
SGDB - Simple graph database optimized for activation
spreading computation

Marek Ciglan and Kjetil Nørvåg

Dept. of Computer and Information Science, NTNU, Trondheim, Norway.
{marek.ciglan,kjetil.norvag}@idi.ntnu.no

Abstract. In this paper, we present SGDB, a graph database with a storage model op-
timized for computation of Spreading Activation (SA) queries. The primary goal of the
system is to minimize the execution time of spreading activation algorithm over large
graph structures stored on a persistent media; without pre-loading the whole graph into
the memory. We propose a storage model aiming to minimize number of accesses to
the storage media during execution of SA and we propose a graph query type for the
activation spreading operation. Finally, we present the implementation and its perfor-
mance characteristics in scope of our pilot application that uses the activation spreading
over the Wikipedia link graph.

1 Introduction

The graph data structure is one of the most important data structures in computer science. In
addition to that, it is also a useful structure for data modeling. Many real-world objects can be
naturally described by graphs. The most straightforward examples are those of various types
of networks; e.g., transportation networks, delivery networks, hypertext networks, citation
networks, social networks or communication networks (e.g., e-mail).

Although the relational data model is dominant in nowadays information systems, mod-
eling data in the graph structure is gaining noticeable interest. Graph databases are informa-
tion systems providing graph abstraction for modeling, storing and accessing the data. In the
graph data model, relations between modeled objects are as important as the data describing
the objects. This is the most distinctive feature from other database models - graph databases
aim to provide efficient execution of queries taking into account the topology of the graph
and the connectivity between stored objects.

Graph traversal and graph analysis operations are traditionally implemented by pre-
loading whole graph in the memory and process it in memory, due to performance reasons.
This approach naturally suffers from memory size limits and is unusable when the amount of
data exceeds the limits of the physical memory available on the processing machine. Graph
databases aim to provide efficient persistent storage for graph data that also allow for fast
graph traversal processing.

In this paper we present the storage model for the graph structure together with the
architecture and the implementation of a graph database, named Simple Graph Database1

(SGDB). The storage model of SGDB is optimized for execution of Spreading Activation
(SA) algorithm over stored graphs. Spreading Activation algorithm was designed for search-
ing semantic and association networks. Its basic form, as well as the most common varia-
tions, are extensively described in [6]. The nodes in graph structure represents objects and

1 https://sourceforge.net/projects/simplegdb/



links denotes relations between objects. The algorithm starts by setting activation of the in-
put nodes and the processing consists of iterations, in which the activation is propagated
from activated nodes to their neighbor nodes. Mechanism of SA utilize breadth first expan-
sion from activated nodes to identify other nodes in the network that are strongly associated
with initial nodes (have high activation value). The breadth first traversal, utilized in SA, can
be characterized by random accesses to the underlying graph structure, to retrieve edges of
activated nodes.

To motivate the use of Spreading Activation algorithm over graph databases, we provide
several use-cases. In the domain of Semantic Web, the SA technique has been successfully
used for mining socio-semantic networks [18]. In the enterprise environment, SA can be
used for product recommendation systems to identify the products that the customer have
not purchased yet, but are highly associated with the products he already bought. Social
networks can be naturally represented by graphs. Also in this application domain, we can
find uses for SA technique. E.g., recommendation of people that the user might know.

Motivated by presented use-cases, we propose a graph database optimized for execution
of SA algorithm. The main contributions of the paper are the following:

– proposal of a storage model for graph data, aiming at supporting the random access pat-
tern for retrieval of the connectedness information of nodes activated during SA process.

– proposal of the query type for the Spreading Activation operation for graph databases,
to facilitate the usage of the SA over stored graph data.

The paper is organized as follows. In Section 2, we discuss related work, we then describe
the SA procedure in Section 3 to define the context of the work. The storage model for SGDB
is proposed in Section 4 and we propose the graph query type for the SA operation over graph
database in Section 5. The architecture of proposed system is described in 6, providing also
few important implementation details. In Section 7 study performance characteristics of the
system, evaluated using a pilot application for finding connections in Wikipedia link graph,
Finally, in Section 8 we conclude the paper and outline issues for further work.

