K-AP: Generating Specified /' Clusters by Efficient Affinity Propagation

Xiangliang Zhang*, Wei Wanng, Kjetil Ngrvag t, and Michele Sebag §
* Division of Mathematical and Computer Sciences and Engineering,
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
Email: xiangliang.zhang @kaust.edu.sa
f Interdisciplinary Centre for Security, Reliability and Trust (SnT Centre), University of Luxembourg, Luxembourg
Email: wwangemail @ gmail.com
i Department of Computer and Information Science, Norwegian University of Science and Technology (NTNU), Norway
Email: kjetil.norvag @idi.ntnu.no
§ TAO - LRI, CNRS, INRIA, Université Paris-Sud 11, France
Email: michele.sebag@lri.fr

Abstract—The Affinity Propagation (AP) clustering algo-
rithm proposed by Frey and Dueck (2007) provides an un-
derstandable, nearly optimal summary of a data set. However,
it suffers two major shortcomings: i) the number of clusters is
vague with the user-defined parameter called self-confidence,
and ii) the quadratic computational complexity. When aiming
at a given number of clusters due to prior knowledge, AP
has to be launched many times until an appropriate setting
of self-confidence is found. The re-launched AP increases the
computational cost by 1 order of magnitude. In this paper, we
propose an algorithm, called K-AP, to exploit the immediate
results of K clusters by introducing a constraint in the
process of message passing. Through theoretical analysis and
experimental validation, /{-AP was shown to be able to directly
generate K clusters as user defined, with a negligible increase
of computational cost compared to AP. In the meanwhile, K-
AP preserves the clustering quality as AP in terms of the
distortion. K-AP is more effective than k-medoids w.r.t. the
distortion minimization and higher clustering purity.

Keywords-clustering; affinity propagation; k-medoids;

I. INTRODUCTION

The Affinity Propagation (AP) [5] is a clustering algo-
rithm proposed to find out the most representative actual
items of a data set, referred to as exemplars. In many appli-
cation fields, finding out the exemplars is more interesting
and informative than dividing items into clusters [10]. For
example, the exemplars identified from the sentences of
a document can be used for document summarization or
abstraction. The quality of the set of exemplars is measured
by distortion, which is the sum of squared distance between
the data items and their associated exemplars.

As a traditional exemplar-based clustering algorithm, k-
medoids also aims at finding out exemplars, known as
medoids. It defines a combinatory optimization problem.
Several algorithms have been proposed for the realization of
k-medoids providing different trade-off between optimality
and tractability, e.g., Partitioning Around Medoids (PAM)

*This work was completed when the author was an ERCIM Postdoctoral
fellow at Norwegian University of Science and Technology, Norway.

[6], CLARA [7], CLARANS [11] and EM algorithm based
k-medoids which is a variant of k-means clustering algo-
rithm [1, 5]. Differing from k-means that represents a cluster
by an averaged artifact, k-medoids represents a cluster by a
real item [6].

As shown in [5], AP provides optimality guarantee
about minimizing the clustering distortion, compared to k-
medoids. In counterpart for this guarantee, AP is limited by
its quadratic computational complexity, and by the fact that
it does not allow directly specifying the number of clusters.
Instead, the number of clusters produced by AP is implicitly
controlled by a user-defined parameter, which is the self-
confidence for each item to be an exemplar. However, k-
medoids has an advantage in directly generating a specified
number of clusters.

In many application domains, prior knowledge indicates
the number of clusters in the data. Clustering algorithms are
thus required to generate a desired number of clusters. For
example, clustering is applied for grouping documents into
a given number of categories [12], and for recognizing the
given number of social communities [13].

This paper aims at modifying AP to directly provide a
given number of clusters while remaining all its advantages
in clustering, e.g., the minimum distortion. Frey and Dueck
[5] have suggested to re-launch AP many times with dif-
ferent parameters setting searched by bisection method until
the desired number of clusters are found. AP suffers from
the quadratic computational complexity. Re-launching AP
to obtain a given number of clusters, therefore, increases
the computational complexity by one order of magnitude.
In order to generate specified K clusters, we introduce a
constraint of limiting the number of clusters to be K for
automatically adapting the message passing. The proposed
K-AP method offers the same guarantee of optimality of
AP and generates user-specified number K of clusters for
negligible computational cost overhead compared to AP.

