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Abstract—Due to applications and systems such as sensor(k < K)!, each peer computes it&-skyband [8] as a pre-
networks, data streams, and peer-to-peer (P2P) networks,ala processing step. Then, super-peers aggregateytsi&yband
generation and storage become increasingly distributed. There- sets from their peers, and maintain this aggregated data to

fore a challenging problem is to support best-match query . . ¢ B h . kvl
processing in highly distributed environments. In this paper, we 2NSWEr any incoming top-query. By exchanging skyline

present a novel framework for top-k query processing in large- Sets [9] (which are a subset of tlie-skyband sets) at super-
scale P2P networks, where the dataset is horizontally distributed peer level, we are able to route queries to those super-peers
to peers. Our proposed framework returns the exact results to that actually contribute to the tap+esult. Thus our approach
the user, while minimizing the number of queried super-peers always provides the exact and complete result set.
and transferred data. Through simulations we demonstrate the . . .
feasibility of our approach in terms of overall response time. To summarize, our framework utilizes a peer selection
mechanism at super-peer level based on the skyline of each
|. INTRODUCTION super-peer. Although the skyline operator has receiveshtbc
Recently there has been an increased interest to supmamsiderable attention, its usage for answering iaieries
more flexible query operators than ordinary query typebas not been explored yet. Therefore, we investigate thig app
such as top-k queries. Tdp-queries retrieve the objectscability of the skyline operator for efficiently answeringptk
that best match the user requirements by employing usgueries for a large class of scoring functions, indicatisgru
specified scoring functions that result in an ordered set gpecified preferences, in large P2P networks. Our expetahen
objects containing the bestobjects only [1], [2]. Since data evaluation shows that our approach performs efficiently and
generation and storage become increasingly distributetthjs  provides a viable solution. Sec. Il overviews the relatedkwo

paper we address the efficient computation of kogeries in  In Sec. Il we describe our framework. The experimental

large scale peer-to-peer (P2P) networks. evaluation is presented in Sec. IV, and we conclude in Sec. V.
Assuming horizontal data partitioning, the challenge is

to provide efficient algorithms for processing tbpgueries, Il. RELATED WORK

i.e. queries that return only the bektresults to the user. Previous work on topge query processing in distributed
Users are allowed to specify a monotone function for eagvironments [10], [11] has focused on vertically disttéal
query that aggregates some attributes of the objects intaj@a over multiple sources. Most approaches initiallydttie
single score value that defines a total ordering, and enabi@prove some limitations of the Threshold Algorithm [12].
the retrieval of topk results. There is only limited previousThere exists some previous work for tapgueries in P2P over
work on supporting tog: queries in P2P systems, and thosgertically distributed data. In [13], Cao and Wang propose a
approaches either assume vertical data partitioning ts$8k  algorithm called "Three-Phase Uniform Threshold” (TPUT)
use caching techniques [4], [5], [6], or deliver approxienatthat was later improved by KLEE [3].
query result sets [7]. In contrast to these approaches, otk W For horizontally distributed data among peers, P2P kop-
assumes horizontal data partitioning among peers (whittteis query processing has been studied in only a few works so
case for independent sources) and focuses on query progesshr. Balke et al. [5] try to minimize the data object traffic
rather than CaChing. This is due to the fact that each user mMaduced by todﬁ processing_ However, this approach requires
define his own arbitrary preferences on a query, theref@ré to that each query is processed by all super-peers, unlessabe e
queries are dynamic and not necessarily re-occurring.  same query has reoccurred before, which is unlikely as there
In this paper we present, a framework that supports to@- an infinite number of potential queries posed by different
k query processing over horizontally partitioned data storgisers. A similar approach for unstructured P2P systems is
on peers organized in a super-peer network. In our approagfesented in [4], where the main technique is a variant of
a super-peer is responsible for gathering all necessa® dgéoding, followed by a merging score-list step at internageli

from its associated peers, in order to be able to answer t@rers. In [6], the authors rely on result caching to prune
k queries. For a maximum value df, denoting an upper

bound on the number of results requested by anyktoprery  in the rest of this paper we assume that K.



network paths and answer queries without contacting alipee
Their approach relies on caching techniques, therefore the
performance is dependent on the query distribution. Everemo
important, they assume acyclic networks, which is restect
for dynamic peer-to-peer networks. Hoeaeal. [7] construct
routing filters in the form of histograms, in order to prune
query paths and return approximate results. However this
approach is not suitable for the case of more than one ranking
attributes, since multi-dimensional histograms shouldised. T
Finally, the skyline operator [9] has recently received-con 123456780910
siderable attention, but its usage for answering kogueries
has not been explored yet. In [14] the authors improve the Fig. 1. Skyline andK-skyband
performance of ranked join indices based on the concept of
dominating sets.
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B. Query Processing

