
Efficient and Robust Database Support for
Data-Intensive Applications in Dynamic

Environments
Jon Olav Hauglid, Kjetil Nørvåg, and Norvald H. Ryeng

Dept. of Computer Science, Norwegian University of Science and Technology
Trondheim, Norway

E-mail: {joh,noervaag,ryeng}@idi.ntnu.no
URL: http://research.idi.ntnu.no/dascosa/

Abstract— Requirements from new types of applications call
for new database system solutions. Computational science appli-
cations performing distributed computations on Grid networks
with requirements for efficient storage and query solutions are
now emerging. For this purpose we have developed DASCOSA-
DB, a P2P-based distributed database system, which in addition
to providing location-transparent storage and querying, also
includes novel features like efficient partial restart of queries
and redistribution of query operators in the context of failure,
dynamic refragmentation and allocation, and distributed seman-
tic caching. In this demo, the novel features will be demonstrated,
combined with a more general description of the architecture and
demonstration of the distributed query processing capabilities.

I. INTRODUCTION

Requirements from new types of applications call for new
database system solutions. Computational science applications
performing distributed computations on Grid networks with
requirements for efficient storage and query solutions are now
emerging.

While Grid computing has gained maturity through the
recent years, management of data in Grid systems is less
mature. Data storage and access is still mostly file oriented,
and it is in general left to users to manage files and their
locations as needed. Although some support has emerged for
metadata management, more advanced database services is
still only the proposal stage, examples are the OGSA-DAI and
OGSA-DQP frameworks [2], which are service-based, with
little cooperation between sites.

The goal of our research is a reliable Database Grid,
with location-transparent storage, i.e., users/applications do
not have to care about where data is stored and where queries
are processed. The aim is sites cooperating on data storage
and processing while retaining autonomy, i.e., a Grid-wide
database system. A sub-goal (but maybe just as important in
the long term!) is to help in making computational engineering
society believe in databases!

What we provide is a SQL-accessible distributed database
system supporting traditional features, but in addition also
novel features intended to make the system more suitable for
challenging dynamic environments:

• Automatic management of fragment location and repli-
cation.

• Efficient handling of query failures through a new partial
restart technique.

• Distributed semantic caching.
In the reminder of the paper we will 1) present the back-

ground for our project, 2) give an overview of the architecture
and implementation of DASCOSA-DB, with emphasis on
three of the novel contributions offered by DASCOSA-DB,
and 3) outline our three planned demonstrations.

II. BACKGROUND

DASCOSA-DB can be considered somewhere in between
a traditional distributed/federated database system and P2P
DBMS. We will in this section describe some issues that
forms the background for some of the design decisions in the
development of DASCOSA-DB, as well as describing some
related work.

Each DASCOSA-DB site has a large degree of local au-
tonomy, but a high degree of cooperation (for example during
query execution) is possible. Unlike a typical P2P setting, the
participants in a Grid will have knowledge of each other, for
example, which universities or companies are participating.
Because of this, users can also be expected to be more “well-
behaving” compared to a P2P network where most users
can be assumed to only gain without giving if given the
possibility. Note that although the participating organizations
can be known, individual machines as such does not need to
be known, i.e., each site will only know a few other sites.

It can be expected that in our application area, large
and long-running queries involving many computers will be
frequent. Since the probability of failure increases with query
duration and number of computers involved, failure of in-
dividual sites (or connection to sites) during execution of a
query can be frequent, and there is also a certain probability
of double-failures, where also the restarted query fails. In
some cases there can also be a deadline on data delivery,
for example in combination with simulations/observation of
physical processes. Thus, complete restart of a query should
be avoided. It is also desirable that the handling of query
failures should be completely transparent from applications.
This contrasts to the traditional case where a query is aborted
and has to be restarted.

Message Handler

Pastry

Executor

Application Programming Interface and JDBC

Local
Database

Database
Index Metadata

Storage (Derby)

Fault
Detector

Fault
Handler Local

DHT
Index

Table
Publisher

Broadcast
Handler

Commit
Manager

Request
Response
Handler

Query
Execute

Insert
Handler

Update/
Insert

Parser
Planner/

Optimizer

Query
Processor

Tuple
Cache

Fig. 1. High-level overview of the architecture of DASCOSA-DB.

