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Abstract. Recommendation systems have received significant atten-
tion, with most of the proposed methods focusing on personal recommen-
dations. However, there are contexts in which the items to be suggested
are not intended for a single user but for a group of people. For example,
assume a group of friends or a family that is planning to watch a movie or
visit a restaurant. In this paper, we propose an extensive model for group
recommendations that exploits recommendations for items that similar
users to the group members liked in the past. We do not exhaustively
search for similar users in the whole user base, but we pre-partition users
into clusters of similar ones and use the cluster members for recommen-
dations. We efficiently aggregate the single user recommendations into
group recommendations by leveraging the power of a top-k algorithm.
We evaluate our approach in a real dataset of movie ratings.

1 Introduction

Recommendation systems provide users with suggestions about products, movies,
videos and many other items. Many systems, such as Amazon, NetFlix and
MovieLens, are very popular. Collaborative recommendation systems (e.g., [14,
7]) try to predict the utility of items for a particular user based on the items pre-
viously rated by other users, that is, users similar to a target user are identified,
and then items are recommended based on the preferences of the similar users.
Users are considered similar if there is an overlap in the items consumed. The two
types of entities that are dealt in recommendation systems, i.e., users and items,
are represented as sets of ratings, preferences or features. Assume, for example, a
restaurant recommendation application (e.g., ZAGAT.com). Users initially rate
a subset of restaurants that they have already visited. Ratings are expressed in
the form of preference scores. A recommendation engine estimates preference
scores for the items, e.g., restaurants, that are not rated by a user and offers
appropriate recommendations. Once the unknown scores are computed, the k
items with the highest scores are recommended to the user.

Since recommendations are typically personalized, different users are pre-
sented with different suggestions. However, there are cases where a group of



people participates in a single activity. For instance, visiting a restaurant or a
tourist attraction, watching a movie or a TV program and selecting a holiday
destination are examples of recommendations well suited for groups of people.
For this reason, recently, there are methods for group recommendations, try-
ing to satisfy the preferences of all the group members. These methods can be
classified into two approaches [12]. The first approach creates a joint profile for
all users in the group and provides the group with recommendations computed
with respect to this joint profile (e.g., [27]). The second approach aggregates
the recommendations of all users in the group into a single recommendation list
(e.g., [3, 5]). Our work follows the second approach, since it is more flexible [12,
19] and offers opportunities for improvements in terms of efficiency.

In this paper, we propose a model for group recommendations following the
collaborative filtering approach. We are mainly motivated by the observation
that similarity can be used to cluster users in small groups with strong simi-
larity [21]. This way, our framework applies user clustering for organizing users
into groups of users with similar preferences. To do this, we employ a hierarchi-
cal agglomerative clustering algorithm. Thereafter, we propose the use of these
clusters to efficiently locate similar users to a given one; recommendations for
users are produced with respect to the preferences of their cluster members with-
out extensively searching for similar users in the whole database. The k most
prominent items for the group are identified by exploiting a top-k algorithm.
Group recommendations are presented to users along with explanations about
the reasons that the particular items are being suggested. Finally, to deal with
the sparsity of the explicitly defined user preferences, we introduce the notion
of support in recommendations to model how confident the recommendation of
an item for a user is.

To summarize, our contributions are as follows:
– We enhance recommendations with the notion of support to model the con-

fidence of recommendations.
– We formulate the top-k group recommendations problem as a top-k query

problem and leverage the power of a top-k algorithm to efficiently derive the
most prominent items for the whole group.

– We present recommendations along with explanations about why the specific
recommendations appear in the top-k list.

– We introduce user clustering for partitioning users into clusters and use
these clusters to efficiently compute personal recommendations. Personal
recommendations are aggregated to produce group recommendations.

We have also evaluated both the efficiency and effectiveness of our approach
using a real dataset of movie ratings.

The rest of the paper is organized as follows. Section 2 introduces the personal
and group recommendation model, and clarifies the problem statement. Section 3
proposes methods for locating users similar to a target one and identifying the
top-k recommendations for a group. Section 4 contains extensive experimenta-
tion to evaluate the efficiency and effectiveness of our approach, while Section 5
describes related work. Finally, Section 6 concludes the paper with a summary
of our findings.



