
Temporal XML Data Warehouses: Challenges and Solutions

Kjetil Nørvåg
Department of Computer and Information Science
Norwegian University of Science and Technology

7491 Trondheim, Norway
Kjetil.Norvag@idi.ntnu.no

Abstract

Increasing amounts of data is stored in XML. In order to
facilitate more efficient querying on this data, and in partic-
ular on data from several sources (for example Web sites),
data can be loaded into an XML data warehouse. Often,
we want to query historical document versions, or query
changes between document versions. This can be facilitated
by a temporalXML data warehouse (XML-DW). In this pa-
per, we study some of the challenges we meet in an XML-
DW, in particular those related to consistency, and propose
how these challenges can be met. We also identify some
problems that are difficult to solve automatically in a tem-
poral XML-DW. Many of the issues described in this paper
are also applicable in a broader context, for example for
general Web warehouses storing on HTML web pages.

1 Introduction

Increasing amounts of data is stored in XML format.
This includes documents previously stored in various pro-
prietary formats in files, as well as data previously stored in
databases. The XML data is preferably stored in an “XML
database management system” (XML-DB). This can be a
native XML database, or one of the XML-enabled database
systems. An XML-DB should support all the properties
normally found in database systems (queries, recovery, con-
currency control, etc.), as well as somehow providing sup-
port for new features required as a consequence of XML.
This requires, for examples, new/extended query languages.

A specialized version of database systems that has
evolved during the last decade, isdata warehouses, which
typically is a copy of transaction data specifically structured
for querying and reporting. The data warehouse concepts
are also of interest in the context of XML data. However,
one difference is the external data that can be stored in an
XML data warehouse. While we in a typical “traditional”
data warehouse store data from one or more of the databases

controlled by the company (or institution), an XML data
warehouse can also contain external data, for example col-
lected from the Web (as in the case of Xyleme [9]). The
latter is often called aWeb warehouse, but we will in this pa-
per use the termXML data warehouse (XML-DW) to cap-
ture the aspect that the techniques described in this paper
could be used for any type of warehouse storing XML data.
However, as will be seen, the context of data from the Web
introduces some new interesting challenges, especially in
the context of temporal data.

A feature still only partially supported by traditional
database systems, is support for management and query of
temporal data. This includes managing several versions of
an item, and support for queries involving versions valid
at different times. We consider support for temporal data
at least equally important in the context of XML-DBs. In
many cases, we actually consider it amore important. One
reason for this, is that in a traditional database system
temporal aspects can trivially be integrated into schemas,
and users/applications have to obey the rules of these data
schemas. In contrast, much of the data/documents available
is generated in a much more ad-hoc way. A typical example
is various documents available on the Web. For these, we
can not in a trivial way force the aspects of time into the
documents.

Managing and querying data differs in many aspects
between “traditional” database systems, and XML-DWs.
One issue is structure (e.g., using XPath) and text-related
queries. This was the topic in [7]. Another issue is the
fact that management of the sites where data is stored is
autonomous, and the fact that we can not retrieve the data
from all sites in the same time instant. The result can be in
inconsistency when documents from one site reference doc-
uments from another site. However, it is also important to
notice that this consistency problem between versions also
occur within one site, even between documents managed
by the same person. Although the updates of various doc-
uments having inter-document relationships should ideally
be done inside a transaction, this is seldom the case. Also,

1



it is very easy to forget to update a document referring to
another document that has been updated.

The organization of the rest of this paper is as follows. In
Section 2 we give an overview of related work. In Section 3
we describe some of the issues and challenges of tempo-
ral XML-DWs. In Section 4 we discuss possible solutions
to these problems. Finally, in Section 5, we conclude the
paper.

2 Related work

An approach for introducing valid time features into
XML documents,The Valid Web, is presented by Grandi
et al. in [4].

An application that illustrates one application area for
XML warehouses, is the transaction-time web server de-
scribed by Dyreson [3]. Given a certain URL for a page
on the server and a given date�, the page valid at date� is
returned to the client. To introduce temporal aspects into
XQuery based approach, one approach is to extend XPath,
as described by Dyreson in [2].

Representing Web data in a warehouse introduces prob-
lems related to partial and inconsistent information, and a
data model for semistructured data with partial and incon-
sistent information is presented by Liu and Ling in [5]. A
theoretical framework for an XML-DW with incomplete in-
formation is described by Abiteboul et al. in [1]).

In previous papers [7, 8], we have described temporal
query operators for XML databases, and algorithms that can
be used to execute these operators. In [7, 8], the opera-
tors are described in the context of an XML query language
based on OQL. However, these approaches do not take into
account missing versions and inconsistency that can exit in
an XML-DW.