A typical access pattern for many computational science
applications is to first read an amount of initialization data,
then sporadic queries and updates during computation, and
finishing with writing a possibly large amount of result data to
the database. The different sites will in general be in different
phases wrt. access pattern. Global queries, for example from
previous results, might be performed during execution. In
many cases, strict transaction consistency and isolation is not
critical. As a result, there is little need for optimizing on con-
currency. However, since there can be large amounts of data
created, this data should as much as possible be stored locally.
In order to cope with this access pattern which is dynamic
both with respect to site and data, dynamic fragmentation and
replication is needed.

During the recent years, a large number of research papers
on topics related to indexing and querying structured data in
P2P network has been published. Of particular interest in the
context of our work are a number of other projects aiming
at providing relational data access through P2P technology
like PIER [6], PeerDB [7], Hyperion [10], and APPA [1].
Also other distributed storage systems like, e.g., Bigtable [3]
provide distributed storage of data but no query capability.
We will in this paper focus on features in DASCOSA-DB not
available in other systems.

III. OVERVIEW OF DASCOSA-DB

In this section we give an overview of 1) the architecture
of DASCOSA-DB with particular emphasis on the its novel
partial restart techniques, adaptive fragment management and
distributed semantic caching, and 2) the implementation of
the current version of DASCOSA-DB. For more information
about details of DASCOSA-DB we refer to the project’s web
page.1

A. Architecture

The global data model used in DASCOSA-DB is based on
the relational model. A table can be stored in its entirety on
one site, or it can be horizontally fragmented over a number

1http://research.idi.ntnu.no/dascosa/

Fig. 2. Screenshot from the DASCOSA-DB system monitoring tool.

of sites. In order to improve both performance as well as
availability, fragments can be replicated, i.e., fragments of a
table can be stored on more than one site.

In some approaches to P2P databases, every tuple is indi-
vidually indexed in the P2P system (typically using a DHT put
operation). In the case of large amounts of data and updates,
and with queries more complex than single lookup operations,
such solutions are not scalable. In DASCOSA-DB, we instead
use the DHT to index data of larger granularity (fragments),
i.e., the DHT can be considered as a highly reliable and
distributed catalog. The main task of the DHT-part of the
system is to provide a mapping between a table name and
the sites storing the fragments of the table. Information about
local fragments is regularly published to the DHT.

The overall architecture of DASCOSA-DB is illustrated in
Fig. 1. As can be seen from the figure, DASCOSA-DB can
be viewed as middleware on top of a DHT and local database
system.

Query processing is in DASCOSA-DB performed quite sim-
ilarly to traditional databases, where SQL is transformed into a
distributed execution plan (i.e., query operators annotated with
the site where they are going to be executed). After planning,
query execution begins by transmitting the algebra tree from
the initiator site to the different sites involved. Choice of
sites is based on location of fragments and total reduction
of communication cost.

B. Novel Features

We now give a brief description of 3 novel features of
DASCOSA-DB: 1) partial query restart, 2) dynamic fragment
management, and 3) distributed semantic caching.

Partial Restart

As mentioned above, the probability of failure during a
query increases with the number of sites involved in the query

 S2 S3

C3 C4

 S10

I

 S0

C1

 S4

C5

 S6

N(2) C2(2)

 S1

N(1) C2(1)

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

2 3 4 6 8 9 10 12 13 14

TPC-H Query Number

R
es

ta
rt

co
st

Fig. 3. Query and performance under churn. Replica j of fragment Ti is
denoted Ti(j).

and with longer duration of queries and/or higher churn rate
(unavailable sites). Traditionally, only failure during update
transactions has been considered, and failure of queries has
been handled by complete query restart. While this is an
appropriate technique for small and medium-sized queries,
it can be expensive for very large queries, and in some
application areas there can also be deadlines on results so
that complete restart should be avoided. While in some cases
various checkpoint-restart techniques have been employed to
avoid complete restart of operations, these techniques have
been geared towards update/load operations, and in many cases
implies that a query will be delayed until the failed site is
online again.

An alternative to local checkpointing and complete restart is
a technique supporting partial restart. In this case, unfinished
subqueries from failed sites can be resumed on new sites after
failures, and utilizing partial results already produced before
the failure (both results generated at non-failing sites as well as
results from failing sites that have already been communicated
to non-failing sites). In DASCOSA-DB we have integrated a
new technique for partial restart that compared to previous ap-
proaches like [11] 1) reduces query execution time compared
to complete restart, 2) incurs minimal extra network traffic
during recovery from query failure, 3) employs decentralized
failure detection, 4) supports non-blocking operators, 5) han-
dles recovery from multi-site failures, and 6) avoids duplicate
tuples by deterministic delivery of tuples from base relations
and operators..