2 Related work

The concept of a graph databases has been popular for some time. An extensive survey
of the graph database models proposed in this period is presented in [2]. Proposed models
ranged in the complexity, from simple directed graphs with labeled nodes and edges [8, 9]
to complex representations of nested objects [12,13]. Also variety of graph query languages
were proposed and ranged from SQL-like languages [1] to graphical queries [16].

After a period of high interest in the 90s, for a period of time the interest in graph
databases disappeared. The emergence of Semantic Web shifted attention to RDF2 stores.
RDF can be also viewed as a graph data structure. Early RDF stores were design to operate
in-memory or used relational database back-ends for the data persistence [17]. Later, special-
ize persistent stores optimized for semantic data were developed [11] [7]; those are designed
as triple stores to support RDF model.

The focus on graph databases recently re-emerged. Several companies in the industry
have developed graph databases systems (e.g. Freebase [4], DirectedEdge 3, Neo4j 4). There

2 http://www.w3.org/RDF/
3 http://www.directededge.com (visited: 10.12.2009)
4 http://neo4j.org/ (visited: 10.12.2009)



is also an effort for providing systems for large-scale graph processing in distributed environ-
ment (e.g. Google Pregel [14], graph package in Hama 5, or [10]). The data in [10] as well
as Hama is stored in a distributed key value store, used in conjunction with Map-Reduce
systems and the graph structure is modeled as the adjacency matrix.

3 Preliminaries

In this section, we first describe the structure that is being modeled, we than describe the
Spreading Activation algorithm to define the context for the proposed approach. We discuss
in detail the modified SA technique that allows to observe the value of activation received
from distinct initial nodes. We highlight important points that influence the design of pre-
sented system.

3.1 Modeled data structure

The aim of this work is to support the SA technique over a graph with weighted and typed
edges, stored on a persistent medium. We can define the modeled structure using equation

G = (V,E, f, w, T, t)

where G is the graph label, V is a set of nodes, E is a set of edges, f is a function
f : V × V → E defining mapping between nodes and edges, w is a function defining edge
weights w : E → 〈0, 1〉, T is a set of edge type labels and t is a function defining edges
types t : E → T .

The operations considered for this data structure are insertion,deletion of nodes and
edges, retrieval of outgoing and incoming edges for a given node and iteration over node
and edges sets. Due to the space limitation, we define only insertion operations. Similarly,
operations for nodes and edge deletion, edge weight, type modification and others can be
defined. Operation of node insertion can be defined as

insert(G = (V,E, f, w, T, t), v) = (V ′ = {V ∪ v}, E, f ′ : V ′ × V ′ → E,w, T, t);
edge insertion operation is

insert(G = (V,E, f, w, T, t), (enew, i, j, wval, tval)) =
(V,E′ = {E ∪ enew}, f ′, w′, T, t′) | i, j ∈ V ; f(i, j) =⊥;wval ∈ 〈0, 1〉; tval ∈ T

where f ′ : V × V → E′, w′ : E′ → 〈0, 1〉, t′ : E′ → T and

f ′(k, l) =
{

f(k, l) ; k 6= i ∧ l 6= j
enew ; k = i ∧ l = j

;w′(e) =
{

w(e) ; e ∈ E
wval ; e = enew

; t′(e) =
{

t(e) ; e ∈ E
tval ; e = enew

Edge retrieval operations can be defined as follows:
outgoing(G, n) = {e | n, i ∈ V ; e : f(n, i) 6=⊥} and
incoming(G, n) = {e | n, i ∈ V ; e : f(i, n) 6=⊥}

In addition to the graph topology, we want to store user defined attributes that can be
associated with nodes and edges. In our approach, the user defined data (node and edges at-
tributes) are stored in a separate structure, linked with graph by node identifiers. The storage
of the user defined data is out of the scope of this paper, as it does not influence the graph
traversal operations.

