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Abstract—Dense subtensor detection is a well-studied area,
with a wide range of applications, and numerous efficient ap-
proaches and algorithms have been proposed. Existing algorithms
are generally efficient for dense subtensor detection and could
perform well in many applications. However, the main drawback
of most of these algorithms is that they can estimate only one
subtensor at a time, with a low guarantee on the subtensor’s
density. While some methods can, on the other hand, estimate
multiple subtensors, they can give a guarantee on the density
with respect to the input tensor for the first estimated subsensor
only. We address these drawbacks by providing both theoretical
and practical solution for estimating multiple dense subtensors
in tensor data. In particular, we guarantee and prove a higher
bound of the lower-bound density of the estimated subtensors.
We also propose a novel approach to show that there are multiple
dense subtensors with a guarantee on its density that is greater
than the lower bound used in the state-of-the-art algorithms. We
evaluate our approach with extensive experiments on several real-
world datasets, which demonstrates its efficiency and feasibility.

Index Terms—Tensor, Dense Subtensor, Dense Subgraph, Mul-
tiple Subtensor Detection, Density Guarantee.

I. INTRODUCTION

In many real-world applications, generated data are com-
monly represented as multidimensional array data, referred to
as tensor [1]. Tensors have been used in several important
domains, including geometry and physics, as well as computer
science [2], [3]. As a result of the growth in the number
of applications involving tensors, combined with the increase
of researchers’ interests, numerous tensor-related approaches
have been proposed, including tensor decomposition [4], [5]
and tensor factorization [6]–[8].

An important task related to tensors, addressed in this
paper, is the detection of dense subtensors in a (stream of)
tensors. Dense subtensor detection has many applications,
including detecting intrusions and changes in communication
networks [9], [10], detecting fake reviews [11], and detecting
cliques in social networks [12]. The task of detecting dense
subtensors is generally hard, and the problem of detecting
the densest subtensors is mainly an NP-complete or NP-
hard problem [13], [14]. Thus, instead of detecting exactly
the densest subtensor, approximation is commonly used, and
these methods usually have a polynomial time complexity,
depending on the dimensions and the size of the tensor. M-
Zoom [15] and M-Biz [16] are among the current state-of-
the-art dense subtensor detection algorithms. They extend the
approaches on dense (sub)graph detection, such as [17], [18],
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into tensor detection by considering more dimensions for a
specific problem to obtain highly accurate algorithms. Further,
they utilize a greedy approach to provide local guarantee for
the density of the estimated subtensors. M-Zoom and M-Biz
are able of maintaining k subtensors at a time. Each time
a search is performed, a snapshot of the original tensor is
created, and the density of the estimated subtensor in each
single search is guaranteed locally on the snapshot. Hence,
M-Zoom and M-Biz only provide a density guarantee with
respect to the current intermediate tensor rather than the orig-
inal input tensor. A newer approach, called DenseAlert [19],
was developed to detect an incremental dense subtensor for
streaming data. Despite its efficiency, however, DenseAlert can
estimate only one subtensor at a time, and it can only provide
low density guarantee for the estimated subtensor. Hence, it
might miss a huge number of other interesting subtensors in
the stream.

Extensive studies have shown that DenseAlert, M-Zoom,
and M-Biz generally outperform most other tensor decom-
position methods, such as [20], [21], in terms of efficiency
and accuracy. Nevertheless, an important drawback of these
methods is that they can only provide a loose theoretical
guarantee for density detection, and that the results and
the efficiency are mostly based on heuristics and empirical
observations. More importantly, these methods do not provide
any analysis of the properties of multiple estimated subtensors.
We aim at addressing these drawbacks by proposing a novel
technique for estimating several dense subtensors. First, we
provide a well-founded theoretical solution to prove that there
exist multiple dense subtensors such that their density are guar-
anteed to be between specific lower and upper bounds. Second,
to demonstrate applicability, we introduce a new algorithm,
named MUST (MUltiple Estimated SubTensors), which not
only supports the aforementioned proof, but also provides an
effective method to estimate these dense subtensors.

To give an overview of the differences between our method
and the existing approaches, Table I compares the character-
istics of MUST against current state-of-the-art algorithms. In
summary, the main contributions of this work are as follows:
1) We present a novel theoretical foundation, along with

proofs showing that it is possible to maintain multiple
subtensors with a density guarantee.

2) We provide a new method that is capable of estimating
subtensors with a density guarantee that is higher than those
provided by existing methods. Specifically, the new density
bound for the dense subtensor is 1

N (1 + N−1
min(a,

√
n)

), while



TABLE I: A brief comparison of between existing algorithms and MUST

Approximation Multiple estimation
support

Single density
guarantee

Multiple density
guarantee

Number of
guaranteed estimations

Bound guarantee*

Goldberg’s [13] X 1 1
GREEDY [17] X X 1 1

N
GreedyAP [22] X X 1 1

N
M-Zoom [15] X X X 1 1

N
DenseAlert [19] X X 1 1

N
M-Biz [16] X X X 1 1

N
FrauDar [23] X X 1 1

N
ISG+D-Spot [24] X X

MUST X X X X min(1 + n
2N , 1 +N(N-1)) 1

N (1 + N-1
min(a,

√
n) )

* N is the number of ways of tensor (with graph, we consider its number of ways is 2 because we can represent a graph in a form of matrix). a is the size
of the densest region.

the current widely-used bound is 1/N . Here, n and a denote
the size of the tensor and the densest subtensor, respectively,
and N is the number of ways of the tensor.

3) We prove that there exist at least min(1 + n
2N , 1 +N(N −

1)) subtensors that have a density greater than a lower bound
in the tensor.

4) We perform an extensive experimental evaluation on real-
world datasets to demonstrate the efficiency of our solution.
The proposed method is up to 6.9 times faster and the
resulting subtensors have up to two million times higher
density than state-of-the-art methods.
The rest of this paper is organized as follows. Section II

describes the preliminaries for the method and the related
work. Section III elaborates on the theoretical foundation
for providing a new density guarantee of dense subtensors.
Section IV presents the solution for detecting multiple dense
subtensors with a density guarantee. Section V discusses the
evaluation of our method and explains its applicability. Finally,
Section VI concludes the paper and outlines the future work.
Reproducibility: The source code and data used in the pa-
per are publicly available at https://bitbucket.org/duonghuy/
mtensor.

II. BACKGROUND, RELATED WORK AND NOTATION

The problem of finding the densest subgraphs is generally
NP-complete or NP-hard [13], [25]. Due to the complexity
of the exact algorithm with which an exponential number of
subgraphs must be considered, it is infeasible for large datasets
or data streams. Therefore, approximation methods are com-
monly used for detecting the densest regions [17], [26], [27].
Ashiro et al. [26] proposed an efficient greedy approximation
algorithm to find the optimal solution for detecting the densest
subgraph in a weighted graph. Their idea is to find a k-vertex
subgraph of an n-vertex weighted graph with the maximum
weight by iteratively removing a vertex with the minimum
weighted-degree in the currently remaining graph, until there
are exactly k vertices left. Charikar [17] studied the greedy
approach (GREEDY) further, which showed that the approxi-
mation can be solved by using linear programming technique.

