
An Approach to High-Performance Scalable
Temporal Object Storage

Kjetil Nørvåg

Department of Computer and Information Science
Norwegian University of Science and Technology

7491 Trondheim, Norway
email: noervaag@idi.ntnu.no

Abstract. In this paper, we discuss features that future database systems should support to deliver the
required functionality and performance to future applications. The most important features are efficient sup-
port for: 1) large objects, 2) isochronous delivery of data, 3) queries on large data sets, 4) full text indexing,
5) multidimensional data, 6) sparse data, and 7) temporal data and versioning. To efficiently support these
features in one integrated system, a new database architecture is needed. We describe an architecture suit-
able for this purpose, the Vagabond Temporal Object Database system. We also describe techniques we have
developed to avoid some potential bottlenecks in a system based on this new architecture.

1 Introduction

The recent years have brought computers into almost every office, and this availability of powerful
computers, connected in global networks, has made it possible to utilize powerful data management
systems in new application areas. The increasing performance and storage capacity, combined with
decreasing prices, has made it possible to realize applications that previously were too heavy for
current computer hardware.

High performance and storage capacity is not necessarily enough. We need support software, e.g.
database systems, operating systems, and compilers, able to benefit from current and future hardware.
This often means rethinking previous solutions, similar to what was done in the hardware world with
the introduction of the RISC concept.

In this paper, we will concentrate on database systems, quite likely to be the bottleneck in many
future information systems if not adequately designed. The first step in the process of rethinking old
solutions has already been done, with the advent of object database system (ODBs). While relational
database systems (RDBs) have good performance for many of the previous, traditional, application
areas, new applications demands more than RDBs can deliver. The increased modeling power and
removal of the language mismatch in ODBS, has made integration between the application programs
easier, and in many cases helped to increase the application performance.

Previously, data has lived in an artificial, modeled world after they had been inserted into the
database. This created a mismatch in many ways similar to the language mismatch. What we would
like, is that database systems should support a world more similar to our own, which includes time and
space. This is not at all a new observation, especially the aspects of temporal database management
have been an active research area for many years. However, current database architectures, adequate
for yesterday’s applications, will have problems coping with tomorrow’s application. In this paper, we
describe a new architecture, more suitable for tomorrows applications, the Vagabond Temporal Object
Database System. We give an overview of Vagabond, and describe some of the new techniques we
have developed to make Vagabond able to deliver the high performance and scalability needed for
future applications.

The organization of the rest of the paper is as follows. In Section 2 we give an overview of related
work. In Section 3, we describe some application areas that have only limited support in existing
database system. Based on this discussion, we summarize the features future database systems should
support, and describe assumptions and features that motivate the design of the Vagabond system. In
Section 4 we discuss some techniques that can increase the performance of a temporal ODBs. Finally,
in Section 5 we conclude the paper.

2 Related Work

Log-structured file systems, whose philosophy the log-only approach of Vagabond is based on, was
introduced by Rosenblum and Ousterhout [7]. LFS has been used as the basis for two other object
managers: the Texas persistent store [8], and as a part of the Grasshopper operating system[1]. Both
object stores are page based, i.e., operations in the database are done on page granularity. To our
knowledge, there has been no publications on other object LFS based log-only ODBs.

3 The Need for a New Architecture

When designing new database systems, it is important to study the current as well as possible fu-
ture applications of the system. We can categorize application areas into existing application areas,
and emerging application areas. Existing application areas includes the traditional database areas, like
typical transaction processing, well suited for RDBs, and application areas where application specific
database systems or file systems have been used earlier, because current general purpose database sys-
tems can not handle the performance constraints. Emerging application areas include new application
areas, that are emerging as a response to the increased computer performance in general, as well as
application areas that are a response to other technologies, e.g., World Wide Web.