The rest of this paper is organized as follows. Section II
describes our proposed clustering algorithm K -AP. Section

Bl (b:2.022,-+ b | K)

£2/(b12,b22, -+ b2)

1 (D11.b21,-+-.bra) T3 (b13.b23,**,bniz)

i (b1ibzi, - .bri) [(Daj,b2j, -+, b))

(br1,brz, "=+ brn)

N (Dinbon, -+ ban)

Figure 1. The grid-topology factor graph with N2 binary variable nodes {b;;} (circles), N(NN — 1) similarity function nodes {s(7,)} (blue square) and
3 types of constraint function nodes g; (green square), f; (yellow square) and h (red square)

IIT shows the validation of K-AP on several data sets from
different application domains. Finally, Section IV concludes
and gives our perspectives in further research.

II. GENERATING K CLUSTERS BY MESSAGE PASSING
A. Problem definition

We formalize the problem of extracting K exemplars
(clusters) as follows. Given the data set X = {z1,...,zn}
and the similarities S = {s(z;,2;)} between all pairs of z;
and x;, the goal is to find out & exemplars £ = {ey, ..., ex}
which is a subset of & so that £ maximizes:

K
EE)=> Y s(wie))
J=1 zgic(z;)=e;
where c is a mapping between x; and its closest exemplar
c(x;). A cluster with exemplar e; can be defined as ¢; which
includes all z; choosing e; as its exemplar.

The problem of finding K exemplars can be re-formulated
by 0-1 integer programming. Let us introduce binary vari-
ables {b;; € {0,1},4,5 = 1,..., N} indicating the exemplar
(cluster) assignments: b;; = 1,49 # j if x; selects x;
as its exemplar, and b; = 1 if x; itself is an exemplar.
Based on these indicator variables, it naturally comes that
maximization of function (1) is equal to maximize:

E({bis}) =Y > bis(wi, ;) 2

i=1 j=1

subject to
al N
SThy=1 bp=1litbu=1, Y bu=K 3
/=1 i=1

The constraint functions in (3) respectively enforce that i)
each item z; can only have one exemplar; ii) if there is one
item z; selecting x; as its exemplar, x; must be an exemplar;
iii) the number of exemplars must be K.

The programming problem of maximizing function (2)
subject to constraints (3) can be expressed by a factor
graph [3, 9]. A factor graph is a graphical model used for
representing global functions which can be factored into
simpler local functions. As shown in Figure 1, there exist
N? binary variable nodes {b;; € {0,1}} indicating the
assignment of exemplars, and N(N — 1) function nodes
{s(i,4)} corresponding to the similarities of all pairs of
items z; and x;. In addition, three types of constraint
function nodes, {g;}, {fi} and h, encode the constraints (3),
respectively. The constraint functions are defined as follows.

Functions {g;(b;1, bi2,...,bin),7 = 1,..., N} make sure
that the clusters are disjoint and each item can only select
one exemplar:

{07 if 3500 by £ 1
gi(bi1, bia, ..., bin) =)
1, otherwise.

Functions {f;(b14, b2, ...,bn:),2 = 1,..., N} enforce that
one item must be an exemplar if any other items select it as
its exemplar:

0, ifbiiyélbut HjibjiZI;
fi(b1s, b2i, . b)) = { ©)
1, otherwise.

Function h(b11,bag, ..., by n|K) limits the number of ex-
emplars (clusters) to be the given K:

0, if 3N by # K;
h(bi1, bz, ..., by n | K) = { (©6)
1, otherwise.

The problem of finding out K exemplars is then trans-
formed into searching over configurations of variable b;; in
the factor graph to maximize the global function

F(b;s;K) =10, (" [0, €77 CD)h(bia, oo, b | K)

T2, f5(b1, o) T 9i(bins o, bin) -

B. Belief Propagation for integer programming

Belief Propagation (BP) [14], a message passing algo-
rithm for performing inference on graphical models, e.g.,
factor graph, has been shown to be an efficient way to
solve the linear programming problem (linear relaxation of
integer programming) [2]. It finds out the best configuration
of variables for maximizing the global function (7) [2]. AP
is a successful example of using BP to achieve the optimal
clustering results. In a factor graph, the real valued messages
are sent from a variable node to a factor node, and vice-
versa. Figure 2 shows the messages passed between variable
nodes and function nodes in the factor graph shown in Figure
1. After iteratively updating the passed messages until they
have converged, the optimal result of b;; can be decided by
collecting all the received messages and by calculating the
beliefs related to each individual variable node b;; [2].