Specifically, the author proposed a greedy 2-approximation for
this optimization problem, with which a density guarantee of
the dense subgraph is greater than a half of the maximum
density in the graph. Many algorithms have later adopted
the greedy method with a guarantee on the density of dense
subgraphs targeting specific applications, such as fraud de-
tection, event detection, and genetics applications [22], [23],
[28], [29]. Common for these works is their use of the greedy
2-approximation to find a dense subgraph.

Inspired by the theoretical solutions in graphs, numerous
approaches have been proposed to detect dense subtensors
by using the same min-cut mechanism [16], [19]. As men-
tioned earlier, mining the densest subtensor in a tensor is
hard, and an exact mining approach has a polynomial time
complexity [13], thus making it infeasible for streaming data
or very large datasets. To cope with this, approximate meth-
ods/algorithms are commonly used. Among the proposed al-
gorithms, DenseAlert [19], M-Zoom [15], and M-Biz [16] are
– because of their effectiveness, flexibility, and efficiency – the
current state-of-the-art methods. They are far more faster than
other existing algorithms, such as CPD [20], MAF [9], and
CrossSpot [30]. DenseAlert, M-Zoom, and M-Biz adapt the
theoretical results from dense (sub)graph detection, i.e., [29],
[31], [32], to tensor data by considering more dimensions than
two. The algorithms utilize a greedy approach to guarantee the
density of the estimated subtensors, which has also been shown
to yield high accuracy in practice [30]. However, the adopted
density guarantee is the same as in the original work, which
also applies for the more recent algorithm, ISG+D-Spot [24].
This means that with an N -way tensor, the density guarantee
is a fraction of the highest density with the number of the
tensor’s way N . ISG+D-Spot converts an input tensor to a
form of graph to reduce the number of ways, but it drops all
edges having weight less than a threshold. As a result, ISG+D-
Spot only provides a loose density guarantee.

As discussed in Section I, DenseAlert, M-Zoom and M-
Biz can only guarantee low density subtensors. These methods
employed the same guarantee as in the original work without
any further improvement in the density guarantee. To address
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the limitations of the previous approaches, we generalize the
problem by maintaining multiple dense subtensors, with which
we provide a concrete proof to guarantee a higher lower bound
density and show that they have a higher density guarantee
than the solutions in prior works.

In the following, we present the fundamental preliminaries
of the dense subtensor detection problem, based on [16], [19].

Definition 1 (Tensor). A tensor, T, is a multidimensional array
data. The order of T is its number of ways. Given a N -way
tensor, on each way, there are multiple spaces, each of which
is called a slice.

Definition 2 (SubTensor). Given an N-way tensor T , Q is a
subtensor of T if it is composed by a subset s of the set of
slices S of T , and there is at least one slice on each way of
T . Intuitively, Q is the left part of T after we remove all slices
in S but not in s.

Definition 3 (Entry of Tensor). E is an entry of an N-way
(sub)tensor T if it is a subtensor of T and is composed by
exactly N slices.

Definition 4 (Size of a (sub)Tensor). Given a (sub)Tensor Q,
the size of Q is the number of slices that compose Q.

Definition 5 (Density). Given a (sub)tensor Q, the density of
Q, denoted by ρ(Q), is computed as: ρ(Q) = f(Q)

size of Q , where
f(Q) is mass of the (sub)tensor Q, and is computed as the
sum of every entry values of Q.

Definition 6 (Weight of Slice in Tensor). Given a tensor
T . The weight of a slice q in T is denoted by wq(T ), and
is defined as the sum of entry values composing by the
intersection of T and q.

Definition 7 (D-Ordering). An ordering π on a (sub)tensor Q
is a D-Ordering, if

∀q ∈ Q, q = argmin
p∈Q∧π−1(p)≥π−1(q)

wp(πq), (1)

where πq = {x ∈ Q|π−1(x) ≥ π−1(q)}, π−1(q) is to indicate
the index of the slice q in π ordering, and wp(πq) is the weight
of p in πq . Intuitively, the D-Ordering is the order that we pick
and remove the minimum slice sum in each step.

The principal of D-Ordering in tensor data is the similar
to the min-cut mechanism in dense subgraph detection, like
GREEDY [17], [26].

Definition 8 (Mining Dense Subtensor Problem). Given a
tensor T . The problem of dense subtensor detection is to find
subtensors Q ∈ T that maximize the density of Q.

For readability, the notations used in this paper are summa-
rized in Table II. In the rest of the paper, when specifying a
(sub)tensor, we use its name or set of its slices interchangeably.

Example 1. Let us consider an example of 3-way tensor T as
in Figure 1. The value in each cell is the number of visits that

TABLE II: Table of notations

Symbols Description

T , Q Tensor data T , Q
Ii The i-th dimension of tensor I
|Ii| Number of slices on way Ii of a tensor I
T ∗ Densest subtensor T ∗
Z, z0 Zero subtensor Z with zero point z0
B Backward subtensor
F Forward subtensor
n,N Size and number of ways of tensor data
ρ, ρ∗ Density ρ, highest density ρ∗ in tensor
ρ(Q) Density of (sub)tensor Q
π An ordering π
Q(π, i) A subtensor of Q formed by a set of slices {p ∈

Q, π−1(p) ≥ i}
ρπ(i) Density of subtensor Q(π, i)
q A slice of a tensor
a Size of densest subtensor
b Number of slices in Zero subtensor such that not in densest

subtensor
m Size of Zero subtensor Z, m = a+ b
f(Q) Mass of the (sub)tensor Q
wq(T ) Weight of slice q in T

(2,1)

0

7

5

(2,2)

0

2

5

(2,3)

3

0

0
0

1

(1,3)

(1,2)

(1,1)

1
0

3

(3,2)

(3,1)

User

Page

Date

Fig. 1: An example of 3-way tensor.

a user (mode User) visits a web page (mode Page) on a date
(mode Date). The values of hidden cells are all zero. The set
of slices of tensor T is {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3),
(3,1), (3,2)}. A subtensor Q formed by the following slices
{(1,2), (1,3), (2,1), (2,2), (3,1)} is the densest subtensor (the
yellow region) and the density of Q is (5+5+7+2)/5 = 3.8.

