
Taxonomy Caching: A Scalable Low-Cost Mechanism for Indexing Remote
Contents in Peer-to-Peer Systems

Kjetil Nørvåg1, Christos Doulkeridis2, and Michalis Vazirgiannis2
1Dept. of Computer Science, NTNU, Trondheim, Norway

2Dept. of Informatics, AUEB, Athens, Greece
Kjetil.Norvag@idi.ntnu.no, {cdoulk,mvazirg}@aueb.gr

Abstract

High storage capacity and support for wireless internet
is now available in an increasingly higher number of mobile
devices. These devices can be connected in a P2P network,
thus enabling sharing ofresources(which can be both files
and services) with other users participating in the network.
An important challenge is to enable capabilities for finding
relevant resources stored at other devices. In this paper, we
present an approach to improve P2P search that is partic-
ularly suitable for connections with limited bandwidth, as
in the case of portable devices. The contents of a peer are
represented by taxonomy terms, and remote peers maintain
a taxonomy overview instead of detailed indexing informa-
tion of remote peers’ contents. We have shown through sim-
ulations that our approach, when compared to basic flood-
ing using the same number of messages: 1) increases the
achieved recall, and at the same time 2) decreases the num-
ber of peers that need to be contacted by the query.

1. Introduction

High storage capacity and support for wireless internet
is now available in an increasing number of mobile de-
vices. Frequently these devices contain multimedia docu-
ments (including both plain text files, pictures, music, and
videos) that can be shared with other users. An important
challenge is to make it possible for users to find contents
stored at other devices. Because of the dynamics of mobile
devices, a P2P architecture is very suitable for connecting
the devices because of high degree of autonomy and low
administration cost. P2P systems are also intrinsically fail-
ure tolerant. We assume that the devices in the system ei-
ther provide sharable files or services providing contents
(which can be also files). In our previous work, in the con-
text of MobiShare [7, 18], we have demonstrated how mo-
bile devices are capable of sharing their resources, by host-
ing web services. These web services are simple data shar-

ing services or more advanced applications communicating
through web services. We will in the following denote avail-
able files and services asresources.

One of the main challenges in a P2P system is to pro-
vide efficient algorithms for search and retrieval of con-
tents stored on remote peers. For non-portable comput-
ers this problem can be solved by having the data avail-
able as web sites, and search engines regularly crawling
the sites and providing a searchable index. However, search
engines are not applicable for mobile devices: documents
stored on these devices can be assumed to be both dynamic
and volatile, and the device itself might be available on a
particular position in the P2P network for only a limited
amount of time. Moreover, a search engine approach based
on crawling documents on mobile devices is not feasible be-
cause of bandwidth restrictions. Instead, some P2P search
algorithm is used. At one extreme is the baseline search
technique, flooding, which is simple and robust but imposes
high cost, except for the case of very small networks. On the
other extreme is indexing using DHTs (also called struc-
tured P2P systems), which provides efficient searching, but
suffers a high maintenance cost in the case of high churn
rate, which is the case with mobile devices. In between these
two extremes we find techniques applicable to unstructured
P2P networks that increase the probability of finding con-
tents or reducing the search cost. Examples of such tech-
niques include routing indices that indicate which direc-
tion (to which neighbor peer) a query should be directed to,
maintaining summaries of contents of remote peers (for ex-
ample using a variant of bloom filters), as well as caching
results of previous queries.

Full-text indexing of local contents at peers has a pro-
hibitive cost in mobile environments, and is also unsuitable
for multimedia files like music and video. One of the typical
solutions to this problem has been to use descriptive terms
in filenames, however this limits the success of a search to
users that know what terms to expect. A better approach is
to assumefiles are classified as belonging to one or more
categories of a taxonomy(the taxonomy does not have to



Travel


Transportation
 Accomodation


Air
 Train
 Boat


Package

tours


Scheduled

flights


Camping


Helicopter


Hotel
 Motel


Food


Restaurant
 Grocery

store


...


Figure 1. Part of example taxonomy.

be the same for all users). A simple example taxonomy is
illustrated in Figure 1. An important feature of a taxonomy
is that an object belonging to a certain category is also im-
plicitly classified to all super-categories (i.e., ancestors) in
the taxonomy tree.