Examples of existing applications, where database systems until recently have been a potential
performance bottleneck include geographical information systems, scientific and statistical database
systems, and multimedia systems. Examples of applications where increased database support will be
needed to deliver the desired performance include temporal database systems and XML/semistructured
data management. Based on the characteristics of these application areas, we have identified some fea-
tures that we believe future systems should support:

� Efficient support for large objects.
� Isochronous delivery of data.
� Queries on large data sets.
� In applications where low update rates appear, this should be exploited to increase performance.
� Support for full text indexing.
� Support multidimensional data.
� Support sparse data, for example by the use of data compression.
� Dynamic clustering and dynamic tuning of system options and parameters.
� Temporal data support/version management.

Until now, no single system has supported all these features. For some of the features listed, ad-hoc
solutions exists, but these are often not scalable, or will not work well together with support for the
other features. We think that future systems should support these features, in one integrated system.
This is the goal of the Vagabond project. Vagabond is designed to support the listed features, with a
philosophy based on the following assumptions:

2

1. Although many of the current problem can be handled by future main memory database systems
(MMDBs), there are many problems (and more will appear, as the computers become powerful
enough to solve them) that are too large to be solved by a MMDB alone. However, the size of main
memory increases fast, and it is very important to utilize the available main memory as much as
possible to reduce time consuming secondary memory accesses.

2. The main bottleneck in a database system for large databases is still secondary memory access.
In a database system, most accesses to data are read operations. Consequently, database systems
have been read optimized. However, as main memory capacity increases, the amount of disk write
operations relative to disk read operations will in general increase. This calls for a focus on write
optimized database systems.

3. To provide the necessary computing power and data bandwidth, a parallel architecture is nec-
essary. A shared-everything approach is not truly scalable, so our primary interest is in ODBs
based on shared-nothing multicomputers. With the advent of high performance computers, and
high speed networks, we expect multicomputers based on commodity workstations/servers and
networks to be cost effective.

4. In many application areas, there is a need for increased data bandwidth, not only increased trans-
action throughput (although these points are related). This is especially important for emerging
application areas that have a need for high data bandwidth. Examples are video on demand, and
supercomputing applications, which have earlier used file systems because database systems have
not supported delivery of large data volumes.

5. Even though set based queries have been a neglected feature in most ODBs, we expect it to be just
as important in the future for ODBs as it has been previously for relational database systems. The
popularity of the hybrid object-relational systems justifies this assumption.

6. Distributed information systems are becoming increasingly common, and they should be sup-
ported in a way that both facilitates efficient support for distribution, and efficient execution of
local queries and operations.

We will now describe the architecture and some interesting aspects of the Vagabond ODB.

3.1 Log-Only Storage

In most current database systems, write ahead logging (WAL) is employed to increase throughput and
reduce response time. WAL defers the non-sequential writing, but sooner or later, the data has to be
written to the database. This often results in the writing of lots of small objects, almost always one disk
access for each individual object. Our solution to this problem, is to eliminate the current database
completely, and use a log-only approach, similar to the log-structured file system approach [7]. The
log is written contiguously to the disk, in a no-overwrite way, in large blocks. This is done by writing
many objects and index entries, possibly from many transactions, in one write operation. This gives
good write performance, but possibly at the expense of read operations.

Already written data is never modified, new versions of the objects are just appended to the log.
Logically, the log is an infinite length resource, but the physical disk size is, of course, not infinite. We
solve this problem by dividing the disk into large, equal sized, physical segments. When one segment
is full, we continue writing in the next available segment. As data is vacuumed, deleted or migrated
to tertiary storage, old segments can be reused. Deleted data will leave behind a lot of partially filled
segments, the data in these near empty segments can be collected and moved to a new segment. This
process, which is called cleaning, makes the old segments available for reuse. By combining cleaning
with reclustering, we can get well clustered segments. In a traditional system with in-place updating,

3

0

2

4

6

8

10

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

S
pe

ed
up

Memory size (Mobuf /SDB)

Sobj :

64
128
208
512

0

2

4

6

8

10

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

S
pe

ed
up

Memory size (Mobuf /SDB)

Pw :

0.1
0.3
0.5

0

1

2

3

4

5

6

7

8

9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

S
pe

ed
up

Memory size (Mobuf /SDB)

C :
0.1
0.2
0.3

Figure 1. Speedup with different workload parameters: different object sizes to the left, different update rates in the middle,
and different clustering factors to the right. The memory size is given as the buffer memory size relative to data base size.

keeping old versions of objects, which is required in a transaction-time temporal database system,
usually means that the previous version has to be copied to a new place before update. This doubles
the write cost. In Vagabond, this is not necessary. Keeping old versions comes for free (except for
the extra disk space). Thus, our system supports transaction-time temporal database systems in an
efficient way.