The problem of mining dense subtensors [16], [19] can be
presented and solved as follows. Given a list of n variables
dπ(i) (1 ≤ i ≤ n), where dπ(i) is calculated during the
construction of D-Ordering. Its value at each time is picked by
the minimum slice sum of the input (sub)tensor. Then, a Find-
Slices() function finds the index i∗ = argmax

1≤i≤n
ρπ(i), which is

the location to guarantee a subtensor with a density greater
than the lower bound. Find-Slices(), shown in Algorithm 1,
is a function that was originally defined in [15], [16], [19],
which is a principal function for estimating a subtensor, such
that its density is greater than the lower bound. The density
of an estimated subtensor is guaranteed as follows.



Algorithm 1 Find-Slices

Require: A D-Ordering π on a set of slices Q
Ensure: An estimated subtensor S

1: S ← ∅, m← 0
2: ρmax ← −∞, qmax ← 0
3: for (j ← |Q|..1) do
4: q ← π(j), S ← S ∪ q
5: m← m+ dπ(q)
6: if m/|S| > ρmax then
7: ρmax ← m/|S|
8: qmax ← q
9: end if

10: end for
11: return Q(π, π−1(qmax))

Theorem 1 (Density Guarantee) [16], [19]). The density of
the subtensor returned by the Algorithm 1 is greater than or
equal to 1

N ρ
∗, where ρ∗ is the highest density in the input

tensor.

Proof. The proof of this theorem was provided in [16], [19].
For convenience, we recall their proof as follows. Let q∗ ∈ T ∗
be the slice such that π−1(q∗) ≤ π−1(q),∀q ∈ T ∗. This means
that q∗ is the slice in the densest subtensor having the smallest
index in π. Therefore ρπ(i∗) ≥ ρπ(π−1(q∗)) ≥ 1

N ρ
∗.

III. THE NEW DENSITY GUARANTEE OF SUBTENSOR

As can be inferred from the discussion above, the basic
principle underlying DenseAlert, M-Zoom, and M-Biz is The-
orem 1. It is worth noting that this theorem guarantees the
lower bound of the density on only one estimated subtensor
from an input tensor. To the best of our knowledge, none of
existing approximation approaches provides a better density
guarantee than GREEDY. Based on this, we can raise the
following questions: (1) Can this lower bound be guaranteed
higher? (2) Are there many subtensors having density greater
than the lower bound? (3) Can we estimate these subtensors?

In this section, we answer question (1) by providing a proof
for a new higher density guarantee. Questions (2) and (3)
will be answered in the next section by providing a novel
theoretically sound solution to guarantee the estimation of
multiple dense subtensors that have higher density than the
lower bound.

A. A New Bound of Density Guarantee

We prove that the estimated subtensors provided by the
proposed methods have a higher bound than in the state-of-
the-art solutions.

In [16], [19], the authors showed that the ,density of the sub-
tensor ρπ(π−1(q∗)) ≥ 1

N ρ
∗, hence satisfying Theorem 1. A

sensible question is: Can we estimate several subtensors with
a higher density guarantee than the state-of-the-art algorithms?

In the following subsections, we introduce our new solution
to improve the guarantee in the aforementioned Find-slices()
function and show how a density with higher lower bound

than that in [16], [19] can be provided. We present several
theorems and properties to support our solution to estimate
multiple dense subtensors.

Definition 9 (Zero Subtensor). Given a tensor T , T ∗ is the
densest subtensor in T with density ρ∗, π is a D-ordering on T ,
and z0 = min

q∈T∗
π−1(q) is the smallest indices in D-Ordering

π of all slices in T ∗. A subtensor called Zero Subtensor of T
on π, denoted as Z = T (π, z0), and z0 is called zero point.

Theorem 2 (Lower Bound Density of the Estimated Subten-
sor). Given an N-way tensor T , and a D-ordering π on T . Let
Z and z0 be a Zero Subtensor and a zero point, respectively.
Then, there exists a number b ≥ 0 such that the density of the
estimated subtensor Z is not less than Na+b

N(a+b)ρ
∗, where a and

ρ∗ are the size and density of the densest subtensor T ∗.

Proof. We denote w0 = wπ(z0)(Z). Further, note that because
T ∗ is the densest subtensor. Then,

∀q ∈ T ∗, wq(T ∗) ≥ ρ∗ ⇒ w0 ≥ ρ∗.

Due to the characteristic of D-Ordering, we have

wq(Z) ≥ wπ(z0)(Z) = w0,∀q ∈ Z.

Consider a way Ii among the N ways of the tensor T . Then,

f(Z) =
∑

q∈T∗∧q∈Ii

wq(Z) +
∑

q/∈T∗∧q∈Ii

wq(Z).

Furthermore, regarding the way we choose Z, we have

T ∗ ⊆ Z ⇒
∑

q∈T∗∧q∈Ii

wq(Z) ≥
∑

q∈T∗∧q∈Ii

wq(T
∗) = f(T ∗).

Therefore,

f(Z) ≥ f(T ∗) +
∑

q/∈T∗∧q∈Ii

wq(Z) ≥ f(T ∗) + bIiw0, (2)

where bIi is the number of slices in Z on dimension Ii that
are not in T ∗. Let b =

∑N
i=1 bIi . Applying Eq. 2 on N ways,

we get

Nf(Z) ≥ Nf(T ∗) + w0

∑
bIi

⇒N(a+ b)ρ(Z) ≥ Naρ∗ + w0b

⇒N(a+ b)ρ(Z) ≥ Naρ∗ + bρ∗

⇒ρ(Z) ≥ Na+ b

N(a+ b)
ρ∗

The equality happens when b = 0 or in the simple case when
N = 1. However, if these conditions hold, the Zero Subtensor
becomes the densest subtensor T ∗. In the next paragraphs, we
consider the higher order problem of tensor with order N > 1.

Property 1. The lower bound density in Theorem 2 is greater
than 1

N of the highest density and this bound is within [ 1
N (1+

a(N−1)
n ), 1].

Proof. Let Z be the fraction of the density of the estimated
subtensor, and R denote densest subtensor. We have the
following properties about the lower bound fraction:



1) In the simplest case, when N = 1, the lower bound rate
values both in the previous proof and in this proof are 1.
This means that the estimated subtensor Z is the densest
subtensor, with the highest density value. Otherwise,
R ≥ Na+b

N(a+b) = a+b
N(a+b) + (N−1)a

N(a+b) >
1
N ,∀N > 1.

Moreover, since the size of Z is not greater than
n, we have
R ≥ 1

N (1 + (N−1)a
(a+b) ) ≥ 1

N (1 + a(N−1)
n ).

2) In conclusion, we have the following boundary of the
density of estimated Zero Subtensor, Z:

ρ(Z) =

{
ρ∗, if N = 1 ∨ b = 0
1
N (1 + a(N−1)

n )ρ∗, if a+ b = n.

