

updates: 0 0.5M 1.5M 2.5M
CSSI (# objects) 2,011,321 2,008,944 2,056,239 2,003,551
CSSIA (# objects) 852,628 871,090 898,889 887,690
CSSIA (Error %) 0.27 0.26 0.26 0.26

Table 5: Effect of updates on index efficiency.

CSSI CSSIA
DESIRE RR*-tree

0 0.2 0.4 0.6 0.8 1

104

105

106

_

#
of

di
st
.c
al
cu
la
tio

ns
(lo

g)

(a) Twitter.

CSSI CSSIA
DESIRE RR*-tree

0 0.2 0.4 0.6 0.8 1
103

104

105

106

_

#
of

di
st
.c
al
cu
la
tio

ns
(lo

g)

(b) Yelp.

Figure 16: Comparison to multi-metric indexing.

data set as described in Sect. 4.1 (Full) vs. 2) an index created based
on 5M objects, and the remainder objects (up to 35M) inserted
afterwards as described in Sect. 6.2 (Partial). Table 4 shows the
number of visited objects for both cases, for various data set sizes,
for both CSSI and CSSIA. As can be observed, the increase in
query cost is only marginal even after a high number of inserts,
indicating the index is resilient to subsequent inserts.

To study the efficiency of index after updates, we compare
query performance after a certain number of updates (delete
followed by insert, as described in Sect. 6.2, thus keeping data
set size constant). Table 5 shows the number of visited objects
and the error rate after a number of update operations, on a data
set of size |O|=5M. As can be observed, the query cost and error
rate remain almost unchanged. This shows that the approach is
robust to inserts/deletes.

7.7 Comparison to Multi-metric Indexing
Fig. 16 presents a comparison against state-of-the-art methods
for multi-metric indexing: RR∗-tree [16] and DESIRE [48]. We
used data sets of 1M objects, as this was the largest that could be
run with the implementation of the competitors. We measure the
number of distance calculations as an objective measure, mainly
because DESIRE operates in secondary storage, and we vary the
parameter _. We included the RR∗-tree as it has been shown
in [48] to need fewer distance calculations than DESIRE. For
DESIRE and the RR∗-tree, the number of distance calculations is
the sum of distances calculated for each metric space. For CSSI,
the number of distance calculations is number of objects visited

Avg. Cluster Diameter Time (in sec)
K-means 0.310 24.66
HAC (Ward) 0.323 210.18
HAC (Complete) 0.321 194.62

Table 6: Effect of clustering.

multiplied by two (one distance calculation for spatial space, one
for semantic space).

As can be seen, our algorithms are consistently better than
both competitors. The main reason is that DESIRE performs a
k-NN in a single metric space, and then uses the radius of the k-th
object to perform a range query over the other metric space (to
ensure correctness), which is inefficient compared to our hybrid
approach. Interestingly, only for the corner case of _ = 1, i.e.,
spatial-only k-NN, the competitors are better than our algorithms.

7.8 Effect of Clustering
Finally, we performed an experiment to demonstrate the suitabil-
ity of K-means as the clustering method for our approach. The
objective is to have a scalable and efficient method that produces
compact spherical clusters, i.e., having low diameter. To this end,
we compare against two versions of hierarchical agglomerative
clustering (HAC), namelyWard and Complete or Max-link. In this
experiment, we had to use a smaller sample of the data set, i.e.,
1%, since HAC run out of memory for our default value. We eval-
uate the average diameter of the clusters, as a measure of quality,
and the time needed to perform the clustering. In Table 6, we
show the results for the default setup (𝑓 = 0.3). We observe that
K-means produces slightly more compact clusters, i.e., having
lower diameter on average, and almost one order of magnitude
faster than HAC.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we presented a novel approach for semantic simi-
larity search over spatio-textual data. The gist of our approach
is the construction of hybrid clusters, which combine spatial
with semantic clusters, that constitute our indexing structure.
We proposed two query processing algorithms, CSSI which is
provably correct and outperforms the state-of-the-art, and CSSIA
which boosts the performance of query processing at the ex-
pense of slightly inaccurate results. Our algorithms outperform
the competitors using two real-world, large-scale data sets.

In our future work, we intend to explore other query types
that combine spatial with semantic retrieval and can exploit
our indexing based on the hybrid clusters. Moreover, making our
approach applicable in a big data setting using parallel processing
algorithms is a challenging research direction.

ACKNOWLEDGMENTS
The research work was supported by the Hellenic Foundation for
Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I.
Research Projects to support Faculty members and Researchers
and the procurement of high-cost research equipment grant”
(Project Number: HFRI-FM17-81), and by the Horizon Europe
R&I programme EMERALDS under the GA No. 101093051.

The authors would like to thank the anonymous reviewers for
their fruitful comments that helped in clarifying the technical
details of our approach.

REFERENCES
[1] Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999.

When is ”nearest neighbor” meaningful?. In Proceedings of ICDT. 217–235.
[2] Benjamin Bustos, Sebastian Kreft, and Tomás Skopal. 2012. Adapting metric

indexes for searching in multi-metric spaces. Multim. Tools Appl. 58, 3 (2012),
467–496.