5 http://wiki.apache.org/hama (visited: 10.12.2009)



3.2 Spreading activation algorithm

The Spreading Activation algorithm is based on the breadth first expansion from activated
nodes in the graph data structure. Nodes in the graph represent modeled objects and edges
represent relationships between the objects. Edges can be weighted or typed (or both) and
can be directed or undirected. The input of the SA algorithm is a set of initially activated
nodes and a set of parameters influencing the activation process, the output is a set of nodes
activated by the SA process. The SA process consists of iterations in which the activation is
spread in breadth first manner. Each iteration is composed of a spreading phase and a pre-
adjustment or post-adjustment phases. In pre/post-adjustment phases the activation decay
can be applied on activated nodes. In the spreading phase, activated nodes send impulses to
their neighbors. The value of the impulse propagated from an activated node is a function of
the node’s input value. In the basic SA variant, the input value of a node n is equal to the sum
of weighted output values of nodes connected with n by outgoing edges. The output values
are weighted by the edge weights. Let T be a set of edge types of the graph and Q ⊆ T be
the types allowed in the SA computation. Function a is

a(t, Q) =
{

1 ; t ∈ Q
0 ; t /∈ Q

The output value can be described by following formula:

In =
∑

i

Oiw(ei,n)a(t(ei,n), Q)

where In is the input value of the node n; Oi is the output value of the node i connected
to n by an outgoing edge and w(ei,n) is the weight of the edge connecting i and n; w ∈
〈0, 1〉; t(ei,n) is the type of the edge ei,n. The most commonly used output function is the
threshold function, where the output is zero when the node input value is below the user
defined threshold th. In case that In > th the output is equal to one.

The activation thus spreads from initial nodes over the network. The algorithm finishes
when the there are no nodes with On > 0 in an iteration. The convergence and the fix point
of the SA process has been studied in [3]. In practice, some additional termination conditions
are used (e.g., distance constraint).

3.3 Activation vector spreading

In the standard SA algorithm, we can not distinguish whether a node received an activation
from one or multiple initial nodes. To obtain richer information about activation spread, we
have introduced a modification of the standard SA technique in [5], called Activation Vector
Spreading (AVS).

We store the node activation as a vector, its length is equal to the number of input nodes
and the n-th element of the vector represents the amount of the activation originating from
the n-th input node. The activation vector n-th input node is initiated as follows: all the
values in the vector are equal to zero, expect n-th element, which is initially set to one.
The activation spread is computed individually for each element of the activation vector.
Informally, the activation spread is computed individually for each input node. In addition
to that, in each iteration, if the individual elements of node’s input vector are lower than the
defined threshold th but the sum of all the elements is greater than t, we spread an output



activation vector with a non-zero element, which is the element with highest value in the
input activation vector. Let In = (In1 , In2 , . . . , In) be the input activation vector of node n,
where Ini is the amount of activation received from i-th initial node. The output function in
AVS is:

On =

 (thr(In1 , th), thr(In2 , th), . . . , thr(Inm , th)) iff ∃i : thr(Ini) ≥ th
(ismax(In1 , In), . . . , ismax(Inm , In)) iff @i : thr(Ini) ≥ th ∧

∑
i Ini ≥ th

(0, 0, . . . , 0) iff @i : thr(Ini) ≥ t ∧
∑

i Ini < th

thr(x) is a threshold function

thr(x, t) =
{

1 ; x ≥ t
0 ; x < t

and ismax(x, In) =
{

1 ; ∀i : Ini ≤ x
0 ; ∃i : Ini > x

This modification allows us to observe which sources the node received the activation
from (non-zero values in the activation vector) and the amount of activation from each
source.

Important aspect of the SA algorithm for the graph storage design is the use of breadth
first expansion from activated nodes. The activation value of a node n dependents on activa-
tion values of the connected nodes and weights and/or types of connecting edges. Those are
the only values necessary to compute the activation value of a node.