2 Recommendation Model

Assume a set of items I and a set of users U interacting with a recommenda-
tion application. Each user u ∈ U may express a preference for an item i ∈ I,
preference(u, i), in the range [0.0, 1.0]. We use Pi to denote the set of users in
U that have expressed a preference for item i. The cardinality of the items set I
is usually high and typically users rate only a few of these items. For the items
unrated by the users, we estimate a relevance score, denoted as relevance(u, i),
where u ∈ U , i ∈ I. To do this, a recommendation strategy is invoked. We distin-
guish between personal recommendations referring to a single user (Section 2.1)
and group recommendations referring to a set of users (Section 2.2).

2.1 Personal Recommendations

There are different ways to estimate the relevance of an item for a user. In gen-
eral, the recommendation methods are categorized into: (i) content-based, that
recommend items similar to those the user has preferred in the past (e.g., [17]),
(ii) collaborative filtering, that recommend items that similar users have liked in
the past (e.g., [14, 7]) and (iii) hybrid, that combine content-based and collab-
orative ones (e.g., [4]). Our work falls into the collaborative filtering category.
The key concept of collaborative filtering is to use preferences of other users
that exhibit the most similar behavior to a given user in order to produce rele-
vance scores for unrated items. Similar users are located via a similarity function
simU(u, u′) that evaluates the proximity between u and u′.

We use Fu to denote the set of the most similar users to u. We refer to such
users as the friends of u.

Definition 1 (Friends). Let U be a set of users. The friends Fu, Fu ⊆ U ,
of a user u ∈ U is a set of users, such that, ∀u′ ∈ Fu, simU(u, u′) ≥ δ and
∀u′′ ∈ U\Fu, simU(u, u′′) < δ, where δ is a threshold similarity value.

Clearly, one could argue for other ways of selecting Fu, for instance, by taking
the k most similar users to u. Our main motivation is that we opt for selecting
only highly connected users even if the resulting set of users Fu is small.

Given a user u and his friends Fu, if u has expressed no preference for an
item i, the relevance of i for u is estimated as follows:

relevance(u, i) =

∑
u′∈(Fu∩Pi)

simU(u, u′)preference(u′, i)∑
u′∈(Fu∩Pi)

simU(u, u′)

However, since the number of items is huge and usually users rate only a
few items, the following question usually arises: How confident are the relevance
scores associated with the recommended items? Towards this direction, we intro-
duce the notion of support for each candidate item i for user u, which defines
the percentage of friends of u that have expressed preferences for i. Formally:

support(u, i) = |Fu ∩ Pi|/|Fu|

To estimate the worthiness of an item recommendation for a user, we propose
to combine the relevance and support scores in terms of a value function.



Definition 2 (Personal Value). Let U be a set of users and I be a set of
items. Let w1, w2 ≥ 0 : w1 + w2 = 1. The personal value of an item i ∈ I for a
user u ∈ U with friends Fu, such that, @preference(u, i), is:

valueFu(u, i) = w1 × relevance(u, i) + w2 × support(u, i)

Although more sophisticated functions can be designed, the weighted summa-
tion of the relevance and support scores is simple and intuitive. Moreover, when
w2 = 0, value maps to relevance, the typically used recommendation score.

2.2 Group Recommendations

The majority of recommendation systems are designed to make personal rec-
ommendations, i.e., recommendations for individual users. However, there are
cases in which the items to be selected are not intended for personal usage but
for a group of users. For example, assume a group of friends or a family that
is planning to watch a movie, visit a restaurant or select a holiday destination.
For this reason, some recent works have addressed the problem of identifying
recommendations for a group of users, trying to satisfy the preferences of all the
group members (e.g., [3, 5, 6]).

In our approach, we first compute the personal value scores for the unrated
items for each user in the group, and then, based on these predictions, we com-
pute the aggregated value scores for the group.

Definition 3 (Group Value). Let U be a set of users and I be a set of items.
Given a group of users G, G ⊆ U , the group value of an item i ∈ I for G, such
that, ∀u ∈ G, @preference(u, i), is:

value(G, i) = Aggru∈G(valueFu(u, i))

We employ three different designs regarding the aggregation method Aggr,
each one carrying different semantics: (i) the least misery design, capturing cases
where strong user preferences act as a veto (e.g., do not recommend steakhouses
to a group when a vegetarian belongs to the group), (ii) the fair design, capturing
more democratic cases where the majority of the group members is satisfied,
and (iii) the most optimistic design, capturing cases where the more satisfied
member of the group acts as the most influential member (e.g., recommend a
movie to a group when a member is highly interested in it and the remaining
members have reasonable satisfaction). In the least misery (respectively, most
optimistic) design, the predicted value score of an item for the group is equal
to the minimum (respectively, maximum) value score of the item scores of the
members of the group, while the fair design, that assumes equal importance
among all group members, returns the average score. Table 1 summarizes the
aggregation methods.