In an ideal case, when the value of b goes to zero, the estimated
subtensor becomes the densest subtensor, and its density can
be guaranteed to be the highest.

B. A New Higher Density Guarantee

In this subsection, we provide a new proof to give a new
higher density guarantee of dense subtensor.

Theorem 3 (Upper Bound of the Min-Cut Value in Tensor).
Given an N-way tensor T with size n, and a slice q is
chosen for the minimum cut, such that the weight of q in T
is minimum. Then, the weight of q in T satisfies the following
inequality:

wq(T ) ≤ Nρ(T ) (3)

Proof. Because q is a slice having the minimum cut, we have
wq(T ) ≤ wp(T ),∀p ∈ T . Summing all the slices in the tensor
gives

|T |wq(T ) ≤
∑
p∈T

wp(T ) = Nf(T )

⇒wq(T ) ≤ Nf(T )

|T |
= Nρ(T )

Let Ti(1 ≤ i ≤ a) be the subtensor right before we remove
i-th slice of T ∗, and qi be the slice of T ∗ having the minimum
cut wi at the step of processing Ti. Since the size of the densest
T ∗ is a, we have a indexes from 1 to a. Note that T1 is the
Zero subtensor Z. Further, let MIi denote the index of the last
slice in way Ii of T ∗ that will be removed. Then, we have
following property:

Property 2 (Upper Bound of the Last Removed Index). The
minimum index of all MIi , 1 ≤ i ≤ N , denoted by M , is not
greater than (a−N + 1), i.e., M = min(MIi) ≤ a−N + 1.

Proof. Let MIi ,MIj be the indexes of the last removed slices
of the two ways Ii and Ij . Further, assume that the difference
between MIi , MIj is ∆(MIi ,MIj ) = |MIi −MIj | ≥ 1, and
that we have N numbers (N ways) and the maximum (the last
index) is a. Then, we get

max(MIi)−min(MIi) ≥ N − 1

⇒M = min(MIi) ≤ a−N + 1

Theorem 4. The sum of min-cut of all slices from index 1 to
M is greater than the mass of the densest subtensor T ∗:

M∑
i=1

wqi(Ti) ≥ f(T ∗) (4)

Proof. Let E be any entry of the densest subtensor T ∗ and E
is composed by the intersection of N slices, qIx(1 ≤ x ≤ N),
qIx is on the way Ix.

Assume that the first removed index of all the slices
composing E is at index i. Since this index cannot be greater
than M , the entry E is in Ti, and its value is counted in
wqx(Tx). Therefore, we have:

∑M
i=1 wqi(Ti) ≥ f(T ∗)

Let ρmax be the maximum density among all subtensors
Ti, (i ≤ i ≤M). According to Theorems 3 and 4, we have

f(T ∗) ≤
M∑
i=1

wqi(Ti) ≤
M∑
i=1

Nρ(Ti) ≤MNρmax (5)

⇒aρ∗ ≤ N(a−N + 1)ρmax

⇒ρmax ≥
ρ∗

N

a

a−N + 1
. (6)

Theorem 5 (Better Density Guarantee of Dense Subtensor).
The density guarantee of dense subtensor mining by min-cut
mechanism is greater than 1

N (1 + N−1
min(a,

√
n)

)ρ∗.

Proof. According to Theorem 2 and Property 1, we have

ρmax ≥ ρ(T1) ≥ 1

N
(1 +

a(N − 1)

n
)ρ∗ (7)

Furthermore, by Inequation 6, we also have

ρmax ≥
ρ∗

N

a

a−N + 1
≥ 1

N
(1 +

N − 1

a
)ρ∗ (8)

By combining Eq. 7 and Eq. 8, we get

ρmax ≥
1

N
(1 +

1

2
(
a(N − 1)

n
+
N − 1

a
))ρ∗

⇒ρmax ≥
1

N
(1 +

N − 1√
n

)ρ∗

Note that since ρmax ≥ 1
N (1 + N−1

a )ρ∗, we finally have

ρmax ≥
1

N
(1 +

N − 1

min(a,
√
n)

)ρ∗

IV. THE SOLUTION FOR MULTIPLE DENSE SUBTENSORS

As shown in Theorem 2, ρ(Z) ≥ Na+b
N(a+b)ρ

∗, where Z =

T (π, z0) is the Zero subtensor. As discussed before, the
state-of-the-art algorithm, DenseAlert, can estimate only one
subtensor at a time, and a density guarantee is low, i.e., 1

N of
the highest density. M-Zoom (or M-Biz) is, on the other hand,
able of maintaining k subtensors at a time by repeatedly calling
the Find-Slices() function k times, with the input (sub)tensor
being a snapshot of the whole tensor (i.e., the original one).
Recall, however, that such processing cannot guarantee any
density boundary of the estimated subtensors with respect to
the original input tensor. Therefore, the estimated density of
the subtensors is very low. With this, an important question



is: How many subtensors in n subtensors of D-ordering as in
Algorithm 1 having density greater than a lower bound density
and what is the guarantee on the lower bound density with
respect to highest density? This section answers this question.

A. Forward Subtensor from Zero Point

Again, given a tensor T , T ∗ is the densest subtensor in T
with density ρ∗. π is a D-ordering on T , and the zero point
z0 = min

q∈T∗
π−1(q) is the smallest indices in π among all slices

in T ∗ (cf. Definition 9).

Definition 10 (Forward Subtensor). A subtensor is called i-
Forward subtensor in T on π, denoted by Fi, if Fi = T (π, z0−
i), 0 ≤ i < z0.

Let us consider an i-forward subtensor Fi = T (π, i), i < z0.
Because i < z0, Z ⊆ Fi. This means that f(Fi) ≥ f(Z). As
a result of Theorem 2, we have the following:

Nf(Z) ≥ (Na+ b)ρ∗

⇒ (Na+ b)ρ∗ ≤ Nf(Z) ≤ Nf(Fi)

⇒ (Na+ b)ρ∗ ≤ N(a+ b+ i)ρ(Fi)

⇒ ρ(Fi) ≥ Na+ b

N(a+ b+ i)
ρ∗.

From the above inequality, we get the following theorem.

Theorem 6. The density of every i-Forward subtensor Fi =
T (π, i), where i ≤ N × (N − 1) is greater than or equal to
1/N of the highest density in T , ρ∗.

Proof. From the above inequality, ρ(Fi) ≥ Na+b
N(a+b+i)ρ

∗.
If we have i ≤ N(N − 1), then

⇒ a+ b+ i ≤ a+ b+N(N − 1)

⇒ Na+ b

N(a+ b+ i)
ρ∗ ≥ Na+ b

N(a+ b+N(N − 1))
ρ∗

⇒ Na+ b

N(a+ b+ i)
ρ∗ ≥ a+ b+ a(N − 1)

N(a+ b+N(N − 1))
ρ∗

⇒ Na+ b

N(a+ b+ i)
ρ∗ ≥ a+ b+N(N − 1)

N(a+ b+N(N − 1))
ρ∗

⇒ ρ(Fi) ≥ Na+ b

N(a+ b+ i)
ρ∗ ≥ 1

N
ρ∗

Property 3. Among n subtensors T (π, i), 1 ≤ i ≤ n, there is
at least min(z0, 1 + N(N − 1)) subtensors having a density
greater than 1

N of the densest subtensor in T .