Because each new version of an object is written to a new place, logical object identifiers (OIDs)
are needed. When using logical OIDs, an OID index (OIDX) is needed to do the mapping from
logical OID to physical location when retrieving an object. The index entries in the OIDX, the object
descriptors (OD), contains the physical address for an object, and in a transaction-time temporal ODB
(TODB), the timestamp as well. In a traditional non-temporal ODB, the OIDX needs only be updated
when objects are created, not when they are updated. In a log-only ODB, however, the OIDX needs
to be updated on every object update. This might seem bad, and can indeed make it difficult to realize
an efficient non-temporal ODB based on this technique. However, in the case of a TODB, the OIDX
needs to be updated on every object update also in the case of in-place updating, because either the
previous or the new version must be written to a new place. Thus, when supporting temporal data
management, the indexing cost is the same in these two approaches.

Our storage structure is very well suited as a basis for a temporal database system. We never
overwrite data, so keeping old versions comes for free. We maintain the temporal information in the
index, which makes retrieval efficient, without an additional index. We have done an analysis of the
possible speedup when using the log-only approach instead of in-place updating. Figure 1 illustrate
the speedups with different amounts of main memory available for buffering, using an 95/05 access
pattern, and with different workload parameters.

To the left in Figure 1 we see the speedup with different average object sizes. As can be expected,
the object size is an important parameter, and the gain increases with increasing object sizes. The
average object size is increasing as a result of new application areas and cheaper storage, which
means that we can expect an even better speedup from using an log-only TODB in the future.

In our analysis, we assumed an update rate of
���������
	

as the default value for the fraction of
operations being write operations. In periods, and in some application areas, we will have a higher
value of

���
. In the figure, the speedup with an average object size of 208 bytes and different values

of
���

is illustrated.
We have assumed an average clustering factor (the fraction of a retrieved object page that will

be accessed before the page is discarded from the buffer) in the in-place update based TODB to be� ����
	
. In practice, this value will be often be smaller. As Figure 1 illustrates, the speedup in that

case is much higher. A more detailed description of the analytical models and the results, using a
wider range of parameters and access patterns, can be found in [4].

4

3.2 Parallelity and Distribution in Vagabond

The Vagabond architecture is a system designed for high performance, and one strategy to achieve
this, is to base the design on the use of parallel servers. Data is declustered over a set of servers, which
we call a server group. It is possible to add and remove nodes from the configuration. The servers in a
server group will cooperate on the same task. In this way, it is possible to get a data bandwidth close
to the aggregate bandwidth of the cooperating servers. To benefit from the use of a parallel server
groups, it is supposed that the servers in one server group are connected by some kind of high speed
communication.

In many organizations, it is also desirable to have the data in a distributed system, and the demand
for support of distributed databases is increasing. To satisfy this, we use a hybrid solution: a distributed
system, with server groups. The connections between the server groups in the distributed system have
in general less bandwidth than the connections between the servers in a server group. Objects are
clustered on server groups based on locality as is common in traditional distributed ODBs, but one
server group can contain more than one computer (a kind of “super server”). Objects to be stored on a
server group are declustered on the servers in the group according to some declustering strategy, e.g.,
hashing.

3.3 Objects in Vagabond

In our storage system, all objects smaller than a certain threshold, e.g., 64 KB, are written as one
contiguous object. They are not segmented into pages as is done in other systems) Objects larger than
this threshold are segmented into subobjects, and a large object index is maintained for each large
object. Parts of the object can reside on different physical devices, possibly on different levels in the
storage hierarchy.