Our novel approach to increase retrieval quality and re-
duce search cost in P2P systems, is to use summary index-
ing, where instead of maintaining a detailed index of the
contents of remote peers, the contents of a peer are repre-
sented by terms in a taxonomy, and remote peers maintain
a taxonomy overview of remote contents. We call this ap-
proachtaxonomy caching. Representing resources with tax-
onomy concepts has the following advantages:

• Maintenance cost is reduced in terms of network band-
width usage because less information has to be trans-
ferred. This is especially important in the case of mo-
bile devices.

• For many applications a taxonomy description is more
applicable.

• Taxonomy description is very useful for multimedia
content, where there might be no text available for cre-
ating text-based summaries.

In this paper, we look into taxonomy descriptions, and how
these can be cached in order to reduce to a minimum the
amount of information that has to be transferred. An impor-
tant observation is that it is not only leaf nodes in a taxon-
omy tree that are cached, it could also be concepts1 on a
higher level in the tree, which covers a number of nodes be-
low. As will be described later in this paper, by employ-
ing the taxonomy caching technique, the query horizon of
P2P queries will be extended, thus increasing the probabil-
ity of finding information at distant peers.

The main contribution of this paper is the use of taxon-
omy caching towards reducing search cost and improving

1 We use the terms ”term”, ”concept” and ”category” w.r.t. the taxon-
omy interchangeably.

search quality (i.e., number of files/documents that can be
found). We also study the cost and quality of the approach
based on simulation experiments.

The organization of the rest of this paper is as follows.
In Section 2, we give an overview of related work. In Sec-
tion 3, we describe taxonomy-based routing and the archi-
tecture and use of the TCache. In Section 4, we provide an
evaluation of our approach based on a simulator prototype
of a P2P system utilizing taxonomy caching. Finally, in Sec-
tion 5, we conclude the paper and outlines issues for further
work.

2. Related work

Basic search techniques in unstructured P2P systems in-
clude flooding and random walk strategies. For an analysis
of these techniques we refer to [8].

In order to reduce the cost of search in unstructured P2P
systems, a number of techniques have been proposed, in-
cluding: 1) techniques for improved routing that give a di-
rection towards the requested resource, examples of such
techniques include variants of routing indices [3, 14, 21,
22], use of Bloom-filters [5, 9], and connectivity-based clus-
tering that creates topological clusters that can be used as
starting points for flooding [15]. Routing indices only use
higher-level metadata or summary data, but it is also possi-
ble to cache more of the contents of neighbor nodes, for ex-
ample using one-hop replication [2].

Taxonomies have been used for a long time for content
description. In the context of improved web search, search
engines like Yahoo! and Google provide directories which
make it possible to browse the web by topic.2

The two most relevant approaches using taxonomies to
describe contents and improve efficiency of searching, are
the work by Pireddu and Nascimento [14] and the work by
Löser [10].

2 See e.g., http://dir.yahoo.com/ and http://www.
google.com/dirhp.



Pireddu and Nascimento [14] present a generalization of
routing indices [3]. The contents of peers are partitioned
into categories of a predefined taxonomy, and for a partic-
ular peer the number of documents for each node in the
taxonomy is known. In order to improve search and avoid
flooding, taxonomy-based routing indices are employed: a
peer knows also 1) the contents and number of documents
of each taxonomic node of its neighbor peers, 2) the con-
tents and number of documents of each taxonomic node
on all but the lowest taxonomy level of the peers two hops
away, 3) the contents and number of documents of each tax-
onomic nodes on all but the 2 lowest taxonomy levels of
peers 3 hops away, etc. Thus a peer has much knowledge of
neighboring peers’ contents, but less knowledge of remote
peers’ contents. This information is used to route queries in
the direction where the probability of finding suitable con-
tents is maximized, while the information about contents
is distributed by update messages. Their experiments show
that the approach can improve search for peers containing
contents of a particular taxonomy. Our work differs from
the work of Pireddu and Nascimento by providing adaptive
caching of remote taxonomies and also providing informa-
tion about contents on distant peers and thus providing the
potential ofjumps, instead of only neighbor node routing.
This increases the possibility of finding rare and/or remote
contents.

In [10] Löser describes a structured P2P system where
contents are classified according to a taxonomy. The de-
scription is represented as a taxonomy path, and the pos-
sible prefixes of the path are stored in a DHT. This makes
it possible to perform queries on both exact description as
well as generalized descriptions. This differs from our ap-
proach by assuming a separate andstructuredoverlay net-
work for storing the information.