4 Storage model

The aim of this work is to design a persistent graph database system allowing for fast ex-
ecution of the spreading activation algorithm, without pre-loading the whole graph to the
memory prior to the execution. As the access to the persistent medium is the most time
costly operation, we aim at minimizing the number of accesses to the storage medium. The
SA procedure utilize the breadth first expansion, characterized by a number of random ac-
cesses to the graph data. The addressed problem can be formulated as follows: Propose a
persistent storage system for representation of a directed, weighted graph with typed edges
that allows for an implementation of the spreading activation algorithm with the minimum
number of accesses to the persistent storage media.

We can not avoid the random access pattern in general; however we organize the data in
a way to reduce the number of disk access operations for retrieving the information needed
to compute the activation spreading.

This section describes the storage model proposed for SGDB system, aiming at reducing
storage lookups for the SA technique. Adjacency list is an ideal representation of a graph
structure for breath first traversals. Adjacency list is a graph representation, where each node
n has an associated list of nodes that are connects to n by an edge. The adjacency list can be
viewed a set of tuples, where first element of each tuple is a node n and the second element
is the list of nodes adjacent to n.

A practical data structure for adjacency list is key− value map, where key is the identi-
fier of the node and value is the list of identifiers of the adjacent nodes. As the key − value
map is a practical data structure, there has been already a considerable amount of work per-
formed and there are numerous persistent key − value stores available (e.g. Berkeley DB,



4

1 2

3

1
A A

A

B

B

0.7
0.1

0.83

0.4

0.5

(3;0.7;A) (2;0.5;B)

2
3 (4;0.83;A)

4 (1;0.1;B) (2;0.4;A)

Key Value

(1;0.7;A)

(1;0.5;B) (4;0.4;A)

2
0
1
2

(4;0.1;B)

(3;0.83;A)

Fig. 1. Example of graph representation in the proposed storage model.

JDBM6, BabuDB 7), able to store large amount of data. A relational database could be used
to store key − value pairs; however, specialized key − value stores have superior perfor-
mance characteristics for the given task.

Using this representation, given a starting node n, we need 1 + d lookups (where d is
the number of nodes adjacent to n) in a key − value store to obtain a set of identifiers of
nodes distant two hops from n. Spreading Activation method requires more than structural
information. As stated in 3.2, to compute activation values in the SA algorithm we need
additional data - weights and/or edge types. To keep the number of lookups low and to avoid
additional retrieval from the data storage, we propose to keep the edges weights and types
directly in the adjacency list as they are required by the SA algorithm. This simple, even
trivial, change brings important time savings for SA processing, oppose to the approach
where the edge weights and types are modeled as edge attributes and are stored in a separate
structure.

In our storage model, the graph is stored as a set of key − value pairs (i,Ni), where i
is the identifier of the node and Ni is the representation of edges adjacent to node i. Each
edge e is represented by a triple e = (j, w(i,j), t(i,j)) where j is the identifier of adjacent
node, w(i,j) is the weight of the edge connecting i and j and t(i,j) is the type of the edge.
We model the weight by a float value and the type by an integer value. As we need to
model directed graphs, we must distinguish the direction of edges. We model adjacent edges
Ni as a tuple Ni = (k, {e1, e2, . . . , em}), were k denotes the number of outgoing edges;
{e1, e2, . . . , em} is a list of edges and all el : l < k represent outgoing edges and all el :
l > k represent incoming edges. An example of a graph represented using proposed storage
model is depicted in Fig. 1. Let us examine the record encoding node 1; the first element of
the Value part of the record indicates that there are two outgoing edges from node 1 (those
are the first two in the list - (3, 0.7, A) and (2, 0.5, A)) and the rest of the list represents
incoming edges (in this case only the edge (4, 0.1, B) ).

