
Skyline-based Peer-to-Peer Top-k Query Processing
Akrivi Vlachou #1, Christos Doulkeridis#2, Kjetil Nørvåg ∗3, Michalis Vazirgiannis#4

#Dept. of Informatics, Athens University of Economics and Business, Greece
1avlachou@aueb.gr

2cdoulk@aueb.gr
4mvazirg@aueb.gr

∗Dept. of Computer Science, NTNU, Trondheim, Norway
3Kjetil.Norvag@idi.ntnu.no

Abstract— Due to applications and systems such as sensor
networks, data streams, and peer-to-peer (P2P) networks, data
generation and storage become increasingly distributed. There-
fore a challenging problem is to support best-match query
processing in highly distributed environments. In this paper, we
present a novel framework for top-k query processing in large-
scale P2P networks, where the dataset is horizontally distributed
to peers. Our proposed framework returns the exact results to
the user, while minimizing the number of queried super-peers
and transferred data. Through simulations we demonstrate the
feasibility of our approach in terms of overall response time.

I. I NTRODUCTION

Recently there has been an increased interest to support
more flexible query operators than ordinary query types,
such as top-k queries. Top-k queries retrieve the objects
that best match the user requirements by employing user-
specified scoring functions that result in an ordered set of
objects containing the bestk objects only [1], [2]. Since data
generation and storage become increasingly distributed, in this
paper we address the efficient computation of top-k queries in
large scale peer-to-peer (P2P) networks.

Assuming horizontal data partitioning, the challenge is
to provide efficient algorithms for processing top-k queries,
i.e. queries that return only the bestk results to the user.
Users are allowed to specify a monotone function for each
query that aggregates some attributes of the objects into a
single score value that defines a total ordering, and enables
the retrieval of top-k results. There is only limited previous
work on supporting top-k queries in P2P systems, and those
approaches either assume vertical data partitioning to peers [3],
use caching techniques [4], [5], [6], or deliver approximate
query result sets [7]. In contrast to these approaches, our work
assumes horizontal data partitioning among peers (which isthe
case for independent sources) and focuses on query processing,
rather than caching. This is due to the fact that each user may
define his own arbitrary preferences on a query, therefore top-k
queries are dynamic and not necessarily re-occurring.

In this paper we present, a framework that supports top-
k query processing over horizontally partitioned data stored
on peers organized in a super-peer network. In our approach,
a super-peer is responsible for gathering all necessary data
from its associated peers, in order to be able to answer top-
k queries. For a maximum value ofK, denoting an upper
bound on the number of results requested by any top-k query

(k ≤ K)1, each peer computes itsK-skyband [8] as a pre-
processing step. Then, super-peers aggregate theK-skyband
sets from their peers, and maintain this aggregated data to
answer any incoming top-k query. By exchanging skyline
sets [9] (which are a subset of theK-skyband sets) at super-
peer level, we are able to route queries to those super-peers
that actually contribute to the top-k result. Thus our approach
always provides the exact and complete result set.

To summarize, our framework utilizes a peer selection
mechanism at super-peer level based on the skyline of each
super-peer. Although the skyline operator has received recently
considerable attention, its usage for answering top-k queries
has not been explored yet. Therefore, we investigate the appli-
cability of the skyline operator for efficiently answering top-k
queries for a large class of scoring functions, indicating user-
specified preferences, in large P2P networks. Our experimental
evaluation shows that our approach performs efficiently and
provides a viable solution. Sec. II overviews the related work.
In Sec. III we describe our framework. The experimental
evaluation is presented in Sec. IV, and we conclude in Sec. V.

II. RELATED WORK

Previous work on top-k query processing in distributed
environments [10], [11] has focused on vertically distributed
data over multiple sources. Most approaches initially tried to
improve some limitations of the Threshold Algorithm [12].
There exists some previous work for top-k queries in P2P over
vertically distributed data. In [13], Cao and Wang propose an
algorithm called ”Three-Phase Uniform Threshold” (TPUT)
that was later improved by KLEE [3].

For horizontally distributed data among peers, P2P top-k

query processing has been studied in only a few works so
far. Balke et al. [5] try to minimize the data object traffic
induced by top-k processing. However, this approach requires
that each query is processed by all super-peers, unless the exact
same query has reoccurred before, which is unlikely as there
is an infinite number of potential queries posed by different
users. A similar approach for unstructured P2P systems is
presented in [4], where the main technique is a variant of
flooding, followed by a merging score-list step at intermediate
peers. In [6], the authors rely on result caching to prune

1In the rest of this paper we assume thatk ≤ K.



network paths and answer queries without contacting all peers.
Their approach relies on caching techniques, therefore the
performance is dependent on the query distribution. Even more
important, they assume acyclic networks, which is restrictive
for dynamic peer-to-peer networks. Hoseet al. [7] construct
routing filters in the form of histograms, in order to prune
query paths and return approximate results. However this
approach is not suitable for the case of more than one ranking
attributes, since multi-dimensional histograms should beused.