3 Issues and challenges

In this section, we will describe some of the issues and
challenges of temporal XML-DWs.

3.1 Aspects of time in XML data warehouses

In temporal databases we have different aspects of time,
where the two most common aspects are transaction time
and valid time. In the context of storage of XML docu-
ments, we have two cases which from a query point of view
are similar to transaction time:

� Local storage of documents (e.g., in a database system
storing XML documents), where we have full infor-
mation about time of creation/storage of an XML doc-
ument. In this case, time is exactly transaction-time
equivalent.

� XML data warehouse or other non-synchronized stor-
age of copies of XML documents. Although similar to
transaction time, this is not exactly the same. Impor-
tant differences are:

– In this case we in general do not know the time of
creation/storage of an XML document, only the
time when the document was retrieved from the
Web (”crawled”).

– The documents in the warehouse are not retrieved
at the same point in time, the result is an incon-
sistent view of the documents. For example, a
document can have references to a document not
yet retrieved, or a document that has already been
deleted.

– There might have been updates between the ver-
sions we have retrieved, i.e., we do not necessar-
ily have all the versions of a particular document.

A third case, which have similarities to valid time, is doc-
ument time. Many documents include a timestamp in the
document itself. This can for example be the time the doc-
ument was written, or when it was posted. Examples are
news notices from the news agencies. The documents can
also be indexed and queried based on this document time.
Although it could be difficult to extract this time from a doc-
ument automatically, we can expect many documents to in-
clude this metadata in a “standardized” way, based on RDF.
One example is XMLNews-Meta (based in part on RDF),
which if used can provide meta-information such as publi-
cation time and expire time.

3.2 Time approximation and inconsistency be-
tween versions

When querying a temporal XML-DW, time approxima-
tion and inconsistency between versions will be important
issues. The main reasons for these problems are that man-
agement of the sites where data is stored is autonomous, and
the fact that we can not retrieve the data from all sites in the
same time instant. As a result, we may miss some document
updates, and there can be inconsistencies when documents
from one site reference documents from another site. These
issues will now be studied in more detail.

3.2.1 Time approximation

An issue related to time is the assumedcontent at a par-
ticular time. Assume we have one document version from
time��, and another version of the document from� � (where
�� � ��). What can we assume is the content at time�,
where�� � � � ��? Some options are:

2



� Assume the contents for all� where�� � � � �� is the
same as the contents at time��.

� Assume that the document closest in time is the most
appropriate, i.e., choose document version with times-
tamp�� which minimizes��� ���.

� Assume the contents is only valid for the times re-
trieved (with a given granularity, for example a given
day), and undefined/non-existing for all other times.
An example is the number of people present on a foot-
ball match at the Stade de France.

The two first choices are useful. The last one is in many
ways the most correct, but can be approximated by the first
option if the refresh rate is sufficiently high. Sufficiently
high in this case, means frequent enough to capture most
document states. This can be achieved using adaptive re-
freshing.

Rather than solving the problem by choosing a particu-
lar version using one of the approaches above, another ap-
proach is to use an interpolated value for the contents at�.
Examples where this solution could be applicable is for ex-
ample the temperature in Paris, or the exchange rates for
the dollar. However, using interpolated values is difficult
because we need good knowledge of the semantics of doc-
uments (although this could change in the future, given cer-
tain standardized DTDs and resource information).

3.2.2 Inconsistency between versions

In an unsynchronized XML-DW (for example a web ware-
house), documents will in general be inconsistent because
they are retrieved at different times. As a result, there can
be:

� References to documents not yet inserted into the data
warehouse (not crawled yet). This inconsistency could
be resolved by retrieving the document at query time,
although this might not be practical in all situations,
e.g., when the query involves many or large docu-
ments.

� References to contents in other documents. It is pos-
sible that the version of the referenced document we
have available, is only a previous version where the
actual contents that is referenced either was not yet in-
serted, or contents is outdated with respect to the refer-
ring document. This case could not be resolved with-
out checking all affected documents to check that we
already have the most recent version.

In addition, in atemporal XML-DW, there can be incon-
sistencies as a result of 1) references to missing versions,
because the document/page was not crawled often enough,

and 2) References to a document that is completely missing.
The reason could be that it was removed during vacuuming
(see Section 3.4). These two temporal inconsistencies can
not be completely resolved, because the information is not
available anymore.

It should be noted that the problems described here has
similarities to general data integration problems. However,
in our context it is not the data heterogeneity that creates the
problem, it is the “shift in time”.