Proof. According to Theorem 6, there is at least min(z0, 1 +
N(N − 1)) forward subtensors that have density greater than
1
N of the highest density.

B. Backward Subtensor from Zero Point

We have considered subtensors formed by adding more
slices to Z. Next, we continue investigating the density of
the subtensors by sequentially removing slices in Z.

Definition 11 (Backward Subtensor). A subtensor is called
i-Backward subtensor in T on π, denoted by Bi, if Bi =
T (π, z0 + i), i ≥ 0.

Let us consider an i-backward subtensor Bi. We show that
its density is also greater than the lower bound density.

Property 4. The density of the 1-Backward Subtensor, B1 is
greater than or equal to 1

N ρ
∗.

Proof. Due to the limitation of space, we omit the proof and
provide it in an extension supplement upon request.

Theorem 7. Let Bk denote the k-Backward subtensor, Bk =
T (π, z0 + k). Density of Bk is greater than or equal to 1/N
of the highest density in T, ∀k ≤ b

N .

Proof. Note that f(Bi) = f(Bi+1)+wπ(z0+i)(Bi). Let B0 =
Z, and in the following we let wi(Bi) = wπ(z0+i)(Bi) for
short. Then, we have

Kf(Z) = K(f(B1) + w0(B0))

= K(f(B2) + w0(B0) + w1(B1))

= Kf(Bk) +K

k−1∑
i=0

wi(Bi).

Because T ∗ ⊆ Z, then:

Kf(Z) ≥ Kf(T ∗) +
∑

q∈Z∧q/∈T∗

wq(Z), (9)

By substitution, we get

Kf(Bk) +K

k−1∑
i=0

wi(Bi) ≥ Kf(T ∗) +
∑

q∈Z∧q/∈T∗

wq(Z)

⇒ Kf(Bk) ≥ Kf(T ∗) +
∑

q∈Z∧q/∈T∗

wq(Z)−K
k−1∑
i=0

wi(Bi).

We denote the set Q = {q| q ∈ Z ∧ q /∈ T ∗} by
{q1, q2, . . . , qb}. Note that Bi ⊆ Z. Thus ∀j, i, wqj (Z) ≥
wqj (Bi) ≥ wi(Bi), and wπ(z0)(Z) ≥ wπ(z0)(T ∗) ≥ ρ∗.

On the other hand, we have the condition of k: b − k ×
K ≥ b − k ×N ≥ 0. In conclusion, this gives the following
inequality:

Kf(Bk)−Kf(T ∗) ≥
∑

q∈Z∧q/∈T∗

wq(Z)−K
k−1∑
i=0

wi(Bi)

≥
k−1∑
i=0

K∑
j=1

wq(i×K+j)
(Z)−Kwi(Bi) +

b∑
i=k×K+1

wqi(Z)

≥ (b− k ×K)× Eπ(z0)(Z)

≥ (b− k ×K)ρ∗

⇒ Kρ(Bk)(a+ b− k) ≥ Kaρ∗ + (b− k ×K)ρ∗

⇒ ρ(Bk) ≥ Ka+ b− k ×K
K(a+ b− k)

ρ∗

⇒ ρ(Bk) ≥ K(a− k) + b

K(a+ b− k)
ρ∗

⇒ ρ(Bk) ≥ 1

K
ρ∗ ≥ 1

N
ρ∗.

Theorem 8. Assume that the size of the Zero subtensor Z, (a+
b), is sufficiently big. Let Bk denote the k-Backward subtensor.



The density of Bk is greater than or equal to 1/N of the
highest density in T, ∀k ≤ min( aN ,

(a+b)(N−1)
N2 ).

Proof. Assume Ix is the way that has the smallest number of
slices in T ∗, with a number of slices s. Then, s ≤ a/N .

Let Q = {q ∈ Z} = {q1, . . . ,qs, . . . , qa, . . . , qa+b}, denote
the set of slices in Z, and (a + b) be the size of the Zero
subtensor.

Let Bk be a k-Backward Subtensor of T , with 1 ≤ k ≤
(a+b)
N . Then,

Nf(Z) =

s∑
i=1

wqi(Z)+

a+b∑
i=s+1

wqi(Z) ≥ f(T ∗)+

a+b∑
i=s+1

wqi(Z).

Because Nf(Z) = N(f(Bk) +
∑k−1
i=0 wi(Bi)), the above

inequality can be rewritten as

⇒ N(f(Bk) +

k−1∑
i=0

wi(Bi)) ≥ f(T ∗) +

a+b∑
i=s+1

wqi(Z).

The subtensor Bi is a backward subtensor of Z by removing
i slices in Z, i.e., Bi ⊆ Z and ∀j, i, Eqj (Z) ≥ Eqj (Bi) ≥
Eπ(z0+i)(Bi). Hence,

Nf(Bk) ≥ f(T ∗) +

a+b∑
i=s+1

wqi(Z)−N
k−1∑
i=0

wi(Bi)

= f(T ∗) +

k−1∑
i=0

N∑
j=1

wq(s+i×N+j)
(Z)−Nwi(Bi)

+

a+b∑
i=s+k×N+1

wqi(Z)

≥ f(T ∗) + (a+ b− kN − s)wπ(z0)(Z).

Because

a+ b− kN − s ≥ a+ b− kN − a

N

≥ (a+ b)(N − 1) + b

N
− kN

≥ 0,∀k ≤ (a+ b)(N − 1)

N2
,

we have

Nf(Bk) ≥ aρ∗ + (a+ b− kN − s)ρ∗

Nf(Bk) ≥ (2a+ b− kN − s)ρ∗

⇒ ρ(Bk) ≥ (2a+ b− kN − s)
N(a+ b− k)

ρ∗

⇒ ρ(Bk) ≥ 1

N

2a+ b− kN − s
a+ b− k

ρ∗

⇒ ρ(Bk) ≥ 1

N

(a+ b− k) + (a− k(N − 1)− a/N)

a+ b− k
ρ∗

⇒ ρ(Bk) ≥ 1

N
(1 +

(a− kN)(N − 1)

N(a+ b− k)
)ρ∗

⇒ ρ(Bk) ≥ ρ∗

N
,∀k ≤ a

N
.

C. Multiple Dense Subtensors with High Density Guarantee

In this subsection, we show that there exist multiple sub-
tensors that have density values greater than a lower bound in
the tensor.