This representation allows us to retrieve outgoing and incoming edges of a node n to-
gether with edge weights and types in one lookup. The disadvantage of this approach is that
information on edges are redundant; i.e., edge e(i,j) is stored as an outgoing edge in the
record of node i and as an incoming edge in the node j record. This necessitates to mod-
ify both records, in case of edge manipulation (e.g., update of the weight, type values or
deletion).

6 http://jdbm.sourceforge.net/ (visited: 10.12.2009)
7 http://code.google.com/p/babudb/ (visited: 10.12.2009)



5 Spreading activation queries

As mentioned in Section 3.2, the input of the SA algorithm is a set of initially activated
nodes and set of parameters influencing the activation spread. In this section, we propose a
query syntax for executing the SA operation over the stored graph with the aim to allow the
definition of SA process using simple plain text string. The purpose of the SA query is to
facilitate the usage of the system, the execution of SA operation over stored graph.

The set of parameters considered for the SA algorithm is the following: activation thresh-
old (Th), activation decay (Decay) , allowed edge types (Types) , use of incoming edges for
spreading (Incoming) and maximal number of SA iterations (MaxIteration). The speci-
fication of activated nodes is done in terms of node properties that identify nodes. Thus, the
proposed syntax for the SA query is the following:

([node([prop=val;]*);]*) ; SAProperties: Th:threshold_val; Decay: decay_value;
Types=([[edge_type]* | all]); Incoming=[true|false]; MaxIteration=max_iterationt

We explain the SA query on the following example. In our pilot application, we use the graph
constructed from Wikipedia articles (modeled as nodes) and links (modeled as edges). Fol-
lowing example query executes the SA algorithm from nodes representing articles ’Spread-
ing Activation’ and ’Wikipedia’, with activation threshold 0.4 and decay 0.8, using all edge
types and both directions of edges, constrained to three SA iterations:

(node(name=’Spreading Activation’); node(name=’Wikipedia’)) ; SAProperties:
Th:0.4; Decay: 0.8; Types=all; Incoming=true; MaxIteration=3

Query execution is performed in two phases. In the first phase, the input for SA operation is
constructed. This involves identification of the initial activation nodes, using attributes spec-
ified in the node definition part of the query. Nodes with given attributes and attribute values
are selected and the initial nodes vector is constructed. From the node definition part of the
query, we construct a vector of initial nodes. E.g., initial nodes vector constructed from the
example query would be [’Spreading Activation’, ’Wikipedia’] (for simplicity, article names
represent nodes of the graph).

Initial nodes vector, together with other parameters, is than used as inputs for SA oper-
ation. In the second step the AVS algorithm is executed, taking advantage of the underlying
storage model for fast retrieval of information required to compute the activation spread.

The result of the SA query is a set of tuples; each tuple contains following elements:
(Activated node, activation, partial activations vector, number of impulses vector, distance
vector). Activated node is the node activated in the process of activation spreading, activation
is the node’s total activation, partial activations vector contains partial activations received
from distinct initial nodes (n-th element of the vector corresponds to the activation received
from the n-th element of initial nodes vector). Number of impulses vector contains informa-
tion on the number of impulses received by the node from distinct initiators and the distance
vector contains information on the distance of the node from distinct initiators. For example,
part of the result set for the example query is:

(Semantic Web; 12.42; [2.4182642, 10.0, ]; [3, 10, ]; [2,2,])
(Web search engine; 12.12; [0.7190919, 11.407564, ]; [1, 21, ]; [1,3,])



Key-Value Store

Graph Abstraction API

Graph Traversal Alg.

Properties API

Properties Store

Graph queries

SGDB Architecture

Fig. 2. Architecture of SGDB.

(Knowledge management; 10.80; [4.8060675, 6.0, ]; [5, 6, ]; [2,2,])

The SA query can be formulated in the plain text and its result set can be also communi-
cated in the plain text. Another advantage of the proposed SA query is that the upper bound
of query selectivity can be estimated based on query specification (use of outgoing and in-
coming links) and the information about initial nodes in/out-degrees.