The value of the threshold can be set independently for different object classes, something which is
very useful, because different object classes can have different object retrieval characteristics. Typical
examples are a video and a general index. In a video, you want to retrieve one large block of the video
each time, it is needed to play the video. When searching an index however, often relatively small
nodes are desired. Similar for both video and index retrieval is that you only want a small part of the
object. In other situations, e.g., retrieval of an image, you want to display the image, and therefore
want to retrieve the whole image at once.

4 Removing Bottlenecks

During the design of Vagabond, we have used cost modeling to identify potential bottlenecks in the
proposed system, and to find techniques to avoid them. As can be expected, OIDX management is
potentially very costly. To reduce the indexing cost, we have developed a new OIDX structure for
temporal ODBs [5], as well as several novel techniques that reduce the cost of OID indexing:1

� “Writable” object descriptor cache for temporal ODBs [6].
� Persistent caching of OIDX entries [3].

1 It is important to note that the OIDX bottleneck problem also exists in a TODB based on traditional page server/in-place
update techniques. Even though in a traditional non-temporal ODB, the OIDX only needs to be updated when objects
are created, in a TODB, each object update creates a new version, and the OIDX needs to be updated. This means that
the proposed techniques are applicable to all TODBs, not only log-only systems.

5

A second bottleneck is object retrieval. The Vagabond system is write optimized, and as a result,
object retrieval and index lookup can become a serious bottleneck. We will use some techniques
to reduce the number and size of read operations, which can improve object retrieval performance
considerably, with only marginal write penalties:

� The use of signatures in the OIDX [2].
� Object compression. With a log-only approach, objects are written to a new location every time,

so that we only use as much space as the size of the current version written. In a system employing
in-place updates, it is difficult to benefit from object compression, because the compression ratio
will very from version to version, and it is difficult to know how much space to reserve.

Compression will also improve write efficiency, as it reduces the amount of data needed to be written
to disk. We will now give an overview over the techniques. For a more detailed description, we refer
to the corresponding papers where these techniques are presented and analyzed [2, 3, 6].

5 Conclusions

In this paper, we have discussed features that future database systems need to support to deliver the
required functionality and performance to future applications. In order to be able to support these
features, new database architectures ares needed to make efficient and scalable systems. In this paper,
we have described an architecture suitable for this purpose, the Vagabond Temporal Object Database
systems, which is currently under development at the Norwegian University of Science and Technol-
ogy. In order to avoid potential bottlenecks in the case of very large databases, new techniques to
reduce object identifier indexing cost and object read cost are desired. We have described several such
techniques, including a writable OD cache, the persistent cache, a new object identifier index, and the
use of object signatures integrated into the object identifier index.

References

1. D. Hulse and A. Dearle. A log-structured persistent store. In Proceedings of the 19th Australasian Computer Science
Conference, 1996.

2. K. Nørvåg. Efficient use of signatures in object-oriented database systems. In Proceedings of Advances in Databases
and Information Systems, ADBIS’99, 1999.

3. K. Nørvåg. The Persistent Cache: Improving OID indexing in temporal object-oriented database systems. In Proceedings
of the 25th VLDB Conference, 1999.

4. K. Nørvåg. A performance evaluation of log-only temporal object database systems. Technical Report IDI 15/99,
Norwegian University of Science and Technology, 1999.

5. K. Nørvåg. The Vagabond temporal OID index: An index structure for OID indexing in temporal object database
systems. In Proceedings of the 2000 International Database Engineering and Applications Symposium (IDEAS), 2000.

6. K. Nørvåg and K. Bratbergsengen. Optimizing OID indexing cost in temporal object-oriented database systems. In
Proceedings of the 5th International Conference on Foundations of Data Organization, FODO’98, 1998.

7. M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured file system. In Proceedings of
the Thirteenth ACM Symposium on Operating System Principles, 1991.

8. V. Singhal, S. Kakkad, and P. Wilson. Texas: An efficient, portable persistent store. In Proceedings of the Fifth Interna-
tional Workshop on Persistent Object Systems, 1992.

6