IIl. P2P ToP-k QUERY PROCESSING Each peerP; holdsn; d-dimensional points, denoted as a

The overall aim is to provide an infrastructure for anS€t0i (1 < i < N,). Obviously the size of the complete set
swering topk queries in P2P networks, assuming a supe®f points isn = ;% n; and the datase? is the union of all
peer architecture. Super-pe$§i (1 <3< Nsp) constitute peerS’ datasetQi: O = U0;. This is the case of horizontal
only a small fraction of the peer®; (1 < j < N,) in data distribution and each peer maintains its own data tshjec
the network, i.e.N,, << N,. Peers that join the networksuch as images or documents. Only the feature values of
directly connect to one of the super-peers. Each super-pt&# selected objects, namely tif€-skyband [8] points that
maintains links to simple peers, based on the value of fi@Present a subset of each peer’s data, are published to the
degree parametdd EG,,. In addition, a super-peer is initially respective super-peer, while the original data is storetthet

connected to a limited set of at maStE'G,, other super-peers PEe€r.
(DEG,, < DEG)). Assuming a spaceD defined by d dimensions

{di,ds,..,dq} and given a set of point®, a pointp € O
with p = {p[1],...,p[d]} is said todominate another point
q € O, if on each dimensionl; € D, p[i] < ¢[é]; and on at
Given a data collectiorQ of n objectso; (1 < i < n), least one dimensiod; € D, p[j] < g[j]. The skyline is a
we assumed featuress;(o;) (1 < j < d) that describe an set of pointsSKY C O which are not dominated by any
objecto;, € O. We assume that the features are numerical other point [9]. The points irff K'Y are calledskyline points,
scoring functions with non-negative values that evaluate cand in the example of Figure L, i andn are the skyline
tain features of database objects. The feature space isdefipoints. Notice that for example the tdpresult of a query
by thed scoring functionss;, therefore it is ad-dimensional with f = 0.5« = + 0.5 * y belongs to the skyline, namely the
space. An objecb; € O can be represented as a paojntn  point i is the best match for this query.
the feature spacen = {p[1],...,p[d]}, wherep[j] = s;(0;), Motivated by the fact that the top-always belongs to the
is a value on dimensiod;. In the rest of this paper we useskyline for any monotone function, we use skyline as a pre-
the terms object and data point interchangeably. Furthermaprocessing step to answer tépegueries. In order to collect
without loss of generality, we assume that smaller scoreegal the points necessary to answer exact kogderies, we adopt
are more preferable. the concept ofK-skyband. TheK -skyband query reports the
In our approach we assume an aggregation funcfidghat set of points which are dominated by at mdst— 1 other
is increasingly monotone, i.e. if for eveiyp[i] < p'[i], then ones. Thus, the conventional skyline is a special instarfice o
fp) = flp[],...,pld]) < fO'[1],...,p'[d]) = f(p'). The the K-skyband, wherd{ = 1. In Figure 1, theK-skyband for
restriction of monotonicity is a common property [1], [12]K = 3 includes all points that lie in the line-shadowed area.
and it conveys the meaning that whenever the score of allEach peer is capable to answer a toguery by examining
dimensions of the point is at least as good as another poindnly the points that belong to it&-skyband. Each super-
p’, then we expect that the overall scorepois as least good peer SP4 maintains the aggregated’-skyband points of
as p’. The result of a topge query is the ranked list of the its associated peers. In order to keep the information in a
k objects with lowestscore values. In our setting a top- manageable sizeSP, computes theK-skyband over the
query gx(f) takes two parameters: a user specified monotoaggregated peer points. This results in a new set of poilsts, a
function f and the number of requested objektdNotice that referred to as super-peeris-skyband, which 1) summarizes
both the scoring function and the parametemay differ for the data objects of all peers connected to the super-pegr, an
each query and we are interested in retrieving khebjects most importantly 2) is capable to answer any foguery.
with the best (minimum) values of the scoring function. The remaining challenge is to answer tbpueries over

A. Preliminaries
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Fig. 2. Response time for uniform data distributio¥i;;, = 200, N, = 2000, K = 50.

the entire super-peer network. Instead of flooding queriesfarwarded among super-peers, in such a way that the amount
super-peer level, we build routing indices based on therskyl of transferred data is minimized. To achieve this goal, we
points of super-peers. This enables selective queryingasfet use the skyline and-skyband sets to efficiently support top-
super-peers that are actually responsible for peers wikiaet & query processing. We provide an experimental evaluation
results to the query. through simulations, showing that our framework performs
Concluding, our framework supports efficiently tép- efficiently and provides a viable solution when a large degre
gueries over distributed data in a super-peer networkzintj of distribution is required.
routing indexes based on the skylines sets of super-peers. |
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