Finally, the skyline operator [9] has recently received con-
siderable attention, but its usage for answering top-k queries
has not been explored yet. In [14] the authors improve the
performance of ranked join indices based on the concept of
dominating sets.

III. P2P TOP-k QUERY PROCESSING

The overall aim is to provide an infrastructure for an-
swering top-k queries in P2P networks, assuming a super-
peer architecture. Super-peersSPi (1 ≤ i ≤ Nsp) constitute
only a small fraction of the peersPj (1 ≤ j ≤ Np) in
the network, i.e.Nsp << Np. Peers that join the network
directly connect to one of the super-peers. Each super-peer
maintains links to simple peers, based on the value of its
degree parameterDEGp. In addition, a super-peer is initially
connected to a limited set of at mostDEGsp other super-peers
(DEGsp < DEGp).

A. Preliminaries

Given a data collectionO of n objectsoi (1 ≤ i ≤ n),
we assumed featuressj(oi) (1 ≤ j ≤ d) that describe an
object oi ∈ O. We assume that the featuressj are numerical
scoring functions with non-negative values that evaluate cer-
tain features of database objects. The feature space is defined
by thed scoring functionssj , therefore it is ad-dimensional
space. An objectoi ∈ O can be represented as a pointp in
the feature space:p = {p[1], ..., p[d]}, wherep[j] = sj(oi),
is a value on dimensiondj . In the rest of this paper we use
the terms object and data point interchangeably. Furthermore,
without loss of generality, we assume that smaller score values
are more preferable.

In our approach we assume an aggregation functionf that
is increasingly monotone, i.e. if for everyi:p[i] ≤ p′[i], then
f(p) = f(p[1], ..., p[d]) ≤ f(p′[1], ..., p′[d]) = f(p′). The
restriction of monotonicity is a common property [1], [12]
and it conveys the meaning that whenever the score of all
dimensions of the pointp is at least as good as another point
p′, then we expect that the overall score ofp is as least good
as p′. The result of a top-k query is the ranked list of the
k objects with lowestscore values. In our setting a top-k

queryqk(f) takes two parameters: a user specified monotone
functionf and the number of requested objectsk. Notice that
both the scoring function and the parameterk may differ for
each query and we are interested in retrieving thek objects
with the best (minimum) values of the scoring function.

a


c


1


1


2
 3
 4
 5
 6
 7
 8
 9
 10


2


3


4


5


6


7


8


9


10
 b


i


m


n


h


e


f


d


j


g


l


X


Y


K-Skyband

area (K=3)


Fig. 1. Skyline andK-skyband

B. Query Processing

Each peerPi holds ni d-dimensional points, denoted as a
setOi (1 ≤ i ≤ Np). Obviously the size of the complete set
of points isn =

∑Np

i=1 ni and the datasetO is the union of all
peers’ datasetsOi: O = ∪Oi. This is the case of horizontal
data distribution and each peer maintains its own data objects,
such as images or documents. Only the feature values of
few selected objects, namely theK-skyband [8] points that
represent a subset of each peer’s data, are published to the
respective super-peer, while the original data is stored atthe
peer.

Assuming a space D defined by d dimensions
{d1, d2, .., dd} and given a set of pointsO, a point p ∈ O

with p = {p[1], ..., p[d]} is said to dominate another point
q ∈ O, if on each dimensiondi ∈ D, p[i] ≤ q[i]; and on at
least one dimensiondj ∈ D, p[j] < q[j]. The skyline is a
set of pointsSKY ⊆ O which are not dominated by any
other point [9]. The points inSKY are calledskyline points,
and in the example of Figure 1,a, i and n are the skyline
points. Notice that for example the top-1 result of a query
with f = 0.5 ∗ x + 0.5 ∗ y belongs to the skyline, namely the
point i is the best match for this query.

Motivated by the fact that the top-1 always belongs to the
skyline for any monotone function, we use skyline as a pre-
processing step to answer top-k queries. In order to collect
the points necessary to answer exact top-k queries, we adopt
the concept ofK-skyband. TheK-skyband query reports the
set of points which are dominated by at mostK − 1 other
ones. Thus, the conventional skyline is a special instance of
theK-skyband, whereK = 1. In Figure 1, theK-skyband for
K = 3 includes all points that lie in the line-shadowed area.

Each peer is capable to answer a top-k query by examining
only the points that belong to itsK-skyband. Each super-
peer SPA maintains the aggregatedK-skyband points of
its associated peers. In order to keep the information in a
manageable size,SPA computes theK-skyband over the
aggregated peer points. This results in a new set of points, also
referred to as super-peer’sK-skyband, which 1) summarizes
the data objects of all peers connected to the super-peer, and
most importantly 2) is capable to answer any top-k query.

