Query Planning in P2P Database Systems

Kjetil Ngrvag,* Eirik Eide and Odin Hole Standal
Dept. of Computer Science,
Norwegian University of Science and Technology,
Trondheim, Norway

Abstract

The peer-to-peer (P2P) paradigm is emerging as a possi-
ble solution to some of the problems in distributed data pro-
cessing, including scalability, availability, and administra-
tive cost. P2P has already proved to be suitable in contexts
like file sharing, distributed computations, and distributed
search. In our research we are aiming at using P2P to
solve some problems in the domain of distributed databases.
In this paper we 1) present PORDaS, a distributed DBMS
based on P2P techniques, 2) describe query processing and
query planning in PORDaS, and 3) present results from an
experimental evaluation of different query planning vari-
ants.

1. Introduction

The peer-to-peer (P2P) paradigm is emerging as a pos-
sible solution to some of the problems in distributed data
processing, including scalability, availability, and adminis-
trative cost. P2P has already proved to be suitable and ef-
ficient for file sharing, distributed computations, and dis-
tributed search.

In our research we are aiming at using P2P to solve some
problems in the domain of distributed databases, and in par-
ticular in the application area of database support for Grid
applications. So far, Grid computing as gained some ma-
turity with respect to the actual computation. However, the
management of data in Grid networks is still a very imma-
ture area. In general, simple files are used. The need for us-
ing databases to a larger extent has been identified and there
has also been some work on standardized data access ser-
vices like OGSA-DAI [14].

The goal behind our research is to provide database fa-
cilities where distribution (and the availability of the Grid
backbone) is transparent to the user. It should also provide

+ Email of contact author: Kjetil.Norvag @idi.ntnu.no.

services for metadata discovery and seamless queries be-
tween heterogeneous sources. In this paper we will give an
overview of PORDaS, which is the distributed database sys-
tem layer of the DASCOSA Grid database framework [11].
We will also present some details from query processing
and planning in the PORDaS prototype.

Many of the architectural decisions of PORDaS are af-
fected by characteristics of the intended application areas:
relatively complex and structured data, and the fact that
much of the data will be local data that should be made
available to the outside world for querying, but for vari-
ous reasons (including the size of the data volumes) the
raw/source data itself should not be distributed. For this
reason our system-wide data model is based on the tra-
ditional object-relational data model in order to present
users/application the same data model as what is used in
their applications.

The main contributions of this paper are: 1) a presenta-
tion of the PORDaS P2P DBMS, 2) query processing in a
P2P DBMS, and 3) query planning in a P2P DBMS.

The organization of the rest of this paper is as follows.
In Section 2 we give an overview of related work. In Sec-
tion 3 we give an overview of PORDaS, and in Section 4
we give a more detailed description of query processing. In
Section 5 we present results from an experimental evalu-
ation of different query planning variants. Finally, in Sec-
tion 6, we conclude the paper.

2. Related work

Much of the previous work on distributed database sys-
tems is obviously relevant. For a survey of state of the art in
this area we refer to [8]. Recent work in this area includes
query processor for Internet data sources, for example Ob-
jectGlobe [4].

Our Grid DBMS PORDaS is based on distributed hash
tables (DHT). A number of papers deal with focused is-
sues like query processing in DHT networks [2, 6, 16],
and replica management [9]. [13] describes how to use Dis-

tributed Hash Sketches to estimate cardinality of multisets
in the context of P2P system based on DHTs.

Three systems, PIER, AmbientDB and PeerDB also aim
at providing DBMS support using P2P technology:

e PIER [7] has many similarities with PORDaS. It is
a middleware query engine built on top of a storage
manager and DHT. However, it is not designed to sup-
port replication and does not maintain system meta-
data, and essentially only indexes whatever the appli-
cations register in the system.

e AmbientDB [3] is a system designed to provide full re-
lational database functionality for stand-alone opera-
tion in autonomous devices that may be mobile and
disconnected for long periods of time, while enabling
them to cooperate in an ad-hoc way with (many) other
AmbientDB devices. A DHT is used both as a means
for connection peers in a resilient ways as well as sup-
porting indexing of data.

e PeerDB [10] is a P2P system supporting queries
against data stored on remote nodes. The sys-
tem is based on an unstructured P2P system, focusing
on data retrieval instead of distributed querying. In-
stead of relying on global schemas or mediators, infor-
mation retrieval techniques are used to find matching
relations. Both relation matching and queries are per-
formed by agents.