6 SGDB architecture

This section presents the overall high-level architecture of SGDB system and its implemen-
tation. The architecture of the SGDB is depicted in Figure 2. The system is decomposed into
modules with distinct functionality; modules are organized in layers, where each layer pro-
vide a simplified abstraction for the upper layer, making the complexity of underlying layers
transparent.

The base stone of SGDB is the key-value store that maintains the adjacency lists of the
graph structure in form of the key-value tuples. The main responsibility of this module is to
provide fast lookups for adjacency lists based on the given key (node identifier).

Properties store is responsible for storing data (properties) related to the objects mod-
eled by nodes and relationships modeled by edges. E.g. let us suppose that node n in the
graph represents a person; properties associated with n could be name of the person, address
of the person. The property store is independent of the graph structure store and allows for
retrieval of the graph nodes based on their attributes.

Graph Abstraction API (GAAPI) provides graph abstraction layer, so that users can
access and manipulate the graph data using graph theory concepts - nodes and edges, instead
of node identifiers and adjacency lists. GAAPI provide functions for iterating over collection
of graph nodes, retrieval of graph nodes based on node identifiers or user defined properties,
retrieval of outgoing and incoming edges. In addition GAAPI provide functionality to modify
the graph structure - insertion and removal of nodes and edges.

Properties API provides access to properties store. Graph traversal layer contains
implementations of graph traversal operations, such as the Spreading Activation algorithm
or path finding algorithms. It exploits (GAAPI) to access the graph structure. Finally, the
graph queries layer is a presentation layer, providing access to the database functionality
using graph queries (current implementation provides SA queries as described in Section 5).



6.1 Implementation

SGDB8 is implemented in JAVA. The current implementation does not support transactions
and can be used as an application embedded database (it can not be run in a standalone
mode). SGDB is available as an open source software. It exploits Oracle Berkeley DB Java
Edition 9 as a key-value store.

The storage model used in SGDB allows to retrieve outgoing and incoming edges to-
gether with edge weight and type data in one lookup. This is convenient for breath first
traversals, especially the SA. The drawback of this approach, from the implementation point
of view, is that for update operations on the graph (insertion, deletion of nodes and edges)
the edge list must be retrieved from the storage, modified and than stored back, rewriting
the whole original record. In addition, the data describing edge ei,j are stored twice in the
storage – it is stored as an outgoing edge in the record of node i and as an incoming edge
in the record of node j. This is the trade-off of proposed storage model, more demanding
update operations are compensated by efficient retrieval operations.

7 Evaluation

In this section we first compare performance of the proposed approach with a general pur-
pose graph database for retrieval of weighted and typed links using the random access pat-
tern. Second, we provide performance characteristics of SGDB in the scope of our pilot
application. We describe the application and properties of used graph data, describe the eval-
uation setting and present achieved performance characteristics.

Experiments were conducted over data set of Wikipedia link graph. The graph struc-
ture was generated by a custom parser from Wikipedia XML dump (dump from 03.11.2009
was used). The resulting graph contained 3.3 million nodes and over 91 millions edges.
As shown by previous research [15], Wikipedia link graph exhibits small-world properties.
Small-world networks are characterized by small average path length between nodes and
high values of the clustering coefficient.

In the first part of the evaluation, we have studied the performance of a general purpose
graph database for SA technique, in which the link weights and types are modeled as edge
attributes. We have compared the time required to retrieve edges for a randomly chosen
node without and with weight and type data. We have used Neo4j10), an open source graph
database as a general purpose graph database for the tests. The default settings of Neo4j
database were used in the tests. The experiment was conducted in a black-box testing fashion.

Wikipedia link graph data set was used in the experiment. All the experiments were
conducted on a PC with 2GHz Intel Core 2 Duo-processor and 7200 RPM hard drive.