The remaining challenge is to answer top-k queries over



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 50 40 30 20 10

R
es

po
ns

e 
tim

e 
(m

se
c)

top-k

d=2
d=4
d=6
d=8

d=10

(a) Scalability with dimensionality

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 50 40 30 20 10

R
es

po
ns

e 
tim

e 
(m

se
c)

top-k

n=1M
n=1.5M

n=2M
n=2.5M

(b) Scalability with cardinality

Fig. 2. Response time for uniform data distribution,Nsp = 200, Np = 2000, K = 50.

the entire super-peer network. Instead of flooding queries at
super-peer level, we build routing indices based on the skyline
points of super-peers. This enables selective querying of those
super-peers that are actually responsible for peers with relevant
results to the query.

Concluding, our framework supports efficiently top-k

queries over distributed data in a super-peer network, utilizing
routing indexes based on the skylines sets of super-peers. In
the next section we evaluate our framework experimentally.

IV. EXPERIMENTAL EVALUATION

We studied the performance of our framework using sim-
ulations. The simulator was implemented in Java and all
experiments run on a 3.8GHz Dual Core AMD processor
with 2GB RAM. The P2P network topology used in the
experiments consists ofNsp interconnected super-peers in a
random graph topology. In our experiments we used synthetic
data collections. Each peer generates its own dataset uniformly,
which includes random points in a space[0, L]d. We conduct
experiments varying the dimensionality (2-10) and the total
cardinality (1M-2.5M points) of the dataset. Each time we
generate 20 queries with random weightings.

We measure the average response time for thek first
results. We assume 50KB/sec as network transfer bandwidth
on connections between super-peers, in order to model net-
work delays. The response time is measured as the sum of
processing time and network transfer time required for the
objects transferred in the network. In Figure 2, a network of
Np = 2000 peers is studied, in terms of response time. In
Figure 2(a), the response time is presented for different values
of d. We increase the dimensionalityd from 2 to 10, and
we study top-10 to top-50 queries, assumingK = 50. The
chart shows the response time, for varying dimensionality and
shows that the time is increasing withd. We also study the
scalability of our framework with respect to the cardinality
n of the dataset (see Figure 2(b)). The slightly increasing
response time with cardinality is mainly due to the increasing
size ofK-skyband, and this leads to higher processing time.

V. CONCLUSIONS

In this paper we presented a framework for answering top-k

queries in a P2P network where data is horizontally distributed
to peers. Relying on a super-peer architecture, a top-k query is

forwarded among super-peers, in such a way that the amount
of transferred data is minimized. To achieve this goal, we
use the skyline andK-skyband sets to efficiently support top-
k query processing. We provide an experimental evaluation
through simulations, showing that our framework performs
efficiently and provides a viable solution when a large degree
of distribution is required.

ACKNOWLEDGMENT

This research project is co-financed by E.U.-European So-
cial Fund (75%) and the Greek Ministry of Development-
GSRT (25%). Prof. Dr. Vazirgiannis was supported by the
Marie Curie Intra-European Fellowship NGWeMiS: Next Gen-
eration Web Mining and Searching (MEIF-CT-2005-011549).

REFERENCES

[1] S. Chaudhuri and L. Gravano, “Evaluating top-k selection queries.” in
Proc. of VLDB, 1999.

[2] V. Hristidis, N. Koudas, and Y. Papakonstantinou, “PREFER: A system
for the efficient execution of multi-parametric ranked queries,” in Proc.
of SIGMOD, 2001.

[3] S. Michel, P. Triantafillou, and G. Weikum, “KLEE: a framework for
distributed top-k query algorithms,” inProc. of VLDB, 2005.

[4] R. Akbarinia, E. Pacitti, and P. Valduriez, “Reducing network traffic in
unstructured P2P systems using top-k queries.”Distributed and Parallel
Databases, vol. 19, no. 2-3, pp. 67–86, 2006.

[5] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden, “Progressive
distributed top-k retrieval in peer-to-peer networks,” inProc. of ICDE,
2005.

[6] K. Zhao, Y. Tao, and S. Zhou, “Efficient top-k processing in large-scaled
distributed environments,”Data Knowl. Eng., vol. 63, no. 2, pp. 315–
335, 2007.

[7] K. Hose, M. Karnstedt, K.-U. Sattler, and D. Zinn, “Processing top-
N queries in P2P-based web integration systems with probabilistic
guarantees.” inProc. of WebDB, 2005.

[8] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline
computation in database systems.”ACM Trans. Database Syst., vol. 30,
no. 1, pp. 41–82, 2005.

[9] S. Börzs̈onyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
Proc. of ICDE, 2001.

[10] S. Chaudhuri, L. Gravano, and A. Marian, “Optimizing top-k selection
queries over multimedia repositories,”IEEE Trans. on Knowledge and
Data Engineering, vol. 16, no. 8, pp. 992–1009, 2004.

[11] U. Güntzer, W.-T. Balke, and W. Kießling, “Optimizing multi-feature
queries for image databases,” inProc. of VLDB, 2000.

[12] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” inProc. of PODS, 2001.

[13] P. Cao and Z. Wang, “Efficient top-k query calculation indistributed
networks,” inProc. of PODC, 2004.

[14] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and D. Srivastava,
“Ranked join indices.” inProc. of ICDE, 2003.