3.3 Use of temporal queries in continuous queries

Continuous queries are queries that are executed regu-
larly, for example once a week (For a more detailed treat-
ment of continuous queries in general, we refer to [6]). Con-
tinuous queries can be categorized as follows:

1. Queries where each query only considers the contents
of one document. This has similarities to monitoring
queries (filtering) which are executed in an XML data
warehouse when the system reads a page. However,
there are two differences: 1) the interval of a con-
tinuous query will be different from the crawler in-
terval (the user will not know anything about crawler
rate for a particular page, so this interval can in fact
be shorter as well as longer) and 2) the monitoring
query language will often be more primitive than a
general query language because of performance con-
siderations.

2. Queries that consider contents in more than one doc-
ument, but only the most recent version of the docu-
ments.

3. Queries that also consider contents in previous ver-
sions of documents. For these queries, we need a tem-
poral query language.

4. Queries that also consider theresults from previous
queries. This can be a very powerful feature. Fortu-
nately, it can easily be provided if the temporal features
are already supported. It can be implemented by stor-
ing query results as versioned XML documents, and
perform queries on thesequery result documents.

When supporting the last two query classes, we meet the
problems discussed in this paper, and have to resolve these.

3.4 Vacuuming

Even though storage cost is decreasing, storing an ever
growing database can still be too costly in many cases. A
large database can also slow down the speed of the database
system, for example because of the size of the indexes.
As a consequence, it is desirable to be able to physically

3



delete non-current document versions and deleted docu-
ments. This process is calledvacuuming. Note that the term
vacuuming is also used as a term for the migration of histor-
ical data from secondary storage to cheaper tertiary storage.
In this paper, we will use the term forphysical deletion only.

4 Meeting the challenges

Based on the discussion in the previous sections, we
identify some additional requirements that should be sup-
ported in an XML-DW:

� Snapshot queries, element history queries and changes.

� Time approximations.

� Inconsistent data.

� Summary data and vacuuming.

Snapshot queries, element history queries and changes can
be managed by introduce explicitly snapshot time as de-
scribed in [8]. How to solve the other issues will now be
described in more detail.

4.1 Different time approximations

Frequently, it is possible to know what time approxima-
tion/version approximation that is reasonable to use. In this
case, this information can be included in the query. This
can be done by extending the time expression which as pre-
viously described had the form[�] or [EVERY], wheret
is a timestamp:

� [� MOST RECENT]: Assume the contents for all�
where�� � � � �� is the same as the contents at time
��. We expect this to be the most common time approx-
imation, and it is also similar to the previous approach.
Therefore, it should be possible to denote by the short
form[�].

� [� NEAREST]: Choose document version with
timestamp�� which minimizes��� ���.

� [�]Use an interpolated value for the contents at�. One
example is the temperature in Paris, another is the ex-
change rates for the dollar.

� [� GRANULARITY �]: Assume the contents is only
valid for the times retrieved, with a given granularity
�. The granularity� can for example beDAY (differ-
ence in time is less than 24 hour) orWEEK (difference
in time less than 7 days). The document is assumed
undefined/non-existing for all other times.

In Section 3.2.1, another solution was also mentioned:
interpolating values between versions. That is an approach
that could prove very useful. However, it is be more awk-
ward to express how the interpolation should be performed,
rather than simply deciding which version to use. It is pos-
sible that this task should be left to the applications, who
can do this job for example by using two versions that are
accessed using 1)[� MOST RECENT] and 2) aNEXT op-
erator, and a filter/change operation on these versions. Note
that persistent EIDs are important for this task.

4.2 Inconsistent data

Solving the problems related to inconsistency between
versions in a temporal XML-DW is only partially possible.
First of all, it should be noted that this problem has two
variants: 1) references to certain items that can be identified
automatically, e.g., references to an identifier, and 2) refer-
ence to another document based on contents, without any
identifier in the reference.
In the first case, time approximation, as described above,
can be used to find a candidate version. For the second cases
however, it is difficult know if a particular version is actually
the one originally referenced.

4.3 Vacuuming and data reduction

We have already mentioned missing (old) versions as a
reason for inconsistency. Although missing data due to vac-
uuming is related to the issues of incomplete data, in the
case of vacuuming we have control over the deletion.

4.3.1 Link-based approach

In the case of vacuuming we have control over the deletion
of old document versions from the XML-DW. As a result,
it is possible to avoid removing old versions that later will
be queried. Thus, the problem is: how can we know which
versions might be needed later?