An example of partial restart is illustrated in Fig. 3. To
the left is illustrated 6 sites, each storing fragments of the
customer and nation tables of the TPC-H benchmark (all sites
store fragments of customer, there is a replica of fragment 2
on both site S1 and S5, and the single fragment of nation is
stored on both site S1 and S5). Assume then that the simple
query
SELECT * FROM nation JOIN customer
is issued from site S10, resulting in the query tree in Fig. 3
(site S1 was selected for the join operator during planning to
minimize network traffic as it has a fragment of both involved
tables). Then assume that site S1 fails sometime during the
query. The failure is discovered by site S10 which select site S5

as replacement site. The particular challenges that have been
solved in our approach relates to failure detection, selection of
replacement site, and restart of the various relational algebra
operators. In Fig. 3 is illustrated the restart cost for some
selected TPC-H queries, compare to complete restart. As can

F2F1 F3 F5

Optimal fragmentation
F4 F6

Ac
ce
ss
 f
re
qu
en
cy

Fragmentation attribute value

Site 1

Site 2

A
cc

es
s f

re
qu

en
cy

Fig. 4. Example access pattern, and desired fragmentation and allocation.

be shown, the cost of restart is considerably reduced using
partial restart.

Dynamic Fragment Management

Traditionally, table fragments in distributed database sys-
tems have been fragmented and replicated based on fixed
value ranges or rules defined by database administrators.
In DASCOSA-DB, fragments and replicas are created and
migrated automatically by the system based on the access
pattern, aiming at keeping the amount of accesses to remote
sites as low as possible. The ranges of fragments are not fixed,
so that fragments can be split and coalesced automatically.
In this way, the system will be able to efficiently adapt to
changing workloads.

An example of what we aim at with our approach is
illustrated in Fig. 4, where the figure illustrates the access
pattern to a database table from two sites. Site 1 has a uniform
distribution of accesses, while Site 2 has an access pattern with
distinct hot spots. In this case, a good fragmentation would be
6 fragments, one for each of the hot spot areas and one for
each of the areas between. A good allocation would be the
fragments of the hot spot areas (F1, F3, and F5) allocated to
site 2, with the other fragments (F2, F4, and F6) allocated to
site 1. Using our approach this access pattern will be detected,
and fragmentation and allocation performed accordingly. Note
that if the access pattern changes later, this will be detected and
fragments reallocated in addition to possible repartitioning.

In DASCOSA-DB, access statistics is used to detect pattern.
For each fragment, a set of histograms is maintained, and
each histogram represents statistics about accesses from one
particular remote site. Each bucket in a histogram represents a
value subrange of the fragment, and contains an estimate of the
number of accesses to the actual interval the bucket covers. At
regular times, the histograms are analyzed, and it is determined
through the use of cost functions whether the overall cost
would be lower if a fragment were located on another site. It
can also be detected if a subinterval of a fragment is heavily
accessed from a remote site. In this case, it can be decided
that the fragment should be split into 3 fragments, and the
fragment containing the interval heavily accessed from the
remote site is migrated to the remote site. In order to avoid too

many fragments, fragments which meets in the value interval
can be coalesced when they end up at the same site. I.e.,
a fragment resulted from a split and then migrated might
actually be coalesced with another fragment when it is received
at the remote site (whether this is performed or not is also
based on considerations of potential replicas of the fragments).
Contents in histograms are regularly expired, so that they only
contain recent statistics and only represent remote sites that
have recently accessed the fragment.

It is important to note that our approach for fragment
maintenance is different from previous approaches (e.g., [9])
that are based on analyzing SQL queries, while in our
approach accesses at tuple level are considered. Also the
possibility of managing higher degree of dynamics as well as
migration strategies distinguish our techniques from previous
approaches.