Theorem 9. Given an N-way tensor T with size n >> N ,
an order π is a D-Ordering on T , and Algorithm 1 processes
m = (n − N) subtensors. Then, there are at least min(1 +
n
2N , 1 + N(N − 1)) subtensors among m subtensors, such
that they have density greater than 1/N of the highest density
subtensor in T .

Proof. Let Z denote the Zero subtensor of T on π by
Algorithm 1, and the zero index is z0, such that N ≤ n− z0.
Then, we have the following:

1) By Theorem 6, there are at least min(N(N − 1), z0)
forward subtensors F1, F2, . . . , having density higher
than 1

N ρ
∗.

2) By Theorems 7-8, there are backward subtensors
B1, B2, . . . , having density higher than 1

N ρ
∗. The princi-

ple of the number of backward subtensors having density
greater than 1

N of the highest density is as follows:

{
b
N , by Theorem 7.
min( aN ,

(a+b)(N−1)
N2 ), by Theorem 8.

(10)

From Eq. 10, there is at least max( bN ,min( aN ,
(a+b)(N−1)

N2 ))
backward subtensors having density greater than the lower
bound.

If a
N ≤ (a+b)(N−1)

N2 , then number of backward subten-
sors having density greater than the lower bound is at least
max( aN ,

b
N ) ≥ a+b

2N .
Otherwise, we have

min(
a

N
,

(a+ b)(N − 1)

N2
) =

(a+ b)(N − 1)

N2
≥ a+ b

2N
.

Hence, the number of backward subtensors is at least a+b
2N .

Further, if we combine this with the number of forward
subtensors, then there is at least min(1 + n

2N , 1 +N(N − 1))
subtensors in the tensor having density greater than a lower
bound. This can be proved as follows.

According to Theorem 8, we have the number of backward
subtensors having density greater than the lower bound, de-
noted by bw, and bw ≥ (a+b)

2N . By Theorem 6, we have the
number of subtensors having density greater than the lower
bound, we denote this by fw, and fw ≥ min(N(N −1), z0).

If z0 ≥ N(N −1), then the number of subtensors that have
density values greater than a lower bound is 1 + fw + bw ≥
1+N(N−1), where 1 is used to account for the zero subtensor.



Otherwise (i.e., z0 ≤ N(N − 1)), we have a + b + z0 = n,
and we get

1 + fw + bw ≥ 1 +
(a+ b)

2N
+ z0

⇒1 + fw + bw ≥ 1 +
(n− z0)

2N
+ z0

⇒1 + fw + bw ≥ 1 +
n

2N
+
z0(2N − 1)

2N

⇒1 + fw + bw ≥ 1 +
n

2N
.

This gives that the number of subtensors having density
values greater than the lower bound is 1+fw+bw ≥ min(1+
n
2N , 1 +N(N − 1)).

If (a+ b) ≤ n−N(N − 1), then we have at least N(N −
1) forward subtensors having density greater than 1

N of the
highest density.

Otherwise, if n >> N such that

(a+ b) ≥ n−N(N − 1) ≥ 2N3

⇒ then we get
(a+ b)

2N
≥ N(N − 1).

In conclusion, we have at least N(N−1) backward subtensors,
each having density greater than 1

N of the highest density. By
adding the zero subtensors, we have at least (1 +N(N − 1))
subtensors having density greater than 1

N of the highest density
each.

Our approach described above can be employed to improve
the state-of-the-art algorithms on estimating multiple dense
subtensors using Algorithm 2.

Algorithm 2 Multiple Estimated Subtensors

Require: A D-Ordering π on a set of slices Q of tensor T
Ensure: Multiple estimated subtensors with guarantee on

density
1: Initialization() . density measure ρ, build tensor
2: TS← ∅, S ← ∅
3: Number of estimated subtensors: mul← 0
4: mul← min(1 + n

2N , 1 +N(N − 1))
5: for (j ← |Q|..1) do
6: q ← π(j)
7: S ← S ∪ q
8: TS.add (S, ρ(S))
9: end for

10: Sort TS by descending order of density
11: return top-mul subtensors having highest density in TS

Complexity discussion. In order to estimate k dense sub-
tensors, the complexity of M-Zoom and M-Biz are high.
The worst-case time complexity of M-Zoom and M-Biz is
O(kNnlogn) [16]. Its complexity increases linearly with
respect to the number of estimated subtensors, k.

Focusing on the proposed solution, MUST, the complexity
includes the cost of D-Ordering, which is O(Nnlogn), and
the cost of executing Algorithm 2, which utilizes Google

Guava ordering1, is O(nlogn), in the worst case. In total, the
complexity MUST is O(Nnlogn), which does not depend on
the number of estimated subtensors k.

V. EXPERIMENTAL RESULTS

In this section, we present the results from our experi-
mental evaluation, where we evaluate the performance of our
proposed method in terms of both the execution time (i.e.,
efficiency) and the accuracy of the density of the estimated
subtensors (i.e., effectiveness).

A. Experimental Setup

We used four widely-used density measures in our experi-
ments: arithmetic average mass (ρa) [17]; geometric average
mass (ρg) [17]; entry surplus (ρe) [29], with which the surplus
parameter α was set to 1 as default; and suspiciousness
(ρs) [30]. Note that in M-Zoom (M-Biz), Dense-Alert, and in
this work, the density measure used for the proof of guarantee
is arithmetic average mass. Nevertheless, the only difference
among the density measures is the choice of coefficients.
Hence, we can utilize the same proof for other mass measures
to get similar results. In this paper, we specifically provide
theoretical proofs for density guarantee of dense subtensors.
Here, it is worth noting that we can easily extend and apply
our proofs of higher density for dense subgraphs, as well.

We implemented our approach based on the implementation
used in the previous approaches [15], [16], [19]. We compared
the performance of the proposed solution with the state-of-the-
art algorithms, M-Zoom and M-Biz (where M-Zoom was used
as the seed-subtensor). To do this, in our experiments, we run
the algorithms using M-Zoom, M-Biz, and MUST to get top
10 subtensors that have the highest density. We carried out
all the experiments on a computer running Windows 10 as
operating system, having a 64-bit Intel i7 2.6 GHz processor
and 16GB of RAM. All the algorithms were implemented
in Java, including M-Zoom and M-Biz, the source codes for
which were provided by the authors2.

B. Datasets

In order to evaluate the performance of the proposed so-
lution and compare it with the state-of-the-art algorithms, we
used the following 10 real-world datasets:
• Air Force, which contains TCP dump data for a typical U.S.

Air Force LAN. The dataset was modified from the KDD
Cup 1999 Data and was provided by Shin et al. [16].

• Android, which contains product reviews and rating meta-
data of applications for Android from Amazon [33].