A general problem in P2P systems is selfish behavior:
most peers want to receive more than they contribute. In or-
der to reduce the impact of this behavior, techniques using
accounting [12] and other approaches to enable trust have
been developed.

3. PORDaS

PORDaS is a distributed DBMS using P2P techniques to
achieve high performance, scalability, and availability. It is
built as a database layer on which larger applications can
be built, and provides location-transparent storage of data
with Grid applications as main application area. Each node
in PORDaS is autonomous. Data is created and stored lo-
cally but globally available for querying.

In both Grids and other large distributed systems hetero-
geneous hardware and operating systems will be the case. In
order to ease deployment, we have based PORDaS on com-
ponents written in Java. In the current version, the P2P com-
munication is performed by the FreePastry DHT [5], and for
local storage the Derby DBMS [1] is used. It should be men-
tioned that both the DHT and DBMS are defined as inter-
faces so that they can easily be replaced with other imple-
mentations if desired. They are also both embedded, so that
no separate installation of DHT and DBMS is necessary.

In a distributed DBMS, metadata management is an im-
portant issue. In PORDaS this is solved by separate table de-
scriptions and data discovery tools, so that queries over re-
lated data sources using heterogeneous schema descriptions
can be performed. This schema management is orthogonal
to the work presented on query processing in this paper, so
due to space constraints we will not go into further details
on this issue.

In the rest of this section the overall architecture of POR-
DaS, while storage and query processing will be described
in more detail in the subsequent sections.

3.1. Use and data access

PORDaS uses the object-relational data model, i.e., re-
lations of tuples and possibility of tuple identifiers and at-
tributes referencing other tuples.

When a table is created, a hash value based on the ta-
ble schema is created. This is indexed in the DHT, so that it
is possible to find other tables having the same schema sig-
nature. It is also possible to annotate a schema by keyword
descriptions that can be taxonomy/ontology based. This in-
formation is also stored in the DHT. This means that it is
possible to find related tables automatically.

Data that is inserted is stored in the local database. A
query against local table names will be performed on the
local database only. If it is desired that the global database
should be queried, i.e., potentially all other local databases
in the system, global tables have to be specified in the query.
The identifier of global tables are found by using either
schema signature or schema description as described above,
or provided directly.

Given the identifier of a global table, the DHT can re-
turn the identifier of all peers storing elements of this ta-
ble. It can also indicate value ranges that they store for the
key value, which might speed up, e.g., selection queries. Al-
though indexing individual tuples is an alternative using a
DHT, this will in general be too fine-grained and having too
high maintenance cost.

3.2. Overview of architecture

The architecture of PORDaS is illustrated in Figure 1.
An application accesses the databases through the PORDaS
API. The application layer can interact both with the local
database and query data at other sites transparently, with-
out users having to know where the data is located.

Storage: The storage component keeps track of all the data
stored at a node. It holds the local database and a metadata
repository that manages information about local tables. The
storage component also stores parts of the distributed index,
which all the nodes in the system participate in sharing. The

Application Programming Interface

Node

Query Processor

Parser Planner Executor

Storage

Figure 1. The PORDaS architecture.

DHT

index holds information about the contents and location of
other tables in the system.

The local database is used for the persistent data stored
in the system, i.e., tables and local metadata. PORDaS op-
erates internally on an object relational data model. This is
also the model exposed to users/applications of PORDaS.
A query could be performed either against local data only,
or against global data. In the case of global data, location is
transparent.

Query processor: The query processor consists of a parser,
a planner and an executor. It takes queries as input from the
application layer, creates a plan and executes it. The result-
ing tuples are pipelined back to the application layer.

Communication: The nodes in a PORDaS network are
loosely connected through a DHT. The purpos of the com-
munication module is to enable resource location and
to route requests for data. It also enables message send-
ing and reception, and is responsible for unwrapping
messages and forwarding them to the appropriate compo-
nent.