Distributed Semantic Caching

In semantic caching, results from selected queries as well as
their query descriptions are kept. These results can be applied
to reuse results from previous queries, thus reducing the total
query cost. In large-scale distributed database systems, using a
central central server with complete knowledge of the system
will be a serious bottleneck and single point of failure. In
DASCOSA-DB this problem is reduced by distributing the
caching knowledge over several sites. In addition, decisions
about what to cache and cache replacement is performed
automatic and site-autonomous.

C. Implementation

The implementation of DASCOSA-DB has been performed
in two steps: first, a simple proof-of-concept prototype was
developed [8]. The current version is a completely re-
implemented version, and acts as a middleware on top of
Apache Derby [4] running as the local DBMS on each site.
The catalog service for indexing tables is implemented using
the FreePastry DHT [5]. DASCOSA-DB is 100% Java, which
gives easy deployment, platform independence, and can also
be embedded in other software if desired.

In order to facilitate easy interactive access to the system
as well as study configuration, distribution of data, and query
execution, we have implemented a monitoring tool, cf. the
screenshot in Fig. 2. As can be seen in the figure, queries
can be entered and information about local tables as well
as information about remote tables (which is part of the
responsibility of the site as participant in the DHT) can be
found. Both static statistics as well as per-query statistics can
easily be viewed.

IV. DEMONSTRATION

Our demonstration will illustrate both the general distributed
database aspects of DASCOSA-DB, as well as more novel
aspects like partial restart. In the demonstration we will for
convenience run a number of DASCOSA-DB-instances on
one or two machines. The demonstration will use a dataset
generated by the TPC-H data generator [12].

A. Overall and Distributed Queries

In this demonstration we will give an overview of DAS-
COSA and its basic features. We will show how both simple
and complex SQL queries are executed in the system, and
demonstrate how fragmentation and replication aspects are
automatically handled by the system.

B. Partial Restart

In this demonstration we will demonstrate how DASCOSA-
DB work in the context of failing sites during query execution.
The effect of partial restart will be demonstrated by queries not
failing, queries failing and not employing partial restart (i.e.,
complete restart), and employing our partial restart approach.
We will in this context also show how the system automatically
selects new sites that will complete the work of failed sites,
and how replication can make restart possible even when sites
storing base tables fail during a query.

C. Distributed Semantic Caching

In this demonstration we will show how DASCOSA-DB
utilizes cached subqueries in order to improve performance
in the context of repeated queries or queries that contains
subqueries of previous queries.

V. FUTURE WORK

Although we now have a working prototype of a distributed
database system, there is no lack of remaining challenges.
Improving query optimization in the context of adaptive frag-
ments and replication is an obvious goal. Another important
issue in our context is more automatic handling schema
heterogeneity, where the plan is to employ ontology-based
methods. We also intend to study how equivalents of partial
restart and adaptive fragmentation can be employed in the
context of XML data.

Acknowledgments: The authors would like to thank other
previous and current participants in the DASCOSA project:
Eirik Eide, Odin H. Standal, and João Rocha. Supported by
grant #176894/V30 from the Norwegian Research Council.

REFERENCES

[1] R. Akbarinia, V. Martins, E. Pacitti, and P. Valduriez. Design and
implementation of Atlas P2P architecture. In Global Data Management,
2006.

[2] M. N. Alpdemir et al. OGSA-DQP: a service for distributed querying
on the Grid. In Proceedings of EDBT’2004, 2004.

[3] F. Chang et al. Bigtable: A distributed storage system for structured
data. In Proceedings of OSDI’2006, 2006.

[4] Apache Derby, http://db.apache.org/derby/.
[5] FreePastry, http://freepastry.org/.
[6] R. Huebsch et al. Querying the internet with PIER. In Proceedings of

VLDB’2003, 2003.
[7] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. PeerDB: A P2P-based

system for distributed data sharing. In Proceedings of ICDE’2003, 2003.
[8] K. Nørvåg. DASCOSA: database support for computational science

applications. In Proceedings of GLOBE’06, 2006.
[9] J. Rao, C. Zhang, N. Megiddo, and G. M. Lohman. Automating physical

database design in a parallel database. In Proceedings of SIGMOD’2002,
2002.

[10] P. Rodrı́guez-Gianolli et al. Data sharing in the Hyperion peer database
system. In Proceedings of VLDB’2005, 2005.

[11] J. Smith and P. Watson. Fault-tolerance in distributed query processing.
In Proceedings of IDEAS’2005, 2005.

[12] TPC-H, http://www.tpc.org/tpch/.