2.3 Problem Statement

Given a group of users and a restriction k on the number of the recommended
items, we would like to provide k suggestions for items that are highly relevant
to the preferences of all the group members and, also, exhibit high support.



Table 1. Aggregation methods.

Design Aggregation Method

Least misery value(G, i) = minu∈G(valueFu(u, i))

Fair value(G, i) =
(∑

u∈G valueFu(u, i)
)
/|G|

Most optimistic value(G, i) = maxu∈G(valueFu(u, i))

Definition 4. (Top-k Group Recommendations). Let U be a set of users
and I be a set of items. Given a group of users G, G ⊆ U , and an aggregation
method Aggr, recommend to G a list of items IG =< i1, . . . , ik >, IG ⊆ I, such
that:
(i) ∀ij ∈ IG , u ∈ G, @preference(u, ij),
(ii) value(G, ij) ≥ value(G, ij+1), 1 ≤ j ≤ k − 1, ∀ij ∈ IG, and
(iii) value(G, ij) ≥ value(G, xy), ∀ij ∈ IG, xy ∈ I\IG.

The first condition ensures that the suggested items do not include already
evaluated items by some users in the group (e.g., do not recommend a movie
that a group member has already watched). The second condition ensures the
descending ordering of the items with respect to their group value, while the
third condition defines that every item in the result set has group value greater
than or equal to the group value of any of the remaining items.

2.4 Group Recommendations Explanations

Recently, it has been shown that the success of recommendations relies on ex-
plaining the cause behind them [25]. To this end, except for the suggested items,
we also provide the group with an explanation for each suggested item, i.e., why
the specific item appears in the top-k list.

Although our explanations depend on the employed design, they have the
following general form: “item i has group value score value(G, i) because
of user(s) {ux, . . . , uy}”. For instance, for a movie recommendation system,
an example explanation is: “Movie Dracula has group value score 0.9 because
of user Jeffrey”. More specifically, for the least misery design, we report with
each suggested item its group value score and the member of the group with the
minimum personal value score for the item, i.e., the member that is responsible
for this selection. Similarly, for the most optimistic design, we report the member
of the group with the maximum personal value score for the item. Finally, for
the fair design, we report with each item the members of the group with personal
value scores for the item close to its group value score (up to a distance p), i.e.,
the members that are highly satisfied, and hence, direct towards this selection.

3 Group Recommendations Computation

Our approach for suggesting items for a group of users G, consists of the following
steps: (i) locate the set of users Fu, ∀u ∈ G, (ii) compute the personal value scores
valueFu

(u, i), ∀u ∈ G, i ∈ I, (iii) combine the independent scores according to an
aggregation method Aggr to derive the group value scores value(G, i), ∀i ∈ I,



and (iv) present the k items with the highest group value scores along with
explanations.

For computing the scores of all items for the group, a solution that involves
no pre-computation is to first find the friends of each user in G, by computing the
similarity measures between each user in G and each user in U , then produce the
value scores of the candidate items and finally rank them based on these scores.
We refer to this approach as the baseline approach. Performance can be improved
by performing some preprocessing steps offline. In particular, in this work, we
propose building clusters of similar users, considering as similar those users that
have similar preferences. Ideally, the friends of each user are the members of
the cluster that the user belongs to. Based on the preferences of these cluster
members, the group value scores are computed. We refer to this approach as the
user clustering approach.

Next, we present our method for locating the friends of a user in the baseline
and user clustering approach (Section 3.1). Then, we focus on how to identify
the top-k group recommendations (Section 3.2).

3.1 Finding User Friends

Baseline Approach. To find the friends set Fu for a specific user u ∈ U , the
baseline approach would need to calculate all similarity measures simU(u, u′),
∀u′ ∈ U and select those with simU(u, u′) ≥ δ. We refer to this algorithm,
as the Baseline Friends Finder algorithm. Such an approach though, would be
extremely inefficient in large systems, since it requires the online computation
of the set of friends for each user of the query group.

User Clustering Approach. Since the baseline approach is expensive for a
real recommendation application where the response time is a critical parameter,
we propose to organize the users into groups of users with similar preferences and
employ these pre-computed groups to speed up the recommendation process.