(b11,022,* b | K)
out i
hii ilin
Tii |
—— 1.8 (biw.biz, "+, bin) i (biz,biz,**.bin)
B
ii
aiiT lpn
fi (bllvbzh.”vbNV) fj (blpbmv"‘ybm)

Figure 2. The messages passed between variable nodes and function nodes
in factor graph

According to the BP algorithm, the message outgoing
from one variable node to a function node is the element-
wise product of all other incoming messages from the
neighboring function nodes [14]. As shown in Figure 2, the
messages sent out from variable node b;; and b;; to the other
function nodes are:

i = hgt

_ 7out in _
pii = hy' - B WY = oui - Ba

pij = 0ij - Bij

P ®)
Tij = Oij * Qi

Regarding the computing of messages sent from a func-
tion node to a variable node, there are two main BP
algorithms for operating on factor graphes: max-product and
sum-product [8]. Sum-product defines this outgoing message
from a function node as the sum of the product of the
function with messages from all the other neighboring vari-
able nodes over all possible status of neighboring variable
nodes. Max-product algorithm uses the maximization instead
of the summary operator on the product. In the factor graph
shown in Figure 1, each function node f; or g; is connected
with NV variables, and its outgoing messages are the sum
or maximum of possible /N elements. In this work, we use
max-product to operate on factor graphes for the sake of
numerical precision issues.

The messages outgoing from g;-constraint nodes for max-

product message-passing are:

Bij(bij

)= MAg...TAT MAT....MAT
ti1 tit1 tn

[gl(th t] 1, bzg7 tg+17
Hj’;j’;éj 7350 (0),

|:7'ij/(1) . Hj”:]’”%{]\]’/} Tij (O)] s for bU = 0.

atN) Hj’

for bij = 1;

g5 Tig! ()]

max
353 #5
where {¢;; = {0,1}} are the possible states of all neighbor-
ing variable nodes. If b;; = 1, all of {¢;/,j’ # j} are O to
let g; =1. Otherwise, only one of {¢;/,j’ # j} can be 1 and
all the others are 0.
Bij(bij) and 7;; are binary messages. They can be nor-
malized by a scalar ratio [3]: 7;;(0) =1 and 7;;(1) = 7,

L —y ifi#
(¥

A B’LJ(]-) _ 1 _ maz{ﬁi,i“ﬂmg{zi»j}
L/ - 1 e .
/81_7 (O)]’Crsqgngl] Wf]/’ ifi = J-
3’igl #i

After normalizing the binary messages of 3;;(b;;) and 7;;,
and defining the message sent from similarity function to a
variable node as o;; = ("), from equation (8) we have
the messages p;; sent from a variable node to function node
f; computed by:

s(i,3) e .
e .
maz{h;’i“ta”, mazx Es(i>-7/)ai7~/} ifd # 75
R 373" {17} : 9
Pij = hOMt e)
—i o jfi =7
max es(7 N,
gl]/7&7 @j

The messages o;; outgoing from constraints f; to variable
b;; are computed by the max-product algorithm based on
messages p;; and function f;, as:

aij(bij) = MAZ...MAT TAT...MAT
ti—1 tiq1 tN
[f](th'- ti— lvsz,tz-‘rl:~-~7tN)Hi';i';éipi/j(ti’)]
After normalizing p;;(0) = 1, p;;(1) = p;; and o =
0‘”(1), it comes
a;;(0)

[Lir.irs maz {1, pir;} ifi =j;
aij = (10)
min{1, pjj [g (i 5y maa{1, pi; 3} if i # j.

As defined earlier, the outgoing messages of the constraint
function A(b11, ..., by v | K) enforce the number of exemplars
(clusters) to be a given value K. Let UK (Q) denote the
subset of @ with K values, and R*(Q) be the t-th largest
value in data set Q, the messages ho"! can be computed
by the max-product algorithm considering the constraint
function h(bi1,...,byn|K) and other (N — 1) variables
bjjvj 7é 1 as

ho 't (bis) = maac .max max...max

ti—1 tig1 tN
[h(tl,...,tl_l,b”,tZH,...,tN\K)-Hi,:

il £ ()]
After normalizing, we then have

o RIS G #1)) 1
[T, Ri(hy; g #i)) REWRSG#43)

out
hii =

Y

where R¥({h?,j # i}) is the K-th largest value of h},
and j # 1.