A number of P2P projects have used RDF to describe
contents and make more powerful querying on metadata
possible. One example is Edutella [12], which implements
a RDF infrastructure on top of JXTA. Another example is
Saglio et al. [16] that describes how to query distributed
RDF knowledge bases in a P2P network, but their focus
is on query processing, query rewriting, and merging of
results. In both approaches there are no means of query
routing, except for what is already supported by the sys-
tem (flooding) or maintaining routing knowledge outside
the peers where the data is stored.

One issue when having taxonomy-described contents is
the use of different taxonomies. In [17] Tzitzikas proposes
the use of taxonomies to describe contents on peers and me-
diators to provide searching in the context of different tax-
onomies. The techniques in [17] are not P2P specific and
the taxonomies are not used for query routing.

Our approach also has similarities with gossiping [5] and
epidemic-style protocols [19], in the sense that information

about contents of other peers is gradually disseminated to
the P2P network, under the assumption that contents are
sufficiently static, so the distributed knowledge will con-
verge. A major difference compared to our approach is that
dissemination in our approach is more focused, i.e., it is
based on requests. Because it is summary information it also
tolerates dynamic contents better, and furthermore the adap-
tive choice of accuracy in the cached taxonomies also makes
maintenance cheaper and robust.

It should be mentioned that the use of taxonomy caching
also has similarities to other kind of overlays that are cre-
ated to improve searching. One such class of overlays isse-
mantic overlays[4, 11, 6], which aim at connecting peers
that store similar contents. In that way searching can be per-
formed very efficiently, as soon as one of the peers contain-
ing relevant content is found.

Finally, our approach is also related to caching in gen-
eral. In the context of unstructured P2P systems previous
research has focused on result caching [1, 13, 20]. Result
caching is orthogonal to our work, and could be applied in
addition to taxonomy caching.

3. Taxonomy tree caching

The basic idea behind taxonomy caching is 1) having the
contents that are stored on the nodes described according
to taxonomy categories, 2) having the information about
contents (i.e., categories stored on a peer) cached at re-
mote peers in ataxonomy cache(TCache), and 3) using this
knowledge about content at remote peers to route queries
to the appropriate peers. By using the information in the
TCache for routing queries, 1) the query latency can be re-
duced, 2) the total search cost can be reduced because a
smaller number of nodes have to be accessed in order to
retrieve sufficient number of results, and maybe most im-
portant: 3) because the taxonomic information may be dis-
tributed to very distant peers, the effect of the limited query
horizon normally associated with search in unstructured
P2P systems can be avoided. Through the adaptive granu-
larity of contents in the taxonomy cache, the maintenance
cost can be kept at a low level.

In this section, we first describe the basic concepts re-
garding taxonomy-based querying, and then the taxonomy-
based routing and the architecture and use of the TCache
are described.

3.1. Taxonomy-based querying

All globally searchable resourcesRi (documents, im-
ages, videos, services, etc.) are classified with respect toone
or more categoriesCj (for exampleTrain or Boatin the tax-
onomy of Figure 1) of a taxonomyTk. Note that a resource
classified to a categoryCj is also implicitly classified to all



super-categories (i.e., ancestors) ofCj in the taxonomy tree.
In general, a resource may belong to more than one cate-
gory, so the taxonomy information of a resource is a tuple
consisting of resource identifier, taxonomy, and a set of cat-
egories:(Ri, Tj, {Cj}).

A query Qi is either a request for all contents belong-
ing to a categoryCq, or a request for all contents belonging
to a categoryCq and satisfying some additional property,
for example textual contents (keyword-search) or metadata
property.

We assume the P2P network is unstructured (Gnutella-
like), although it should be mentioned that the taxonomy
caching can also be useful in a structured P2P systems em-
ploying DHTs (Chord, CAN, etc.). Each peer has an identi-
fier Pi, typically composed of the IP address and port num-
ber.

In the basic case, when no caching is employed, querying
is performed as follows: the queryQi originating from the
querying peeris forwarded to other peers, denotedremote
peers. The process of deciding to which peer(s) to forward
the query is calledquery routing. Attached to the query is a
time-to-live (TTL) value which is initialized by the query-
ing peer. The TTL is decremented each time the query is
forwarded, and when it reaches zero the query is not propa-
gated further.