We use clustering for partitioning users into groups3. In particular, we use
a bottom up hierarchical agglomerative clustering algorithm. Initially, the Clus-
tering Friends Finder algorithm (Algorithm 1) places each user in a cluster of his
own. Then, at each step, it merges the two most similar clusters. The similarity
between two clusters is defined as the minimum similarity between any two users
that belong to these clusters (max linkage). The algorithm terminates when the
similarity of the closest pair of clusters violates the user similarity threshold δ.

Property 1. Let δ be a threshold similarity value. Each cluster produced by the
Clustering Friends Finder algorithm contains users, such that, for each pair of
users u, u′ in the cluster simU(u, u′) ≥ δ.

Proof: From lines 3 − 5 of the Clustering Friends Finder algorithm, we merge
the two most similar clusters, if their similarity is greater than or equal to δ.

3 Hereafter, we refer to the groups of users with similar preferences as clusters, to
remove any ambiguity with the term group referring to the group of users asking for
recommendations (query group).



Algorithm 1 Clustering Friends Finder Algorithm

Input: A set of user U and a threshold similarity value δ.
Output: A set of clusters of users with similar preferences.

1: create a cluster for each user u ∈ U ;
2: repeat
3: if the max similarity between any pair of clusters is greater or equal to δ then
4: merge these two clusters;
5: else end loop;

This similarity score represents the minimum similarity between a user u of the
first cluster and a user u′ of the second cluster. Therefore, any two users u, u′

that belong to the same cluster, have similarity simU(u, u′) ≥ δ. �
This means that, if for a user u, we employ for estimating personal value

scores the users in the cluster of u, we may lose some users similar to u, but we
never consider as similar, users that are not, and so, our method does not result
in some form of false positives.

In general, following this clustering approach, we consider as friends of each
user u the members of the cluster Cu that the user u belongs to. We use
valueCu

(u, i) to denote the personal value score of item i for u computed taking
into account the users in Cu. It is easy to show that:

Property 2. Let G be a group of users and i be an item in I.
(i) If the resulting score of both maxu∈G(valueFu

(u, i)) and maxu∈G(valueCu
(u, i))

is associated with a user u′ ∈ G, and the most optimistic design is applied, both
the baseline and the user clustering approaches employ the personal value score
of u′ for determining value(G, i).
(ii) If the resulting score of both minu∈G(valueFu

(u, i)) and minu∈G(valueCu
(u, i))

is associated with a user u′ ∈ G, and the least misery design is applied, both the
baseline and the user clustering approaches employ the personal value score of
u′ for determining value(G, i).

Note that we cannot have a counterpart observation for the fair design, since
in the fair design the personal value scores of sets of users are taken into account
for computing group value scores, in both approaches.

3.2 Identifying Top-k Group Recommendations

Having established the methodology for finding the friends of a single user, we
focus next on how to generate valued recommendations for a group of users.
The first step towards this direction is to compute the personal value scores of
each item for each user in the group. The next step is to combine the scores of
each item in order to select, based on the group value scores, the items to be
suggested.

Given a user u ∈ U and his similar users Cu, the procedure for estimating
the personal value score of each item i in I for u requires the computation of
its relevance and support. Pairs of the form (i, valueCu

(u, i)) are maintained in
a set Vu. As a post-processing step, we rank all pairs in Vu on the basis of



their personal value scores. The set Cu refers to the clustering approach. For the
baseline approach, we use, for each user u, the set Fu, instead of Cu.

For a group of users G = {u1, . . . , un}, a common way to provide k recom-
mendations to G is assigning to all items their group value scores and reporting
the k items with the highest scores. Instead of following the naive approach of
computing group value scores of items and ranking them based on these scores,
we employ a variation of a threshold-based algorithm, called TA, first proposed
in [10]. Given a group G = {u1, . . . , un}, the Top-k Group Recommendations
algorithm uses as input the ranked sets Vu1 , . . . , Vun and it considers two types
of available item accesses: the sorted access and the random access. Sorted access
enables item retrieval in a descending order of their scores, while random access
enables retrieving the score of a specific item in one access.

The algorithm’s main steps are (Algorithm 2):
(i) Do sorted access to each ranked set Vuj

. For each item seen, do random
accesses to the other ranked sets to retrieve the missing item personal value
scores.
(ii) Compute the group value score of each item that has been seen. Rank the
items based on their group value scores and select the top-k ones.
(iii) Stop to do sorted accesses when the group value scores of the k items are
at least equal to a threshold value that is defined as the aggregation score of the
scores of the last items seen in each ranked set.