C. K-AP algorithm and discussion w.r.t. AP

Inspired from AP clustering algorithm [3, 5], we define
the responsibilities as r(i,j) = logp;j, the availabilities
as a(i,j) = loga,;, the new messages confidences (n°*
and n™) as n°%(i) = logh¢™ and 1" (i) = logh!". From
equation (8), (9), (10), and (11), we have the computation
of responsibilities, availabilities, and confidences as shown

in K-AP Algorithm 1.

Algorithm 1 K-AP Algorithm
Input: Similarities {s(7,7)}; je(1,..,N}ixjs K
Initialize:
availabilities: Vi,j : a(i,5) =0
confidence: Vi : 7°“(i) = min(s)
Repeat:
update responsibilities, V¢, j:

r(i,g) = 5(i.5) — maa{n®t(3) + a(i,i), maz {s(i,5) + a(i,3)}}
73" E{

i3}
r(i, i) =" (i) — maz {s(i,) + (i, j')}
3’5" #e
update availabilities, Vi, j:
ai,3) = min {0,7(7,5) + Liirg 1.5y maw{0,7(,)} }
a(j,j) = Zi/:i/;ﬁj mazx{0,r(i’, j)}
update confidences, Vi:
0" (i) = ali,i) — maz {s(i,j') +a(i,j')}
33" #i
17" (@) = =R ({n™(5),5 # i})
until converge

Output:
clustering assignments: ¢ = {cy, ...

C; = argmax{a(i,j) + T(lhj)}
J

7CN}

Contrasting to the original AP algorithm, the updates of
availabilities in K-AP are the same. The update of responsi-
bilities r(i, j) and r (i, 1) differ as K-AP uses n°“*(i) instead
of s(i,1). Note that message n°“*(i) (like s(z,4)) outgoing
from constraint function h(bi1,...,byn|K) indicates the
confidence of an item to be an exemplar. While s(i,4) is a
preference defined by the users in AP, 7°“!(3) is self-adapted
by 7'"(i) according to the given K and constraints (3).

The computational complexity of K-AP is analyzed as
follows. K-AP uses 7" (i) and °%*(i) to control the number
of exemplars (clusters). Computing these two messages
only increases O(2 x N) computational complexity. The
update of responsibilities and of availabilities has quadratic
complexity. The computational complexity of K -AP is as the
same as that of AP, O(N?). It is clear that K-AP is much
more efficient than re-launching AP in order to generate a
specified K clusters as suggested by Frey and Dueck [5].

The main contribution of K-AP is to achieve the desired
number of clusters directly through message passing while
keeping the same computational complexity.

III. EXPERIMENTAL VALIDATION OF K-AP

In this section, we report the experimental validation
of K-AP, after describing the goal of validation and the
experimental settings.

A. The goal of validation and the experimental settings

The goal of the validation is to assess K-AP in terms
of distortion and computational complexity for generating
a given number of clusters, comparing to the re-launched
AP and k-medoids. For the sake of fair comparison, k-
medoids is independently run 2000 times with different
random initialization to have the similar computation cost
as K-AP, and the best running results w.r.t. the distortion is
reported.

The clustering quality is measured by the distortion,
which is the sum of the squared distance between each
item and its exemplar, D(c) = Zfil d*(x;,c(x;)). The
high quality clustering result has low distortion. If no special
statement, the distances between the items are all measured
by Euclidean metric, and the similarity of two items is
the negative squared distance between them. All reported
computational times were measured on a computer with Intel
2.66GHz Dual-Core and 2 GB memory in Matlab code'.

If the data are labeled, the clustering quality can also be
measured in the way of supervised learning, by comparing
the label of an item with the label of the cluster it is asso-
ciated (the label of its exemplar) with. Purityl = 100% x

iz 10F] considers the total number of items belonging to
the majority class in each cluster, where IV is the number of
items, |C¢| is the number of items belonging to the majority

d
class in cluster i. Purity2 = 100% x (Zfil ||€f_ ||)/ K is based
on the average over K clusters, where |C}| is the size of

cluster <.

B. Data sets

In order to facilitate the comparison with the original AP,
we validate K-AP firstly on two data sets which were used
for AP in [5]. The first data set contains 25 data items
with 2-dimensionality for visual validation while the second
contains 900 face images of 10 persons in 10 different facial
details, each of which is rotated and scaled into 9 images.

We also used another 5 data sets from UCI Machine
Learning Repository [4], including IRIS plant, Breast Can-
cer Wisconsin (Original, Diagnostic and Prognostic), and
Character Trajectories Data Set.