• Darpa, which is a dataset collected by MIT Lincoln Lab
to evaluate the performance of intrusion detection systems
(IDSs) in cooperation with DARPA [34].

• Enron Emails, provided by the Federal Energy Regulatory
Commission to analyze the social network of employees
during its investigation of fraud detection and counter
terrorism.

1https://opensource.google.com/projects/guava
2https://github.com/kijungs/mzoom



TABLE III: Summary of the real-world datasets used in the experiments

Dataset Instance Structure Entry Size #Instances #Ways Data Type

Air Force
(protocol, service, flag, s-bytes, d-bytes,

#connects
3 × 70 × 11 × 7,195 ×

4,898,431 7 TCP Dumps
counts, srv-counts, #connects) 21,493 × 512 × 512

Android (user, application, score, date, rate) rate 1,323,884 × 61,275 × 5 × 1,282 2,638,173 4 Ratings
Darpa (s-ip, d-ip, date, #connects) #connects 9,484 × 23,398 × 46,574 4,554,344 3 TCP Dumps
Enron Emails (sender, receive, word, date, count) count 6,066 × 5,699 × 244,268 × 1,176 54,202,099 4 Text, Social Network
Enwiki (user, page, time, #revisions) revisions 4,135,167 × 14,449,530 × 132,079 57,713,231 3 Activity Logs
Kowiki (user, page, time, #revisions) revisions 662,370 × 1,918,566 × 125,557 21,680,118 3 Activity Logs
LBNL Network (s-ip, s-port, d-ip, d-port,date, packet ) packet 1,605 × 4,198 × 1,631 × 4,209 × 868,131 1,698,825 5 Network
NIPS Pubs (paper, author, word, year, count) count 2,482 × 2,862 × 14,036 × 17 3,101,609 4 Text, Academic
StackO (user, post, favourite, time) favourite 545,195 × 96,678 × 1,154 1,301,942 3 Activity Logs
YouTube (user, user, connected, date) connected 1,221,280 × 3,220,409 × 203 9,375,374 3 Social Network

• Enwiki and Kowiki provided by Wikipedia3. Enwiki and
Kowiki are metadata representing the number of user revi-
sions on Wikipedia pages at given times (in hour) in English
Wikipedia and Korean Wikipedia, respectively.

• LBNL-Network, which consists of internal network traffic
captured by Lawrence Berkeley National Laboratory and
ICSI [35]. Each instance contains the packet size that a
source (ip, port) sends to a destination (ip, port) at a time.

• NIPS Pubs, which contains papers published in NIPS4 from
1987 to 2003 [36].

• StackO, which represents data of users and posts on the
Stack Overflow. Each instance contains the information of
a user marked a post as favorite at a timestamp [37].

• YouTube, which consists of the friendship connections be-
tween YouTube users [38].
We selected these datasets because of their diversity, and

because they are widely used as benchmark datasets in the
literature [16], [19]. A more detailed information about the
datasets are listed in Table III.

C. Density of the Estimated Subtensors

Figure 2 shows the density of the estimated subtensors
obtained with M-Zoom, M-Biz, and MUST. In the figure,
we plot the average (AVG) and the low boundary (BOUND)
density of the top-10 estimated subtensors. As shown, although
the estimated subtensors found by M-Zoom and M-Biz have
guarantee locally on the snapshot, the density of the subtensors
drops dramatically with respect to the increasing number of
the estimated subtensors, k. On all the datasets, the average
and the bound density of the estimated subtensors with MUST
are much higher than those obtained with M-Zoom and M-Biz
in all density measures. MUST also outperforms M-Zoom and
M-Biz on density accuracy of estimated subtensors, focusing
on both the average and boundary of density of the top ten
estimated subtensors.

In particular, on the Air Force dataset, the average density
with MUST is up to 546% higher than with M-Zoom and M-

3https://dumps.wikimedia.org/
4https://nips.cc/

Biz, using the arithmetic average mass measure, and more than
891% higher on the Darpa dataset using entry surplus measure.
In terms of lower bound of density of the estimated subtensors,
there is a huge gap between the proposed algorithm and the
baseline algorithms. For instance, on the Air Force dataset,
the lower bound of density of the estimated subtensors with
MUST are more than 360 times and two million times bigger
than with both baseline algorithms, when applying arithmetic
average mass and entry surplus measure, respectively.

D. Diversity and Overlap Analysis

An important difference between MUST and other ap-
proaches is its ability to estimate multiple subtensors. Hence,
important aspects worth evaluating and discussing are (1) how
much difference it is between estimated subtensors, and (2) the
fractions of overlap among the detected subtensors. Intuitively,
MUST sequentially removes one slice which has a minimum
slice weight at a time. Finally, the algorithm picks the top k
highest densities among estimated subtensors.

In this subsection, we evaluate the diversity of the top
three estimated subtensors by MUST, M-Zoom on the Enwiki,
Kowiki, and Air Force datasets to analyze the overlap fractions
of subtensors. We use arithmetic average mass (ρa) as the
density metric and the used diversity measure is the same
as in [15]. The diversity of two subtensors is the average
dissimilarity between pairs of them. Here, we chose the
Enwiki, Kowiki, and Air Force datasets because they contain
anomaly and fraud events, and that they are commonly used
for this type of benchmark [15], [19].

Table IV shows the diversity of the top three estimated
subtensors by MUST and M-Zoom. We observe that the
obtained diversities by MUST are 36.2%, 37.2%, and 20.8%
on Enwiki, Kowiki, and Air Force, respectively. The overlap
between the subtensors are acceptable and considerable in
many contexts, e.g. anomaly and fraud detection, because
groups of fraudulent users might share some common smaller
groups or some fraudsters. Another reason is that fraudulent
behaviors of users might happen in just some specific periods
of time. Compared to M-Zoom, M-Zoom can find more
diverse subtensors, which can be explained as follows. M-
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Fig. 2: Average and bound of density on datasets (K: thousand, M: million, B: billion). Best viewed in color and zoom mode.

Zoom is specifically designed to find different subtensors by
creating a snapshot of the data at each detection process, and
it mines a block in this intermediate tensor. The results of
this is, however, that M-Zoom cannot provide guarantee on
the density of the detected subtensors, except on the first
subtensor. This is one of the drawbacks of M-Zoom, and
as discussed below (Section V-E), the effectiveness of M-
Zoom on network attack detection greatly drops with multiple
subtensors.

E. Effectiveness on Network Attack Detection

Air Force is specifically suitable for evaluating network
attack detection ability. As mentioned earlier, it is a dataset
of TCP dump data of a typical U.S. Air Force LAN. It
contains the ground truth labels of connections, including both
intrusions (or attacks) connections, and normal connections. In
detail, there are 972,781 connections as normal, while other
connections are attacks. This dataset is widely used for the
task of detecting anomaly and network attacks.