Except when returning query results, every message in
PORDaS is routed through the DHT layer. Messages are
sent for keyword and query requests, to resolve subqueries
and to maintain the distributed index. When returning re-
sults, direct connections between the nodes are used in or-
der to improve performance.

The distributed index is realized using a DHT, and
among its applications in PORDaS are 1) schema/table dis-
covery, and 2) finding locations of arbitrary tables. The
index makes PORDaS location transparent.

Soft state is used to maintain the distributed index. It
means that every index record has an associated expiration

| Verify syntax |
v

[Find table definitions |

Query
decomposition |

Create algebra tree |

[Restructure tree |

Localization [[Locate tables |

Create plan |

Planning [[

[Send subqueries |

Execution

[Process incoming results |

Figure 2. Query processing.

time. When it expires, the record is deleted from the index.
Thus, in order for a node to keep its index records in the sys-
tem, they must be continually refreshed. After a node leaves
the system, either voluntarily or because of a failure, its in-
dex records will be removed when they expire.

4. Query Processing in PORDaS

Figure 2 shows how queries are resolved in PORDaS,
with a structure mostly the same as for traditional dis-
tributed systems. The query processor can handle multiple
queries at a time. We now give a brief overview of each
query processing step, followed by a more detailed descrip-
tion of the query planning step.

Query language: The query and data manipulation lan-
guage in the PORDaS prototype is a subset of SQL.

Query decomposition: In this step queries are decomposed
from a textual representation into an algebra tree.

When a new query is submitted, first the query syntax
is verified. Then the next task is to verify type correctness,
which is making sure the relations and attributes referenced
in the query actually exist. The operations in the query are
checked against the type of each attribute as well, making
sure they match. Before this can be done, the table defini-
tion for each table referenced in the query must be fetched.
First, the local metastore is searched. If one or more table
definitions are lacking, they must be fetched from the dis-
tributed index. This will delay the query until all table defi-
nitions have been found.

The next step is creating the initial algebra tree. The fi-
nal tree is either bushy or linear. The first part of the tree is

always the same for both types. First, the projections are de-
fined as the root, followed by each selection in the query.

PORDaS builds left-deep trees, i.e., the tree is always ex-
tended along the leftmost path of each operator, with only
base relations as the right child of the operators. Cartesian
products are added as the left child of its parent. If there are
joins in the query, these are added as the last part of the tree,
in the same fashion as cartesian products.

When building a bushy tree, the goal is to balance the tree
as much as possible, catering for parallel execution. This is
done by maximizing the number of cartesian products and
joins with two operators as children.

Restructuring the tree is performed to achieve a better
tree. The projections and selections in the algebra tree are
pushed as far down as they can be, and in doing so, the size
of intermediate results will be reduced during execution.

Localization: Localization means finding every site that
has a table referenced in the query. These are found by
querying the distributed index. Because of the potentially
volatile nature of the P2P network, caching is not used to
improve the localization process. Nodes that store one of
the tables in the query might have left or joined the network
since the last time they were queried.

Planning: When the locations of every table in the query
are found, a plan for the execution can be devised. The plan-
ner uses heuristics to create plans; these plans are either cen-
tralized or distributed.

A centralized plan is a plan where the required base re-
lations are fetched to the initiating site so that the operators
in the query can be resolved locally. In the spirit of reduc-
ing the amount of network traffic, any selection and projec-
tion on base relations are executed at the remote sites be-
fore the streaming of results is started. Figure 3 (top) gives
an example of a centralized plan. The dotted lines indicate
network communication. It is important to note that the data
fetched from a base relation in the figure may include con-
tacting one or more sites.

In a distributed plan, the responsibility for executing the
query tree is distributed among the set of nodes that store
tables referenced in the query. If statistics about each table
was available, like cardinality, maximum and minimum val-
ues, this information could be used to restructure the tree in
a beneficial way. As this is not the case, predefined rules
are used instead. The rule is best explained by an illustra-
tion, see Figure 3 (bottom). It gives an example of a con-
version from an algebra tree to a distributed plan. The first
rule is to always calculate cartesian products at the initiat-
ing node, which avoids sending too much data over the net-
work. It is conceivable that in certain cases it might be bet-
ter to distribute cartesian products as well, but it is assumed
to not be the average case.