The basic query routing algorithm can be simply flood-
ing or random forwarding, possibly employing more so-
phisticated techniques like routing indices. The peers that
can be reached at a particular time from a peer constitute
thequery horizon.

All remote peers receiving the query execute the
query locally and forward it to one or more neigh-
bors. Local query execution is performed by matching the
taxonomy-based query (and additional predicates if ap-
plicable) with local content, and if a match is found,
the resource name/metadata is returned to the query-
ing peer.

3.2. Taxonomy caching

After receiving the query results from a number of peers,
the querying peer can cache thequery resultsfor more ef-
ficient processing of future queries as described in, e.g., [1,
20, 13]. An expiration time (presumably with a low value)
would be attached to the result, to ensure that the results will
be discarded after a certain amount of time. In particular for
static contents and stable peers, the result caching technique
can significantly reduce the search cost. However:

• The results might soon get invalid/stale, and caching
the results might incur a considerable storage cost.
Thus the results can only be kept for a very limited
amount of time, limiting the usefulness of the caching.

• The stored results are only useful when theexactsame
query is issued several times.

• The result caching in itself will not improve the prob-
ability of finding contents outside the query horizon
(note that this can be improved on, by allowing query
results to be used also for queries from remote nodes,
i.e., not only for local query processing).

An alternative to result caching is to instead cache taxonom-
ical description of the contents located at remote peers in
a taxonomy cache(TCache). This taxonomical information
(i.e., the categories the results belong to) can be returnedto-
gether with the query results. Caching taxonomical infor-
mation has a number of important advantages:

• It is a very compact representation.

• It is more robust to changes than result caching:

– Even though the contents of peers change, the up-
dated contents will often belong to the same cat-
egories as before.

– New resources that are added will often belong to
the same category as existing resources, thus in-
creasing the probability of finding them during a
search, as well as not requiring additional stor-
age for the remotely cached category.

• It can be employed in combination with result caching.
This is in particular useful for very frequent queries,
which then only have to be reissued at regular times.

• By using the TCache for query routing the query hori-
zon is extended in a more robust way than when using
result caching. It will also gradually be extended with
time as taxonomic information is further distributed.

We will now describe query routing using the TCache,
how taxonomic information is distributed, and the architec-
ture of the TCache.

3.2.1. Query routing using the taxonomy cache.Query
routing is the process of deciding where to forward a query,
performed by all peers that are involved in query forward-
ing, i.e., both the query peer as well as intermediate peers.
In both cases, when a lookup in the TCache for the cate-
gory Cq in the query gives as result a matching category
and the peers containing the resource, the query can be for-
warded directly to one or more of these peers. This forward-
ing is called ajump. Note that unlike routing indices that
only maintain information of the neighborhood and are used
to choose appropriate neighbor peers for query forwarding,
information about contents at very remote peers (also be-
yond the query horizon) can be contained in the taxonomy
cache. In the case when a peer does not find a match in the
TCache, the query is forwarded using the basic query rout-
ing algorithm, e.g., flooding or random walk. Note that even
if a query match is found at a peer and results returned to



the query peer, the query is further forwarded until the TTL
reaches zero.

It might be the case that the TCache has more than one
entry for the categoryCq (let’s assumec entries). In this
case the query is forwarded tok of thesec peers. When
k < c a decision has to be made to which of the peers to for-
ward the query. Our approach is to rank the candidate peers
based on the number of resources they contain for the cat-
egoryCq. Those that have the highest number are consid-
eredexpertson the topic and are more appropriate to answer
the query. When forwarding the query there is also the is-
sue on how much the TTL should be decremented. If query
forwarding is based on flooding, the TTL is simply decre-
mented by one, as in the case of basic flooding. However,
in the case of random walk where a query is normally only
forwarded to one node, we follow a different approach: the
query forwarded to the higher ranked peer is given a TTL
decremented by one, the other peers are given a TTL with
value zero so that they only evaluate the query but do not
forward it further afterwards.