The IRIS data set contains 3 classes with 50 instances
each. The Breast Cancer data set includes instances with
two classes: benign or malignant. For both IRIS and Breast

IThe Matlab code of K-AP is available.

Cancer data sets, negative Manhattan distance is used to
compute the similarity between two instances. Character
Trajectories data set consists of 2858 character samples of
20 types of letters. Each character sample is a 3-dimensional
pen tip velocity trajectory, described by a matrix with 3
rows and 7' columns, where 7' is the length of the character
sample. We compute the similarity between two character
w' and w? as — 23:1 Z?:l |wgy — whl-

C. Experimental results

On the first data set with 25 items, we compare the clus-
tering distortion and computational time of K-AP with that
of re-launched AP approach given the number of clusters K
ranging from 1 to 24 as shown in Figure 3.

250 —¢ ‘ ‘
Y\\ —— K-AP

200 \ AP re—launched |

T

§ 150 \\
S \
E \
% 100 \
o

50

. ‘ ‘ + N N i o o RO RRNY >

10 15 20 25
the number of clusters K

(@)

@ —F— K-AP
B 4ol
S 107 —— AP re-launched
o
> [
E s [
= A |
g 4 /\ / /
5 / 0\ | |
a \ | \ /
£ 2 ~ \— /
8 e -

0 Lkttt Kt KKtk kekede ok

10 15 20 25
the number of clusters K

(b)

Figure 3. The distortion (a) and computational time (b) of K-AP and
re-launched AP on a 2-dimensional data set.

It is seen that K-AP has the same clustering distortion
as the re-launched AP approach except when K = 2.
Meanwhile, K-AP only needs less than 1 second for the
clustering, which is much less than the computational time
of re-launched AP. Since the number of data items is very
small (25 items), the efficiency of K-AP is not so obvious
as clustering the face images data set.

On clustering a larger data set of face images, Figure 4
shows the clustering distortion and computational time of K-
AP, re-launched AP approach and k-medoids method given
the number of clusters K ranging from 9 to 204. The band in
Figure 4 (a) shows all the distortion obtained by k-medoids
in different runs. It is observed that K-AP has a lower
distortion than the best case of k-medoids. While K-AP and
re-launched AP approach have the similar performance on
the distortion, K-AP improves by a factor 20 in term of the
computation cost compared to re-launched AP, as shown in
Figure 4 (b). Given a specified number of clusters K, K-AP
needs much less computational time than re-launched AP

x 10

18l I k-medoids clustering (2000 runs) | |
: =-=1 K-AP
1.6} - = = AP re—launched |
514 1
15
2 1.2 B
©
10 |
0.8r |
0.6 q
0]
(@)
s ——— k—medoids clustering (2000 runs)
10— == K—AP
= = = AP re—launched
4 1
10 |
:l| n . /N
’ W, m===- sV
. '
LI R ok) R AN

U “\

computing time (seconds)
)

50 100 150 200
the number of clusters K

(b)

Figure 4. The distortion (a) and computational time (b) of K-AP, re-
launched AP and k-medoids method on the data set of face images.

approach and achieves almost the same clustering results.
The running time of K -AP has picks higher than the running
time of k-medoids when K = 138 and K = 186 because
of the large number of iterations required before converge.

As mentioned earlier, the face images were generated by
scaling and rotating from 10 persons with 10 different facial
details according to the prior knowledge of the data set.
Each person has 90 images approximately and these images
thus can be summarized into 10 exemplars (clusters). The 10
exemplars are expected to represent the 10 original different
facial details of one person. Figure 5 left part shows the
90 images of a person, and each row has 9 images rotated
and scaled from the same image. The right part of Fig 5
shows the 10 exemplars extracted from these 90 images by
K-AP. These exemplars are different from each other, and
correspond to the 10 different facial details. It is observed
that the 10 examples represent very well the 10 different
facial details.

Figure 6 shows several clusters of the face images and
the exemplars obtained by K-AP on the whole data set
with K=100. We show the clusters and the exemplars to
check whether the images in one cluster are originally from
the same person with the same facial detail, and whether
the exemplar in this cluster is representative. In Figure 6, 3
clusters are shown as 3 rows of images, and the exemplars
are marked by a light square. The first cluster contains the
images of the same person who is speaking. The images in
the second cluster are a man in smiling. The third cluster

face images of one person exemplars

Figure 5. The face images of one person with 10 different facial details
rotated and scaled (left part), together with the 10 exemplars obtained by
K-AP (right part)

= - = e | S [

7750 T T 78\ 3|

e - S Lol) L) A} ™
3 . -

Figure 6. Several clusters of face images and the exemplars (marked by
light square) obtained by K-AP when K=100

contains the images from the same girl who is smiling and
looking at the right. The exemplar in each cluster is quite
representative and can be used to represent the cluster.