The Top-k Group Recommendations algorithm is correct when the item group
value scores are obtained by combining their individual scores using a monotone
function [10]. In our approach, aggregations are performed in a monotonic fash-
ion, hence the applicability of the algorithm is straightforward.

Algorithm 2 Top-k Group Recommendations Algorithm

Input: A group of users G = {u1, . . . , un} with ranked sets Vu1 , . . . ,Vun and an ag-
gregation method Aggr.

Output: k pairs (ij , value(G, ij)).
1: topRecs = ∅;
2: scoreK = 0;
3: thresholdK = ∞;
4: t = 1;
5: while scoreK < thresholdK do
6: retrieve the score of the tth item from Vu1 , . . . ,Vun , valueCu1

(u1, i1), . . .,
valueCun

(un, in);
7: thresholdK = Aggr(valueCu1

(u1, i1), . . . , valueCun
(un, in));

8: retrieve the missing personal value scores for i1, . . . , in from Vu1 , . . . ,Vun ;
9: compute the group value scores for i1, . . . , in;

10: add, in decreasing order, the pairs of the form (ij , value(G, ij)) to topRecs;
11: make scoreK equal to the kth group value score in topRecs;
12: t++;
13: end while
14: return the k first pairs (ij , value(G, ij)) in topRecs;



4 Experiments

For the evaluation, we used the MovieLens dataset [1], which consists of 100,000
user ratings given by 1,000 users for 1,700 items. We show that the user clustering
method is both efficient and effective comparing to the baseline approach.

To illustrate the efficiency of the user clustering approach versus the baseline
alternative, we measure the execution time for computing the personal recom-
mendations of the members of a query group. We omit the aggregation time for
computing the top-k recommendations, since this time is the same in both cases.

We also evaluate the quality of our approach against the baseline method.
We employ the recommendations agreements as a quality measure, which is
defined as the number of items recommended by both approaches. That is, we
compute the top-k group recommendations for both approaches and we find
their intersection, which stands for the common suggested items. We denote this
measure by commonRecs. The recommendations agreement measure computes
the common items in both recommendation lists, but does not consider the actual
ordering of the recommendations. To this end, we also employ a variation of the
Kendall tau distance for partial rankings that computes the distance between
two partial rankings based on the number of pairwise disagreements between
them [9]. We denote this measure by rankRecsDist.

We use distance instead of user similarity. We define the distance between
two users as the Euclidean distance over the items rated by both. Let u, u′ ∈ U
be two users, Iu be the set of items for which ∃preference(u, i), i ∈ Iu, and Iu′

be the set of items for which ∃preference(u′, i), i ∈ Iu′ . We denote by Iu ∩ Iu′

the set of items for which both users have expressed preferences. Then, the dis-
tance between u, u′ is defined as:

distU(u, u′) =
(√∑

i∈Iu∩Iu′ (preference(u, i)− preference(u′, i))2
)
/|Iu∩Iu′ |.

To set up a query group, we randomly select the members of the group from
the user base. Group recommendations are extracted using both approaches
and the execution time, the commonRecs and the rankRecsDist scores are
computed. We run each experiment 100 times and report the average values.

4.1 Performance Evaluation

The main difference between the two approaches lies on the friends set compu-
tation for the users of the query group. In the baseline approach, for each user
of the query group, we compute his distance to all database users and the users
within distance δ are selected. So, for each user of the query group, a total num-
ber of |U| distance computations is required, where |U| is the number of users in
the database. If |G| is the number of users in the query group, the total number
of distance computations is |G|×|U|. In the user clustering approach, the friends
of a user are taken directly from his cluster, so no further computations are re-
quired. There is though an initialization cost for creating the clusters (≈ 2h for
δ = 0.15, ≈ 2.5h for δ = 0.3), however this is done once and it can be reused
afterwards for answering different query groups requests.

In Figure 1, we display the time complexity for the two approaches for differ-
ent query group sizes under different distance thresholds δ. The user clustering



approach requires around 25% of the time required by the baseline approach.
As |G| increases, the reduction becomes more evident, since the larger the query
group size, the more the distance computations of the baseline approach. Note
that for bigger threshold values, the execution time increases in both approaches,
since each user of the query group has more friends/cluster members.

If the support is not taken into account (i.e., w1 = 1, w2 = 0), the running
time slightly reduces for both approaches because less computations are required.

4.2 Quality Evaluation

In this set of experiments, we demonstrate the effectiveness of the user clus-
tering approach. We compute the commonRecs and the rankRecsDist scores
varying the query group size |G|, the number k of the recommended items and
the distance threshold δ.