It is possible to combine the use of routing by means of
taxonomic information with one of the basic searching tech-
niques. This prevents a query from being forwarded to a dis-
tant peer without searching the peers in the neighborhood.
The reason for this is that it is often the case that neighbor
peers are also related to the query peer and they have con-
tents relevant to the query. One example is peers belong-
ing to the same university and queries for university-related
information. In order to solve this problem two different
queries are issued from the query peer: one that is allowed to
use taxonomic information for routing, and one that should
only use the basic searching technique (and hence limited
by the TTLvalue).

3.2.2. Distributing taxonomic information. The ba-
sic mechanism for distributing taxonomic information is
by piggybacking a matching category with the result of a
query. Note that in the case a query is for a non-leaf cate-
gory Ck, the query will also match sub-categories ofCk.
In this case the actual categories of the results are explic-
itly returned in the query.

The query is returned through the return path, possibly
involving jumps. The reason for returning this information
through the return path is to make it possible for the in-
termediate nodes to know that their routing information is
still valid. In particular jumps are performed because the
peer from which the jump is initiated has information about
the destination peer containing resources related to the cat-
egory that is searched. This information is in the TCache
and has a validity time (see below). By routing the infor-
mation back, the peer can reinitialize the time counter (be-
cause it knows the entry is valid). It is also possible to re-
turn a message indicating that the destination peer does not

have any information in the category anymore, if that is the
case.

3.2.3. Architecture of the TCache. In general, a search
in the taxonomy cache is a lookup in order to find all known
peers containing contents of a particular categoryCq (which
might include the sub-categories ofCq).

As a starting point, we assume a taxonomy tree, where
each node in the tree has associated a list of peer identifiers
containing resources, classified as belonging to the category
of the taxonomy tree node. Attached to the peer identifier
is also a TTL counter. At regular times all counters in the
tree are decremented, and when a counter is zero the peer
identifier is removed from the tree. If a node has no more
peer identifiers attached and has no children, the category
node is removed from the cache.

When a categoryCi is discovered at a remote peerPi,
the peer is included in the peer list of the appropriate cat-
egory. If the categoryCi is not already in the tree, it is in-
serted into the tree. In addition to the peer identifier and
the TTL, also the total number of resources the peer keeps
in the particular category is stored. In this way it is possi-
ble to know whether the peer is anexperton the topic. This
can aid in selecting peers at query time.

3.2.4. TCache maintenance.One possible prob-
lem of the taxonomy tree described so far, is that it
might grow very large. In particular, this might hap-
pen in the case of peers containing resources of many cat-
egories, for each category the peer identifier will be stored
in the tree. Although this problem could be solved by us-
ing small TTL values in the tree, this would signifi-
cantly reduce the usefulness of the tree. A better approach
is to take advantage of the fact that for peers that con-
tain many resources in many different categories, it is fre-
quently the case that these categories can be compacted
into a smaller number of super-categories. For exam-
ple, assuming the taxonomy in Figure 1, if a peer identifier
Pi is stored in both nodesBoat and Train, it can in-
stead be stored in the nodeTransportation. In this way,
we trade space against accuracy of cached informa-
tion.

One challenge of the taxonomy compaction technique is
to know where the compaction should be performed: which
peer in the tree and which categories. We solve this prob-
lem by maintaining a counter for each peer in the taxonomy
tree, which contains the number of categories (nodes) where
the peer participates. When the size of the tree is over a cer-
tain threshold, compaction is performed for the peer that
participates in most categories.

Other techniques that can be used include compacting
the peer that has the largest amount of taxonomically simi-
lar categories, i.e., the categories have a high degree of sim-
ilarity, for example being siblings instead of belonging to



distantly related categories. This technique gives betterre-
sults in terms of reduced accuracy, but it is more expensive
to perform.

After a certain amount of time the number of peers con-
tributing to the taxonomy tree might become high. When
this is the case, peers that are non-experts (i.e., having least
number of resources within the category) are removed.

For large taxonomy trees the compaction can be expen-
sive. In this case, it might be necessary to store taxonomy
trees for each peer in addition to the taxonomy tree cover-
ing all known peers and categories.

Yet another issue is determining the point when the taxo-
nomic information should be cached. There are at least two
alternatives:

• Aggressive caching: simply cache all taxonomic re-
sults that are returned and do compaction when the tree
gets too large.

• Selective caching: cache only what is deemed interest-
ing/useful. This decision can for example be based on
the number of resources a peer contains in the particu-
lar category, i.e., store the peer identifier for a node in
the TCache only when the peer has many resources re-
lated to the particular category.