The second rule is to delegate the resolution of joins to
one of the owners of the leftmost table in the join tree. The

Legend

Network
traffic

Local ~ eeeeee-

Algebra tree

Distributed
plan

One of the nodes One of the nodes

storing A storing C
Legend
Local
_______ Network One of the nodes
traffic storing E

Figure 3. Centralized plan (top) and transfor-
mation from an algebra tree to a distributed
plan (bottom).

choice is arbitrary, it could have been any of the owners. The
chosen owner will receive the entire join subtree. If this sub-
tree has any more joins in it, these joins are delegated in the
same manner as well. In the figure this can be seen as the
second join under the cartesian product is delegated to two
separate nodes.

Execution: The execution phase begins with the initiating
node requesting data from all base relations in the query.
If the query plan is a distributed query plan subtrees are
delegated to other nodes. The execution is pipelined, which
means that processed tuples are sent up the tree as soon as
possible. This avoids having to store temporary caches with
intermediate results. To know where a tuple belongs at the
receiving end, all tuples sent across the network are tagged
with an identifier. The identifier uniquely specifies the query
and the point in the query tree where the tuple is expected.
This can seen in the plan in Figure 3. For instance, the chil-
dren of the cartesian product are tagged as 1.1 and 1.2. At
the sites responsible for those parts of the query, every re-
sulting tuple is tagged with 1.1 or 1.2, respectively.

5. Experimental results

In this section study the different query planning vari-
ants. The experiments were conducted on a cluster of 36
computers, each having a 3 GHz Pentium 4 and 1 GB RAM.
The experiments were performed by a test application that
simulated the activity of a regular PORDaS node. The pa-
rameters of the test application are summarized in Table 1,
and are chosen to simulate a probable usage pattern under
medium load. The time between requests is Poisson dis-
tributed with a given mean value. The queries will be de-
layed if there are more concurrent queries than the max-
imum number of concurrent queries allowed. The actual
databases have been kept small in order to be sure PORDaS
is tested and not the local database system (i.e., Derby).

Due to space constraint we limit the discussion in this
paper to two of the experiments that were conducted. In the
first experiment, all nodes were sharing and active. The pur-
pose was to compare every permutation of type of algebra
tree and type of planner, which means that 4 simulations
were be run. The interesting data in this case are the num-
ber of started queries versus the number of finished queries,
and the response times for each permutation. Figure 4 (left)
shows a comparison of all permutations of type of query
planner and type of algebra tree with respect to the num-
ber of started and finished queries. In both cases using cen-
tralized plans the loss of queries is minimal, while in the
distributed case, the loss is noticeable. With a linear query
tree, the loss is over 13%. The circumstances indicate that
the reason for the loss is that queries timed out before re-
sults were received. The time-out threshold was set to two
minutes. By looking at the maximum response times for

the queries that did finish, these are close to this limit. Fig-
ure 4 (left) also shows a distinct difference between the cen-
tralized and distributed cases. The number of started queries
is much lower in the distributed case. The reason for not
starting more queries is because of the limit on the num-
ber of concurrent queries. Waiting for a query to be exe-
cuted has the effect of lowering the throughput.

The purpose of the second experiment was to study and
isolate the effect of executing queries in parallel. This was
achieved by having one active, non-sharing node query the
rest of the nodes, which were sharing and inactive. The
only task of the non-active sites in the system was to re-
solve the queries the one active node gave them. Two tests
were run. The first test had the query processor make lin-
ear trees and used a centralized execution strategy. The sec-
ond test used bushy trees and a distributed execution strat-
egy. Figure 4 (right) shows a comparison of the minimum,
average and maximum response times observed for queries
with a result size between 25.000 and 50.000 tuples. The
distributed execution strategy performs consistently worse
than the centralized strategy.