First, we have generated lists of identifiers of randomly chosen nodes from the graph.
We have created lists containing 10, 100, 1 000 and 10 000 node identifiers; we used 10
identifier sets for each. This setup was used to test the random access pattern that is typical
in SA computation. Pregenerated lists of identifiers were used to ensure the same conditions
for distinct tests. We have then measured the time required to retrieve both outgoing and
incoming edges for the nodes in the lists. We used generic graph database to retrieve edges
without retrieving weight and type attributes. Next, we have measured the time required to

8 https://sourceforge.net/projects/simplegdb/
9 http://www.oracle.com/technology/products/berkeley-db/je/index.html (visited: 10.12.2009)

10 http://neo4j.org/ (visited: 10.12.2009)



 100

 1000

 10000

 100000

 1e+06

 1e+07

10 100
1000

10000

tim
e 

(m
s)

Number of lookups

Performance of random node lookups

SGDB
Neo4j (edges only)

Neo4j (edges with weight and type)

Fig. 3. Time required to perform sets of random lookups; X-axis depicts the number of lookups per set;
Y-axis represents the time required to perform lookups. Log scale is used for both axes.

retrieve the edges for the same nodes, but with weight and type data. In average, the time
required to retrieve weighted and typed edges was 2.1 times higher than the retrieval of edges
without weight and type attributes.

We have performed the same experiments using SGDB, where the weight and type data
are stored together with link targets. The edges retrieval (with weight and type data) was 16.9
times faster compared to the retrieval of typed and weighted edges from general purpose
graph database. The reason is that in SGDB the weight and type data are coupled together
with edges definitions, so only one disk access can be used to read all the data for the SA
expansion from a given node; in addition, SGDB random access operation for retrieval of
node’s edges was slightly faster. Figure 3 shows histogram of the time required to retrieve
the edges using SGDB, and general purpose graph database (with and without retrieving
weight and type attributes).

In the second series of tests, we have run our pilot application. The pilot application
aims at finding connections between two or more given input nodes in Wikipedia link graph.
Nodes in the Wikipedia link graph model articles and edges represent links between articles.
The pilot application uses the activation spreading over the Wikipedia link graph to find
highly activated nodes (named connecting nodes), and identifies the paths with the highest
sum of activation on the nodes between initial nodes to connecting node.

In each test, we have measured the time required for finding connections between two
randomly chosen nodes, constrained to two iterations of activation spread. Under the two
iterations constraint, we can identify the connections of the maximal length of 4 between
two initial nodes. Because of the small average distance between nodes in the test set (one of
the properties of the small-world graphs), we found connections for randomly chosen nodes
in 86.4% of cases.

We have performed 1000 queries, both incoming and outgoing links were used, decay
parameter was set to 1 (meaning no decay in iterations) and activation threshold was set to
0.000001. The effect of this setting was the full breath first expansion from the initial nodes
in two iterations.



 10

 100

 1000

 10000

 10  20  30  40  50  60  70  80  90  100

tim
e 

(m
s)

Number of lookups

Avg. time for query execution

 1

 10

 100

 1000

 10000

 10  20  30  40  50  60  70  80  90  100

tim
e 

(m
s)

Number of lookups

Fig. 4. X-axis represents number of node lookups in queries. Y-axis (log scale) represents time in ms
the queries took to execute. Plot on the left represent averaged values and figure on the right depicts
points representing values for individual queries.

Figure 4 depicts the time required to execute queries with an increasing numer of node
lookups for a query. The average execution time was 1136.4 ms, the activation values for
181820.1 nodes in average was computed for a single query. The average number of edge
retrieval operations from the SGDB storage was 49.7.

8 Conclusion

In this paper, we have proposed a storage model for a graph database, designed to provide
fast data store for execution of the Spreading Activation (SA) technique. In addition, we
have presented the architecture and implementation of SGDB, the graph database that utilize
proposed storage model.

We have compared performance of our approach with the performance of a general
purpose graph database, for the activation spreading over the stored graph. The evaluation
showed important time savings using proposed approach. As our approach was designed
for a specific problem, it is not surprising that it performs better (for that problem) than a
generic one. However, we believe that the SA technique has a wide number of possible uses
in context of graph databases and it is worth to exploit the optimization for the SA even at
the graph structure storage level.