3.3. Soft cache-coherence

So far we have assumed that entries in the taxonomy
cache have a lifetime limited by an associated expiry time
and that they are removed after this time has expired. In
some application areas this will be sufficient, and in very
dynamic P2P systems it is probably difficult to improve on
this scheme. However, in some P2P systems contents are
relatively static and peers are stable. Examples of such P2P
systems include super-peer architectures in general, and sta-
ble base stations/peers in mobile P2P systems like Mo-
biShare [18] described above. In such systems, the (super-
)peers can be assumed to be stable enough to be responsi-
ble for maintaining an approximation of cache coherence
for the taxonomy entries cached on other nodes. This ap-
proximation of exact state we denotesoft cache coherence.
Thus, instead of (or in addition to) using TTL, a peer can
store the entries until it either receives an invalidate or up-
date request from the remote peer.3

In most cache coherence schemes, cache coherence is
maintained by invalidate and update messages. An update
requires that the cached data can be viewed as key/value tu-
ples, i.e., object identifier and object contents. In our con-
text, the identifier is the category that is cached and the
value is the peer identifier. However, the cached categories

3 Note the interesting aspect that this cooperation can be considered a
service: the peer subscribes to maintenance of the taxonomycaching,
and will be notified upon changes.

are cached as a result of previous queries. This means that
changes of categories stored at a remote peer is not of inter-
est, except for the case when they disappear and then an in-
validate message can be used. Thus update messages are not
needed in our context.

In the case of soft cache coherence, a peer also needs to
know about the peers having cached parts of its taxonomy.

An alternative to the soft cache coherence approach de-
scribe above, is to instead delete entries in the TCache,
when it is discovered (at query time) that the peer supposed
to contain resources within a particular category does not
contain them as expected. This is discovered when a query
is sent and the result set is empty (i.e., no result routed back
containing the match for the category as it was supposed to
happen).

3.4. Lazy distribution of taxonomy summaries

In addition to the distribution of taxonomy summaries re-
sulting from query results, an additional technique that can
be used is lazy distribution of taxonomy summaries, where
peers proactively push some of the categories they store to
the rest of the P2P system. This approach is similar to gos-
siping variants [5]. It is also possible to piggyback addi-
tional categories on the query results (this should obviously
be a limited number).

Taxonomy categories in query results can also be stored
at the nodes in the return path from the result peer to the
query peer. This would also be stored in a taxonomy cache,
improving subsequent routing.

4. Simulation and evaluation

In this section we first describe the simulation setup, and
then report the results from the simulations.

4.1. Simulation setup

We have developed a simulation environment in JAVA
for experimental evaluation. We use excerpts of the DMOZ
taxonomy4 for describing the resources on peers. In this set
of experiments, we used the part of DMOZ taxonomy de-
fined by ”Arts/Movies/Titles/P”. This particular taxonomy
excerpt contains358 categories. Each peer holds an instance
of the taxonomy and classifies its resources to the taxonomy
categories. We used synthetic network topologies that re-
semble random graphs, only the connectivity degree is con-
stant and neighboring peers share3-5 common neighbors,
i.e., the network is more dense than a random graph. The
results presented in this paper are based on a topology with
4000 peers, and with average connectivity degree of8.

4 Open Directory Project, http://dmoz.org/



For resource allocation to taxonomy categories, each re-
source is assigned tok taxonomy categories, withk a uni-
formly distributed random variable (1 ≤ k ≤ MAX),
whereMAX denotes the maximum number of categories
that a resource may belong to. Note that these taxonomy
categories are not necessarily leaf taxonomy nodes. Further,
each resource is assigned to a taxonomy node, following a
zipfian distribution with parameterares2tax (in our experi-
ments set to1.2). We ensure that all taxonomy nodes con-
tain at least one resource.

Regarding resource allocation to peers, the80/20 rule is
adopted, which means that20% of the peers hold80% of the
resources. The number of resources that each peer holds is
generated by a uniform random distribution. The actual as-
signment is done as follows: first, the80% of the peers are
assigned resources randomly, then the20% of the peers are
assigned resources from nearby taxonomy categories (prac-
tically sibling and child nodes), in order to represent ”ex-
perts” on some categories, which resembles the case in real
world.