Both experiments reported above show that the central-
ized execution strategy is better than the distributed. The
distributed execution strategy has the advantage of execut-
ing operators in parallel, but failed since the joins always
had a huge selection rate. This caused the distributed exe-
cution strategy to generate a lot more network traffic than
the centralized strategy. The distributed strategy could have
worked better in comparison to the centralized strategy if
the joins had lower selection rates.

6. Conclusions and further work

In this paper, we have given an overview of the P2P
DBMS PORDaS, and described some aspects of query pro-
cessing and query planning in this system. We have also pre-
sented some results from an experimental evaluation of dif-
ferent query planning variants in PORDaS.

Future work will be in two directions: 1) large-scale ex-
periments and 2) extended functionality. Experiments are
planned to be performed both on larger clusters and Grids
in Norway, as well as using PlanetLab [15]. Extended func-
tionality that will be implemented includes replication, en-
hanced indexing, and a further development of aspects of
query optimization in the context of P2P DBMSs.

References

[1] Apache Derby, http://db.apache.org/derby/.

[2] D. Bauer, P. Hurley, R. Pletka, and M. Waldvogel. Bring-
ing efficient advanced queries to distributed hash tables. In
Proceedings of the 29th Annual IEEE International Confer-
ence on Local Computer Networks (LCN’04), 2004.

(3]

(4]

[5

—

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

Parameter Value | Parameter Value
Tables per node 8 | Tuples per node 2000
of nodes 36 | Simulation length 10 minutes
Request intensity 2 seconds | # of concurrent queries 5
Joins in query 3 (deviation 2) | # of tables in query 4 (deviation 2)
Maximum result size | 100 000 (deviation 90 000)

o Started OFinished

10000

12000

10000

8000

G000

Queries
Time {ms)

1

4000

2000

"

Distributed,
linear

Centralized,
bushy

Distributed,
bushy

Centralized,
linear

P. Boncz and C. Treijtel. AmbientDB: relational query pro-
cessing in a P2P network. In Proceedings of DBISP2P 2003,
2003.

R. Braumandl, M. Keidl, A. Kemper, D. Kossmann,
A. Kreutz, S. Seltzsam, and K. Stocker. ObjectGlobe: ubig-
uitous query processing on the Internet. VLDB Journal,
10(1):48-71, 2001.
FreePastry,
FreePastry/.

M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo,
S. Shenker, and 1. Stoica. Complex queries in DHT-based
peer-to-peer networks. In Proceedings of IPTPS 2002, 2002.

R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the internet with PIER.
In Proceedings of VLDB’2003, 2003.

D. Kossmann. The state of the art in distributed query pro-
cessing. ACM Computing Surveys, 32(4):422-469, 2000.

P. Maniatis, M. Roussopoulos, T. Giuli, D. S. H. Rosenthal,
M. Baker, and Y. Muliadi. Preserving peer replicas by rate-
limited sampled voting. In Proceedings of the 19th ACM
SOSP, 2003.

W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. PeerDB: A
P2P-based system for distributed data sharing. In Proceed-
ings of the 19th International Conference on Data Engineer-
ing, 2003.

K. Ngrvag. DASCOSA: database support for computational
science applications. In Proceedings of GLOBE’06, 2006.

N. Ntarmos and P. Triantafillou. SeAl: managing acesses and
data in peer-to-peer data sharing networks. In Proceedings
of HDMS, 2004.

N. Ntarmos, P. Triantafillou, and G. Weikum. Counting at
large: Efficient cardinality estimation in internet-scale data
networks. In Proceedings of the 22nd International Confer-
ence on Data Engineering (ICDE’06), 2006.

http://freepastry.org/

1000

Result size : 26000 - 50000

0o

h
2 4 — _/ — Distributed
s r j/‘: — Centralized
& - -
- - @ Average
4 Minimum
— — A Maximum
o &

—

14 ¢ &

19 @

[14]

[15]
[16]

1000

=1

0o
Tuple #

10000

OGSA-DAI Open grid services architecture data access and
integration,

http://www.ogsadai.org.uk/.

PlanetLab, http://www.planet-lab.org/.

R. van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system moni-
toring, management, and data mining. ACM Trans. Comput.
Syst., 21(2):164-206, 2003.