[3] Xin Cao, Gao Cong, Tao Guo, Christian S. Jensen, and Beng Chin Ooi. 2015.
Efficient processing of spatial group keyword queries. ACM Trans. Database
Syst. 40, 2 (2015), 13:1–13:48.

[4] Xin Cao, Gao Cong, Christian S. Jensen, and Beng Chin Ooi. 2011. Collective
spatial keyword querying. In Proceedings of SIGMOD. 373–384.

[5] Jing Chen, Jiajie Xu, Chengfei Liu, Zhixu Li, An Liu, and Zhiming Ding.
2017. Multi-objective spatial keyword query with semantics. In Proceedings of
DASFAA. 34–48.

[6] Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu. 2013. Spatial
keyword query processing: An experimental evaluation. PVLDB 6, 3 (2013),
217–228.

[7] Lisi Chen, Shuo Shang, Chengcheng Yang, and Jing Li. 2019. Spatial keyword
search: A survey. Geoinformatica (2019).

[8] Xinyu Chen, Jiajie Xu, Rui Zhou, Pengpeng Zhao, Chengfei Liu, Junhua Fang,
and Lei Zhao. 2020. S2R-tree: a pivot-based indexing structure for semantic-
aware spatial keyword search. GeoInformatica 24, 1 (2020), 3–25.

[9] Zhida Chen, Lisi Chen, Gao Cong, and Christian S. Jensen. 2021. Location-
and keyword-based querying of geo-textual data: A survey. VLDB J. 30, 4
(2021), 603–640.

[10] Paolo Ciaccia and Marco Patella. 2000. The M2-tree: Processing Complex
Multi-Feature Queries with Just One Index. In Proceedings of DELOS Workshop
(ERCIM Workshop Proceedings, Vol. 01/W001). ERCIM.

[11] Gao Cong and Christian S. Jensen. 2019. Spatio-textual data. In Encyclopedia
of Big Data Technologies, Sherif Sakr and Albert Y. Zomaya (Eds.). Springer.

[12] Gao Cong, Christian S. Jensen, and Dingming Wu. 2009. Efficient retrieval of
the top-k most relevant spatial web objects. PVLDB 2, 1 (2009), 337–348.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT. 4171–4186.

[14] Ronald Fagin, Amnon Lotem, and Moni Naor. 2001. Optimal Aggregation
Algorithms for Middleware. In Proceedings of PODS.

[15] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. 2008. Keyword search on
spatial databases. In Proceedings of ICDE. 656–665.

[16] Maximilian Franzke, Tobias Emrich, Andreas Züfle, and Matthias Renz. 2016.
Indexing multi-metric data. In Proceedings of ICDE. 1122–1133.

[17] Tao Guo, Xin Cao, and Gao Cong. 2015. Efficient algorithms for answering
the m-closest keywords query. In Proceedings of SIGMOD. 405–418.

[18] Tao Guo, Kaiyu Feng, Gao Cong, and Zhifeng Bao. 2018. Efficient selection of
geospatial data on maps for interactive and visualized exploration. In Proceed-
ings of SIGMOD. 567–582.

[19] Nathan Halko, Per-Gunnar Martinsson, Yoel Shkolnisky, and Mark Tygert.
2011. An Algorithm for the Principal Component Analysis of Large Data Sets.
SIAM J. Sci. Comput. 33, 5 (2011), 2580–2594.

[20] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. 2011. Finding
Structure with Randomness: Probabilistic Algorithms for Constructing Ap-
proximate Matrix Decompositions. SIAM Rev. 53, 2 (2011), 217–288.

[21] Alexander Hinneburg, Charu C. Aggarwal, and Daniel A. Keim. 2000. What
is the nearest neighbor in high dimensional spaces?. In Proceedings of VLDB.
506–515.

[22] Gísli R. Hjaltason and Hanan Samet. 1999. Distance Browsing in Spatial
Databases. ACM Trans. Database Syst. 24, 2 (1999), 265–318.

[23] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang. 2005.
iDistance: An adaptive B+-tree based indexing method for nearest neighbor
search. ACM Trans. Database Syst. 30, 2 (2005), 364–397.

[24] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[25] Georgios Kalamatianos, Georgios John Fakas, and Nikos Mamoulis. 2021.
Proportionality in spatial keyword search. In Proceedings of SIGMOD. 885–
897.

[26] Zhisheng Li, Ken C. K. Lee, Baihua Zheng, Wang-Chien Lee, Dik Lun Lee, and
Xufa Wang. 2011. IR-Tree: An efficient index for geographic document search.
IEEE Trans. Knowl. Data Eng. 23, 4 (2011), 585–599.

[27] Ahmed R. Mahmood, Ahmed M. Aly, and Walid G. Aref. 2018. FAST:
Frequency-aware indexing for spatio-textual data streams. In Proceedings
of ICDE. 305–316.