One way to solve this problem, is to employ general
garbage collection techniques. In a non-temporal context,
this problem could be solved using a link-matrix based ap-
proach, making it possible to remove a version� when
there are no other documents with links to it. However, in
a temporal context more information has to be available,
because a link is a temporal property. The straightforward
solution is to use versions as granularity in the link matrix.
However, this could result in a very large matrix. Although
a temporal link matrix could be useful for other purposes,
for the vacuuming it is sufficient to attach to each document
version a list of other versions with links to it. It should be
noted that this is effectively a precomputed join. It should
also be noted that although this solves the problem, it means

4



additional overhead when a new page with lots of links is
inserted into the XML-DW.

4.3.2 Reduced granularity approach

In traditional vacuuming, it is typical to delete all historical
versions with a timestamp less than�. In the link-based ap-
proach described above, all historical versions with a times-
tamp less than� and not referenced from other documents
are deleted. Another approach that is very applicable in an
XML-DW context is toreduce the granularity of the stored
versions. For example, if we for one month have stored 30
different versions, we could remove 26 of these, and only
keep one version for each week.

4.3.3 Summary data approach

In traditional temporal database systems it is possible to
store summary versions for the vacuumed data. In this
way, operations like aggregate operators can still return the
same results as if the vacuumed versions were still in the
database.

It is possible to create summary versions for vacuumed
versions in a XML-DW as well. However, less is known
about the semantics, and the fact that the data is semistruc-
tured. As a result, it is more difficult to know what kind
of queries will be subsequently used, and how to actually
create the summary versions. Therefore, we expect it will
be necessary for the application developer to write “sum-
mary version creation functions” if summary versions are
required.

5 Summary

We have in this paper studied some of the challenges we
will meet in a temporal XML-DW. We have described so-
lutions for some these challenges, but also identified some
problems that are difficult to solve automatically. However,
we expect that in practice, these problems will be easier to
solve with the advent of more standardized DTD for specific
domains, and various forms of document resource descrip-
tion standards. It should be noted that the issues described
in this paper are also applicable for general Web warehouses
based on HTML web pages.

In order to facilitate further research on the topics de-
scribed in this paper, we are currently working in two direc-
tions:

1. In order to gain more experience on the functional as-
pects, rather than efficiency, we are following astra-
tum approach (i.e., storing all versions of all docu-
ments in the database, and use a middleware layer
to convert temporal query language statements into
conventional statements, executed by an underlying

database system), and implementing the interfaces to
a temporal XML database system on top of a commer-
cial database system, utilizing the existing support for
XML data management in the system.

2. In order to study more closely the aspects of efficiency,
we also work on a prototype based on a more inte-
grated approach. This system will to a large degree
be based on existing public available software modules
for XML parsing, storage, and indexing, including the
use of the Berkeley DB for storage and indexing.

Acknowledgments

Part of this work was done while the author was an ERCIM
fellow at the Verso group at INRIA, France, and I would like
to thank Vincent Aguilera and Benjamin Nguyen for use-
ful discussions and constructive comments about the topics
presented in this paper.

References

[1] S. Abiteboul, L. Segoufin, and V. Vianu. Representing and
querying XML with incomplete information. InProceeding
of PODS 2001, 2001.

[2] C. Dyreson. Observing transaction-time semantics with TTX-
Path. InProceedings of the Second International Conference
on Web Information Systems Engineering (WISE2001), 2001.

[3] C. Dyreson. Towards a temporal world-wide web: A trans-
action time web server. InProceedings of the Australian
Database Conference, 2001.

[4] F. Grandi and F. Mandreoli. The valid web: An XML/XSL
infrastructure for temporal management of web documents.
In Proceedings of Advances in Information Systems, First In-
ternational Conference, ADVIS 2000, 2000.

[5] M. Liu and T. W. Ling. A data model for semistructured data
with partial and inconsistent information. InProceeding of
EDBT’2000, 2000.

[6] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitor-
ing XML data on the web. InProceedings of the 2001 ACM
SIGMOD International Conference on Management of Data,
2001.

[7] K. Nørvåg. Algorithms for temporal query operators in XML
databases. InProceedings of Workshop on XML-Based Data
Management (XMLDM) (in conjunction with EDBT’2002),
2002.

[8] K. Nørvåg. Temporal query operators in XML databases. In
Proceedings of the 17th ACM Symposium on Applied Com-
puting (SAC’2002), 2002.

[9] L. Xyleme. A dynamic warehouse for XML data of the web.
IEEE Data Engineering Bulletin, 24(2), 2001.

5