Each peer hosts a query generator that creates queries
for taxonomy concepts. A random distribution for model-
ing queries can be tested. Most interesting is the case of zip-
fian query distribution, which is usually adopted to model
user behavior. Queries consist of one taxonomy concept and
may also carry a number indicating the number of wished
results. We consider: a) queries for all (as many as possi-
ble) results, b) queries for the firstn results.

Each peer can cache a limited numberCs of entries (tax-
onomy concepts or paths), each entry represented by a tu-
ple:

t = (Tc, P, Rc, Rt, Te)
that consists of a taxonomy conceptTc (or more generally
a path) and a list of peer identifiersP , the number of re-
sourcesRc belonging to the concept, the total number of
resourcesRt and the entry’s expiration timeTe. The ”key”
for a tuple is the combination of taxonomy conceptTc and
peer identifierP . The cache replacement algorithm used is
based on decreasing the expiration time of cache entries af-
ter each round of queries, and replacing the entry with the
lowest expiration time. In this set of experiments, aggres-
sive caching is employed.

We test and compare the performance of the following
search strategies:

1. Flooding:Typical flooding search with a TTL param-
eter.

2. Flooding with TCache:Flooding with TTL, but em-
ploy jumps if there are cache hits. If there peer con-
nectivity degree isd, thend/2 jumps are performed
and d/2 neighboring peers are randomly selected to
forward the query.

A number of peersNQp are randomly picked to act as
querying peers, each of them producingNq queries. The
queries are processed sequentially, i.e., for each querying
peer, send its first query, then its second query and so forth.
Both strategies are evaluated using the same parameters
(querying peers, queries, etc.), in order to have, as much
as possible, comparable results. In our simulations we as-
sume 20% of the peers to be querying peers.

4.2. Results and evaluation

We measure the following indices (average values):

• Number of contacted peers per query.

• Number of messages required to answer a query, which
indicates the amount of information that has to be
transferred.

• Recall, i.e., how many of the possible matches in the
network are actually found.

We compare the typical search strategy (flooding)
against flooding with TCache. The results are summa-
rized in Table 1.

The results show that the TCache significantly reduces
the number of messages needed to process a query and the
number of nodes that have to be contacted. This makes the
approach particularly suitable for limited-bandwidth con-
nections.

5. Conclusions and further work

Mobile devices can be connected in a P2P network mak-
ing it easy to share resources with other participating users.
An important challenge is to make it possible for users to
find relevant contents stored at remote devices. In this pa-
per, we have presented an approach to improve P2P search
based on a variant of summary indexing, where 1) the con-
tents of a peer are described by terms in a taxonomy, and
2) remote peers maintain a taxonomy overview instead of
detailed indexing information. We have shown through sim-
ulations that our approach, when compared to basic flood-
ing using the same number of messages: 1) increases the
achieved recall, and at the same time 2) decreases the num-
ber of peers that need to be contacted by the query.

An important aspect of our approach is that not all peers
have to use the same taxonomy. Taxonomy caching would
be most beneficial if all used the same taxonomy. In order to
increase quality even with many different taxonomies, on-
tologies could be used to integrate categories from different
taxonomies. Further work will study this issue in more de-
tail.



NC NC NM NM Recall Recall
F T F T F T

TTL=1 7.8 6.7 7.8 7.0 0.0022 0.0019
TTL=3 45.3 53.4 166.7 166.0 0.0117 0.0149
TTL=5 110.6 158.0 524.7 523.9 0.0282 0.0717
TTL=7 199.9 346.8 1058.6 1057.7 0.0506 0.1835
TTL=9 305.6 583.1 1721.0 1719.6 0.0773 0.2930
TTL=11 437.7 840.3 2566.3 2566.0 0.1104 0.4012
TTL=13 586.7 1120.6 3536.5 3535.8 0.1477 0.4891
TTL=15 741.6 1372.4 4560.2 4558.7 0.1864 0.5755

Table 1. Simulation results. NC denotes number of contacted peers per query, NM number of mes-
sages required to answer a query. F denotes flooding and T deno tes flooding using the TCache.

Acknowledgments

The authors would like to thank Jon Olav Hauglid for
his help on improving the performance and scalability of
the simulator used in our experiments.