Figure 2 depicts the commonRecs score for δ = 0.15 and δ = 0.3, for the three
available designs, while Figure 3 depicts the corresponding rankRecsDist scores.
G1 stands for groups with 1 member. Similarly, G3, G5 and G7 stand for groups
with 3, 5 and 7 members, respectively. As the query group size |G| increases,
the commonRecs score decreases, since the group recommendations rely in a
more diverse set of users and personal values. Based on the same rationale,
rankRecsDist increases as |G| increases. Also, we experimentally confirm that
commonRecs increases with k, while rankRecsDist decreases.

Regarding the different designs, we observe that the fair and the least mis-
ery designs achieve better results when compared to the most optimistic design.
In our scenario, where the members of the query group are selected randomly,
this is expected, since it is more difficult to find agreements for max personal
values. When δ increases, the commonRecs decreases for the fair and least mis-
ery designs and slightly increases for the most optimistic design. Corresponding
findings also hold for rankRecsDist.

Finally, we consider the case where only relevance is taken into consideration,
that is, w1 = 1 and w2 = 0. In Figure 4, we show the results for the fair design and
δ = 0.3. commonRecs and rankRecsDist behave worst comparing to the equal
importance case, showing that support improves the quality of recommendations.
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Fig. 1. Time complexity for the fair design with w1 = 0.5, w2 = 0.5.
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(d) Most optimistic design (δ=0.3)
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Fig. 2. commonRecs for δ = 0.15, δ = 0.3 with w1 = 0.5, w2 = 0.5.

5 Related work
The research literature on recommendations is extensive. Typically, recommen-
dation approaches are distinguished between: content-based, that recommend
items similar to those the user previously preferred [17], collaborative filtering,
that recommend items that users with similar preferences liked [14, 7] and hybrid
ones [4]. Several extensions have been proposed, such as employing multi-criteria
ratings [2] or further contextual information [20], and providing time-aware rec-
ommendations [26, 23]. Recently, there are also approaches focusing on extending
database queries with recommendations [15, 22].

Moreover, there has been some recent work on group recommendations.
PolyLens [19], a group recommendation system for movies, performed a user
study to evaluate the usefulness of group recommendations. This approach em-
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(c) Most optimistic design
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(d) Most optimistic design
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(e) Least misery design
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(f) Least misery design

Fig. 3. rankRecsDist for δ = 0.15, δ = 0.3 with w1 = 0.5, w2 = 0.5.
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Fig. 4. Fair design for δ = 0.3 with w1 = 1, w2 = 0.



ploys the least misery design to aggregate personal recommendations. [3] pro-
duces group recommendations by aggregating the personal ones using a consen-
sus function that takes into account both the relevance of the items to the users
and the level at which users disagree with each other. [11] proposes a group rec-
ommendation method that employs both the social and content interests of the
users of a group, while [13] provides a two-step approach: first recommendations
for groups are generated and then items are filtered to increase the individual
users satisfaction. [5] compares the effectiveness of personal and group recom-
mendations. To our knowledge, none of the proposed approaches perform user
clustering for finding similar users. As part of our effort, we have also designed
a user interface for group recommendations based on clustering [18].

A topic related to group recommendations is rank aggregation, that is, given
a set of different rankings of items, produce a single ranking for the items.
An instance of rank aggregation known as social choice studies the problem
of determining the ranking of alternatives that is best for a group given the
individual opinions of its members. Social choice has been studied extensively in
economics, politics, sociology, and mathematics (e.g., [24]). Rank aggregation is
also studied in the web, for example, in meta-search, where ranked lists of web
pages produced by different search engines need to be combined into a single one
(e.g., [8]). In database middleware, a related problem refers to finding the most
preferred items when there are multiple rankings based on preferences defined on
different attributes or dimensions of these items (e.g., [10]). [16] reviews different
aggregation strategies or functions for group modeling.

6 Conclusions
We proposed an efficient framework for group recommendations, by organizing
users into clusters of users with similar preferences. These clusters are used to ef-
ficiently locate similar users to a given one; this way, recommendations for users
are produced with respect to the preferences of their cluster members without
extensively searching for similar users in the whole database. Top-k group rec-
ommendations are computed by aggregating the personal recommendations of
the individual users, while they are presented along with explanations on the
reasons that the particular items are being suggested to the group. Our results
show that employing user clustering considerably improves the execution time,
while preserves a satisfactory quality of recommendations.
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