[28] Ahmed R. Mahmood and Walid G. Aref. 2019. Scalable processing of spatial-
keyword queries. Morgan & Claypool Publishers.

[29] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approx-
imate Nearest Neighbor Search Using Hierarchical Navigable Small World
Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836.

[30] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey
Dean. 2013. Distributed representations of words and phrases and their
compositionality. In Proceedings of NIPS. 3111–3119.

[31] Fabian Pedregosa et al. 2011. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12 (2011), 2825–2830.

[32] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global vectors for word representation. In Proceedings of EMNLP. 1532–1543.

[33] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. In Proceedings of NAACL-HLT. Association for Computational
Linguistics, 2227–2237.

[34] Zhihu Qian, Jiajie Xu, Kai Zheng, Wei Sun, Zhixu Li, and Haoming Guo.
2016. On efficient spatial keyword querying with semantics. In Proceedings of
DASFAA. 149–164.

[35] Zhihu Qian, Jiajie Xu, Kai Zheng, Pengpeng Zhao, and Xiaofang Zhou. 2018.
Semantic-aware top-k spatial keyword queries. World Wide Web 21, 3 (2018),
573–594.

[36] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings EMNLP-IJCNLP.

[37] João B. Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil Nørvåg.
2011. Efficient processing of top-k spatial keyword queries. In Proceedings of
SSTD. 205–222.

[38] Yufan Sheng, Xin Cao, Yixiang Fang, Kaiqi Zhao, Jianzhong Qi, Gao Cong,
and Wenjie Zhang. 2023. WISK: A Workload-aware Learned Index for Spatial
Keyword Queries. In Proceedings of SIGMOD.

[39] Jiabao Sun, Jiajie Xu, Kai Zheng, and Chengfei Liu. 2017. Interactive spatial
keyword querying with semantics. In Proceedings of CIKM. 1727–1736.

[40] Panagiotis Tampakis, Dimitris Spyrellis, Christos Doulkeridis, Nikos Pelekis,
Christos Kalyvas, and Akrivi Vlachou. 2021. A novel indexing method for
spatial-keyword range queries. In Proceedings of SSTD. 54–63.

[41] Yao Tian, Tingyun Yan, Xi Zhao, Kai Huang, and Xiaofang Zhou. 2023. A
Learned Index for Exact Similarity Search in Metric Spaces. IEEE Trans. Knowl.
Data Eng. 35, 8 (2023), 7624–7638.

[42] Subodh Vaid, Christopher B. Jones, Hideo Joho, and Mark Sanderson. 2005.
Spatio-textual indexing for geographical search on the Web. In Proceedings of
SSTD. 218–235.

[43] Xiang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Wei Wang. 2015.
AP-Tree: Efficiently support continuous spatial-keyword queries over stream.
In Proceedings of ICDE. 1107–1118.

[44] Dingming Wu, Gao Cong, and Christian S. Jensen. 2012. A framework for
efficient spatial web object retrieval. VLDB J. 21, 6 (2012), 797–822.

[45] Jiajie Xu, Jing Chen, and Lihua Yin. 2020. Multi-objective spatial keyword
query with semantics: a distance-owner based approach. Distributed and
Parallel Databases 38 (2020), 625–647.

[46] Junye Yang, Yong Zhang, Xiaofang Zhou, Jin Wang, Huiqi Hu, and Chunxiao
Xing. 2019. A Hierarchical Framework for Top-k Location-Aware Error-
Tolerant Keyword Search. In Proceedings of ICDE. 986–997.

[47] Yong Zhang, Yu Chen, Junye Yang, Jin Wang, Huiqi Hu, Chunxiao Xing, and
Xiaofang Zhou. 2021. Clustering Enhanced Error-tolerant Top-k Spatio-textual
Search. World Wide Web 24, 4 (2021), 1185–1214.

[48] Yifan Zhu, Lu Chen, Yunjun Gao, Baihua Zheng, and Pengfei Wang. 2022.
DESIRE: An Efficient Dynamic Cluster-based Forest Indexing for Similarity
Search in Multi-Metric Spaces. Proc. VLDB Endow. 15, 10 (2022), 2121–2133.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 The CSSI Algorithm
	4.1 Index Construction
	4.2 Lower Bound on Distance to Cluster
	4.3 Inter- and Intra-cluster Pruning
	4.4 Query Processing

	5 An Approximate Algorithm: CSSIA
	5.1 Intuition
	5.2 Index Construction
	5.3 Revisiting the Pruning Properties
	5.4 Query Processing

	6 Complexity and Index Maintenance
	6.1 Space and Time Complexity
	6.2 Inserts, Deletes, Updates

	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Comparative Evaluation on Twitter Data
	7.3 Sensitivity Analysis using Twitter Data
	7.4 Comparative Evaluation on Yelp Data
	7.5 Cost of Index Creation
	7.6 Effect of Inserts and Updates
	7.7 Comparison to Multi-metric Indexing
	7.8 Effect of Clustering

	8 Conclusions and Future Work
	Acknowledgments
	References