Here, we demonstrate the efficiency, and the effectiveness
of our proposed method on anomaly and network attack
detection, and compare it with M-Zoom. We analyze the
three highest subtensors returned by M-Zoom and MUST in

the experiment in Section V-D on Air Force, and then we
compute how many connections in the estimated subtensors
are normal activities or attack5. Table V shows the connections
in the top three subtensors detected by MUST and M-Zoom
using arithmetic average mass (ρa) as the density metric.
We observe that all connections in the top three subtensors
found by MUST are attack connections with no false positive.
This is because MUST guarantees the density of all multiple
subtensors it finds. With M-Zoom, it has the same result in
the top two subtensors. However, in the third subtensor, only
56,433 connections are attack, and 151,080 other connections
are normal among 207,513 connections. In other words, M-
Zoom produces a high rate of false positives, which in turn
means that MUST outperforms M-Zoom, when used in the
task of network attack detection, using the Air Force dataset.

F. Execution Time

In terms of execution time, to evaluate the performance of
the algorithms, we recorded the runtime of the algorithms on
real-world datasets using four measures of the density to return

5We provide the Matlab code to analyze attack connections in the code
repository at https://bitbucket.org/duonghuy/mtensor/src/master/data/.

https://bitbucket.org/duonghuy/mtensor/src/master/data/
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Fig. 3: Average runtime for a (sub)tensor on datasets. Best viewed in color.

TABLE IV: Diversity of estimated subtensors

Dataset # Volume Density Diversity Dataset # Volume Density Diversity Dataset # Volume* Density Diversity

M
U

ST

Enwiki
1 1 × 2 × 2 2397.6

36.2% Kowiki
1 2 × 2 × 2 273.0

37.2% Air Force
1 X1 × 2 × 1 × 1 × 1 1,980,948

20.8%2 1 × 4 × 5 2375.7 2 4 × 4 × 5 258.5 2 X1 × 1 × 1 × 1 × 1 1,930,307
3 1 × 3 × 3 2355.9 3 4 × 4 × 4 240.5 3 X1 × 2 × 1 × 2 × 2 1,772,991

M
-Z

oo
m

Enwiki
1 1 × 2 × 2 2397.6

96.7% Kowiki
1 2 × 2 × 2 273.0

99.4% Air Force
1 X1 × 2 × 1 × 1 × 1 1,980,948

70.8%2 1 × 2 × 3 1961.5 2 2 × 2 × 3 246.0 2 X1 × 1 × 1 × 1 × 1 263,295
3 2 × 3 × 3 908.25 3 16 × 41 × 45 181.6 3 X2 × 5 × 4 × 3 × 3 60,524

* Where X1 = 1× 1× 1, and X2 = 3× 4× 2.

TABLE V: Network attack detection on Air Force in the top three subtensors

# Volume Density (ρa) # Connections # Attack Connections # Normal Connections # Ratio of Attack

M
U

ST

1 2 (1 × 1 × 1 × 2 × 1 × 1 × 1) 1,980,948 2,263,941 2,263,941 0 100%
2 1 (1 × 1 × 1 × 1 × 1 × 1 × 1) 1,930,307 1,930,307 1,930,307 0 100%
3 8 (1 × 1 × 1 × 2 × 1 × 2 × 2) 1,772,991 2,532,845 2,532,845 0 100%

M
-Z

oo
m 1 2 (1 × 1 × 1 × 2 × 1 × 1 × 1) 1,980,948 2,263,941 2,263,941 0 100%

2 1 (1 × 1 × 1 × 1 × 1 × 1 × 1) 263,295 263,295 263,295 0 100%
3 4320 (3 × 4 × 2 × 5 × 4 × 3 × 3) 60,524 207,513 56,433 151,080 27%

YouTube

10 20 30 40 50

R
un

tim
e 

(s
)

0

100

200

300

M-Zoom

M-Biz

MUST

Enron

10 20 30 40 50

R
un

tim
e 

(s
)

0

100

200

300

M-Zoom

M-Biz

MUST

Fig. 4: Runtime while varying k. Best viewed in color.

top ten density subtensors. Then, we calculated the average
runtime of the algorithms per each estimated subtensor. The
results from this experiment are shown in Figure 3. We
observe that MUST is much faster than M-Zoom and M-
Biz on all the datasets. Specifically, it is up to 6.9 times
faster than M-Zoom and M-Biz to estimate a subtensor. The
obtained results fit well with our hypothesis and or complexity
discussion in Section IV. The explanation for this is that in
MUST the algorithm needs only a single maintaining process
to get dense subtensors, while in M-Zoom and M-Biz, they
repeatedly call the search function k times to be able to get k

dense subtensors. The proposed method, MUST, runs nearly
in constant time independent of the increase of the number of
subtensors; whereas the execution times of both M-Zoom and
M-Biz increase (near)linearly with respect to value of k.

G. Scalability

We also evaluate the impact of the number of estimated
subtensors (k) to the performance of the algorithms. Here, we
performed experiments on the Enron and YouTube datasets.
With arithmetic average mass, we measured the runtime while
varying k within {10, 20, 30, 40, 50}. Figure 4 shows
the results of this experiment. As shown in the figure, the
execution time of M-Zoom and M-Biz increase linearly with
the increasing value of k, while the running time of MUST is
constant with respect to the value of k. These results conform
well with our complexity analysis in Section IV.

In conclusion, MUST outperforms the current state-of-the-
art algorithms for solving the dense subtensor detection prob-
lem, from both a theoretical and experimental perspective.



VI. CONCLUSION

In this paper, we proposed a new technique to improve the
task of dense subtensor detection. As discussed, the contribu-
tions are both theoretical and practical. First, we developed
concrete theoretical proofs for dense subtensors estimation
in a tensor problem. An important purpose of this was to
provide a guarantee for a higher lower bound density of
the estimated subtensors. In addition, we developed a new
theoretical foundation to guarantee a high density of multiple
subtensors. Second, extending existing dense subtensor detec-
tion methods, we developed a new algorithm called MUST
that is less complex and thus more efficient than existing
methods. Our experimental experiments demonstrated that the
proposed method significantly outperformed the current state-
of-the-art algorithms for dense subtensor detection problem.
It is significantly more efficient and effective than the base-
line methods. In conclusion, the proposed method is not
only theoretically sound, but is also applicable for detecting
dense subtensors. Nevertheless, when developing the proposed
method, we observed that existing approaches (including ours)
treat each tensor slice independently, and that they do not
consider the relation among the slices within a tensor. To
address this, in our future work, we will study the connection
among slices when projecting on a way of a tensor. In addition,
we will explore applying our method on graph data, and
using it to solve event detection problems, such as change
and anomaly detection.
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