We have also proposed a query type for the Spreading Activation operation over the
graph database. The SA query has an easily interpretable definition and results and the up-
per bound of query selectivity can be easily estimated. We have described the performance
characteristics of SGDB, using proposed SA operation in the scope of our pilot application
that exploits the Wikipedia link graph.

Future work will go in two directions: 1) extending the support for a more general query
language, and 2) providing support for parallel implementations.

References

1. M. Amann, B. Scholl. Gram: A graph data model and query language. In Proceedings of the
European Conference on Hypertext Technology (ECHT), pages 201–211. ACM, 1992.



2. R. Angles and C. Gutierrez. Survey of graph database models. ACM Comput. Surv., 40(1):1–39,
2008.

3. M. R. Berthold, U. Brandes, T. Kötter, M. Mader, U. Nagel, and K. Thiel. Pure spreading activation
is pointless. In CIKM ’09: Proceeding of the 18th ACM conference on Information and knowledge
management, pages 1915–1918, New York, NY, USA, 2009. ACM.

4. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively created
graph database for structuring human knowledge. In SIGMOD ’08: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages 1247–1250, New York, NY,
USA, 2008. ACM.

5. M. Ciglan, E. Rivière, and K. Nørvåg. Learning to find interesting connections in wikipedia. In
Proceeding of APWeb 2010, 2010.

6. F. Crestani. Application of spreading activation techniques in information retrieval. Artif. Intell.
Rev., 11(6):453–482, 1997.

7. O. Erling and I. Mikhailov. RDF support in the virtuoso DBMS. In Conference on Social Semantic
Web, volume 113 of LNI, pages 59–68. GI, 2007.

8. M. Gyssens, J. Paredaens, and D. V. Gucht. A graph-oriented object model for database end-user.
In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data.,
pages 24–33. ACM Press, 1990.

9. J. Hidders. A graph-based update language for object-oriented data models. In Ph.D. dissertation.
Technische Universiteit Eindhoven, 2001.

10. U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A peta-scale graph mining system
implementation and observations. In Data Mining, 2009. ICDM ’09. Ninth IEEE International
Conference on, pages 229–238, Dec. 2009.

11. A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM - a pragmatic semantic repository for OWL.
In Proc. Workshop Scalable Semantic Web Knowledge Base Systems.

12. M. Levene and A. Poulovassilis. The hypernode model and its associated query language. In
Proceedings of the 5th Jerusalem Conference on Information technology., pages 520–530. IEEE
Computer Society Press, 1990.

13. M. Mainguenaud. Simatic XT: A data model to deal with multi-scaled networks. In Comput.
Environ. Urban Syst. 16, pages 281–288, 1992.

14. G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: a system for large-scale graph processing. In PODC ’09: Proceedings of the 28th ACM
symposium on Principles of distributed computing, pages 6–6, New York, NY, USA, 2009. ACM.

15. A. Mehler. Text linkage in the wiki medium: A comparative study. In Proceedings of the EACL
2006 Workshop on New Text: Wikis and Blogs and Other Dynamic Text Sources, pages 1–8, 2006.

16. J. Paredaens, P. Peelman, and L. Tanca. G-Log: A graph-based query language. In IEEE Trans.
Knowl. Data Eng. 7, pages 436–453. IEEE, 1995.

17. K. Rohloff, M. Dean, I. Emmons, D. Ryder, and J. Sumner. An evaluation of triple-store technolo-
gies for large data stores. In R. Meersman, Z. Tari, and P. Herrero, editors, OTM Workshops (2),
volume 4806 of Lecture Notes in Computer Science, pages 1105–1114. Springer, 2007.

18. A. Troussov, M. Sogrin, J. Judge, and D. Botvich. Mining socio-semantic networks using spread-
ing activation technique. In International Workshop on Knowledge Acquisition from the Social
Web (KASW’08).