References

[1] B. Bhattacharjee, S. Chawathe, V. Gopalakrishnan, P. Kele-
her, and B. Silaghi. Efficient Peer-to-Peer Searches Using
Result-caching. InProceeding of the 2nd IPTPS, 2003.

[2] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making gnutella-like P2P systems scalable. In
Proceedings of SIGCOMM ’03, 2003.

[3] A. Crespo and H. Garcia-Molina. Routing indices for peer-
topeer systems. InProceedings of ICDCS’2002, 2002.

[4] A. Crespo and H. Garcia-Molina. Semantic Overlay Net-
works for P2P Systems. Technical report, Stanford Univer-
sity, 2002.

[5] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D.
Nguyen. PlanetP: using gossiping to build content ad-
dressable peer-to-peer information sharing communities.In
Proceedings of the 12th International Symposium on High-
Performance Distributed Computing (HPDC-12 2003),
2003.

[6] C. Doulkeridis, K. Nørvåg, and M. Vazirgiannis. DESENT:
Decentralized and Distributed Semantic Overlay Generation
in P2P Networks. Technical report, AUEB, 2005. Available
from http://www.db-net.aueb.gr/.

[7] C. Doulkeridis, V. Zafeiris, and M. Vazirgiannis. The role of
caching and context-awareness in P2P service discovery. In
Proceedings of MDM’2005, 2005.

[8] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in
peer-to-peer networks. InProceedings of INFOCOM’2004,
2004.

[9] G. Koloniari and E. Pitoura. Content Based Routing of
Path Queries in Peer-to-Peer Systems. InProceedings of
EDBT’04, 2004.

[10] A. Löser. Towards taxonomy based routing in P2P networks.
In Proceedings of The Second Workshop on Semantics in
Peer-to-Peer and Grid Computing, 2004.

[11] A. Löser, F. Naumann, W. Siberski, W. Nejdl, and
U. Thaden. Semantic overlay clusters within super-peer net-
works. InProceedings of the 1st International Workshop on
Databases, Informat ion Systems, and Peer-to-Peer Comput-
ing (DBISP2P), 2003.

[12] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve,
M. Nilsson, M. Palmér, and T. Risch. EDUTELLA: A P2P
networking infrastructure based on RDF. InProceedngs of
WWW’2002, 2002.

[13] S. Patro and Y. C. Hu. Transparent query caching in peer-
to-peer overlay networks. InProceedings of IPDPS’2003,
2003.

[14] L. Pireddu and M. Nascimento. Taxonomy-based routing in-
dices for peer-to-peer networks. InProceedings of the SIGIR
Workshop on Peer-to-Peer Information Retrieval, 2004.

[15] L. Ramaswamy, B. Gedik, and L. Liu. Connectivity based
Node Clustering in Decentralized Peer-to-Peer Networks. In
Proceedings of P2P’03, 2003.

[16] J.-M. Saglio, M. Scholl, and T.-A. Ta. Efficient query pro-
cessing in P2P networks of taxonomy based sources. InPro-
ceedings of CAiSE’2005, 2005.

[17] Y. Tzitzikas and C. Meghini. Query evaluation in peer-to-
peer networks of taxonomy-based sources. InProceedings
of CoopIS/DOA/ODBASE’2003, 2003.

[18] E. Valavanis, C. Ververidis, M. Vazirgiannis, G. C. Poly-
zos, and K. Nørvåg. MobiShare: sharing context-dependent
data & services from mobile sources. InProceedings of
the 2003 IEEE/WIC International Conference on Web Intel-
ligence (WI 2003), 2003.

[19] S. Voulgaris, M. Jelasity, and M. van Steen. A robust and
scalable peer-to-peer gossiping protocol. InProceedings of
AP2PC’2003, 2003.

[20] C. Wang, L. Xiao, Y. Liu, and P. Zheng. Distributed Caching
and Adaptive Search in Multilayer P2P Networks. InPro-
ceedings of ICDCS’04, 2004.



[21] L. Xu, C. Dai, W. Cai, S. Zhou, and A. Zhou. Towards adap-
tive probabilistic search in unstructured P2P systems. InPro-
ceedings of APWeb’2004, 2004.

[22] D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos. Ex-
ploiting locality for scalable information retrieval in peer-to-
peer networks.Information Systems, 30(4):277–298, 2005.