The clustering results on the 5 UCI data sets are shown in
Table I in which K-AP is compared to k-medoids method
w.r.t. the clustering purity defined in section II-A. It is
seen that K-AP can be applied for clustering data sets from
different application fields and in most cases achieves higher
clustering purity than k-medoids.

Table I

CLUSTERING RESULTS OF K-AP AND k-MEDOIDS ON 5 UCI DATA SETS
data set N D K method purity1 purity2
IRIS 150 4 3 K-AP 91.33% | 91.42%
k-medoids | 88.00% | 88.89%
Breast Cancer 699 10 2 K-AP 95.31% | 95.49%
(Original) k-medoids | 95.31% | 95.49%
Breast Cancer 569 30 2 K-AP 91.92% | 92.75%
(Diagnostic) k-medoids | 90.16% | 93.22%
Breast Cancer 198 33 2 K-AP 76.26% | 78.08%
(Prognostic) k-medoids | 76.26% | 76.04%
Character 2858 | 3xT | 20 K-AP 87.30% | 88.61%
Trajectories k-medoids | 76.80% | 85.29%

Through the validation results of K-AP, we see that K-
AP method directly achieves a given number of clusters
(exemplars) by a very low computational cost compared
to re-launch AP and achieves optimal clustering distortion
compared to k-medoids.

IV. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a clustering algorithm, called
K-AP, to enable generating a given number of optimal set
of exemplars through affinity propagation. Through adding
a constraint function to limit the number of clusters to be
a requested one, the confidence of one data item to be an
exemplar is automatically self-adapted in K-AP, while the
confidence is a parameter specified by users in AP. From
theoretical analysis and experimental validation results, K-
AP has been shown to achieve the goal with negligible com-
putational cost increment compared to original AP which
solves the problem by increasing the computational cost by
1 order of magnitude. In the meanwhile, K-AP preserves
the clustering quality in terms of distortion. In summary,
K-AP is more efficient than AP w.r.t. the computational
cost in generating specified K clusters, and more effective
than k-medoids w.r.t. the distortion minimization and higher
clustering purity.

Our further work is to combine K-AP with the Divide-
and-Conquer strategy to achieve a quasi-linear complexity.

REFERENCES

[1] C. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

Y. Weiss C. Yanover, T. Meltzer. Linear programming relax-
ations and belief propagation — an empirical study. Journal
of Machine Learning Research, 7:1887-1907, 2006.

D. Dueck. Affinity Propagation: Clustering Data by Passing
Messages. PhD thesis, University of Toronto, 2009.

A. Frank and A. Asuncion. UCI machine learning repository,
2010.

B. Frey and D. Dueck. Clustering by passing messages
between data points. Science, 315:972-976, 2007.

L. Kaufman and P. Rousseeuw. Clustering by means of
medoids. In Statistical Data Analysis Based on the L1 Norm
and Related Methods, pages 405-416. 1987.

L. Kaufman and P.J. Rousseeuw. Finding Groups in Data:
an introduction to cluster analysis. Wiley, 1990.

F. Kschischang, B. Frey, and H. Loeliger. Factor graphs and
the sum-product algorithm. IEEE Transactions on Informa-
tion Theory, 47:498-519, 2001.

H. Loeliger. An introduction to factor graphs. IEEE Signal
Processing Magazine, pages 28—41, 2004.

M. Mezard. Computer science: Where are the exemplars?
Science, 315:949-951, 2007.

R. Ng and J. Han. Efficient and effective clustering methods
for spatial data mining. In VLDB, pages 144-155, 1994.

M. Rege, M. Dong, and F. Fotouhi. Co-clustering documents
and words using bipartite isoperimetric graph partitioning. In
ICDM, pages 532-541, 2006.

T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and
content for community detection: a discriminative approach.
In SIGKDD, pages 927-936, 2009.

J. Yedidia, W. Freeman, and Y. Weiss. Understanding be-
lief propagation and its generalizations. Exploring artificial
intelligence in the new millennium, pages 239-269, 2003.

(2]

(31
(4]
(3]
[6]

(71
(8]

(9]
[10]
(1]
[12]

[13]

[14]

