
The Vagabond Temporal OID Index: An Index Structure for OID Indexing in
Temporal Object Database Systems

Kjetil Nørvåg
Departmentof ComputerandInformationScience
NorwegianUniversityof ScienceandTechnology

7491Trondheim,Norway
noervaag@idi.ntnu.no

Abstract

In an object databasesystemusing logical OIDs, an
OID index (OIDX) is necessaryto map from logical OID
to the physical location of an object. In a temporal ob-
ject databasesystem(TODB), this OIDX alsocontainsthe
timestampsof theobjectversions. OIDX maintenancecan
beverycostly, andcaneasybecomethebottleneck of such
a system.Themain reasonfor this, is that in a TODB the
OIDX needsto beupdatedevery time anobjectis updated.
In order to reducethe accesscosts, a new index struc-
ture, particularly suitableto TODB requirements,is nec-
essary. In this paper, wedescribean OIDX for TODBs,the
VagabondTemporalOID Index (VTOIDX). Themaingoals
of theVTOIDX are 1) supportfor temporal data,while still
having index performanceclose to a non-temporal (one-
version) databasesystem,2) efficientobject-relational op-
eration, and3) flexible tertiary storage migration of parti-
tions of the index. In this paper, we describethe physical
organizationandtheoperationsof theVTOIDX.

1 Introduction

In a temporalobject databasesystem(TODB), object
updatesdo not make previous versionsinaccessible.On
the contrary, previous versionsof objectscan still be ac-
cessedandqueried.Temporaldatabasescaneithersupport
transactiontime, valid time, or both. In a transaction-time
TODB, which is the context of this paper, a systemmain-
tainedtimestampis associatedwith every object version.
This timestampis the commit time of the transactionthat
createdthis versionof the object. In valid-time database
systems,a time interval is associatedwith every object,de-
notingthetimeintervalwhichtheobjectis valid in themod-
eledworld.

An objectin anobjectdatabasesystemis uniquelyiden-

tified by anobjectidentifier (OID), which is alsousedasa
“key” when retrieving an object from disk. OIDs can be
physicalor logical. If physicalOIDs are used,the disk
block where an object residesis given directly from the
OID, if logicalOIDsareused,it is necessaryto useanOID
index (OIDX) to mapfrom logicalOID to thephysicalloca-
tion of theobject.Mostof theearlyODBsandstorageman-
agersusedphysicalOIDs becauseof its performancebene-
fits, andmany of thecommercialODBsstill do. However,
physicalOIDshavesomemajordrawbacks:relocation,mi-
grationof objects,andschemachangesaremoredifficult.
In thispaper, we assumethatlogical OIDsareused.

In aTODB, it is usuallyassumedthatmostaccesseswill
be to the currentversions1 of the objectsin the database.
In order to keep theseaccessesas efficient as possible,
and benefit from object clustering, the databaseis parti-
tioned.Thecurrentversionobjectsarestoredin thecurrent
database, andthe historical (previous) versionsarestored
in the historical database. When an object is updatedin
a TODB, thepreviouscurrentversionis first movedto the
historicaldatabase,beforethenew versionis storedin-place
in thecurrentdatabase.TheOIDX needsto beupdatedev-
ery time an object is updated(but notethat aslong asthe
OID/timestamp/locationrecordsarewritten to the log be-
fore commit,we do not needto updatetheOIDX itself im-
mediately).

We have in a previous paper[10] studiedOIDX per-
formance,andhave shown thatOIDX maintenancecanbe
quitecostly, especiallywhenupdatingobjects.Even if the
useof index entrycachingin mainmemory[10] andonper-
sistentstorage[8] canbe usedto reducethe accesscost,a
new index structureis necessary, especiallysuitableto the
TODB requirements.Suchan index structure,which has
beendevelopedin thecontext of theVagabondTODB [9],
will bedescribedin this paper.

1The currentversionof anobjectis themostrecentversionof a non-
deletedobject.

The organizationof the restof the paperis as follows.
In Section2 we give an overview of relatedwork. In
Section3 we describehow multiversionindexing can be
doneefficiently in TODBs. In Section4 we describethe
VagabondTemporalOIDX (VTOIDX) in detail, including
an overview of the physical data organizationand algo-
rithms.Finally, in Section5, weconcludethepaper.

2 Related work

OID indexing alternatives in traditional, non-temporal,
ODBshasbeenstudiedby Eickler et al. [1]. We have in a
previouspaperdevelopedacostmodelof OIDX lookupcost
in TODBs,andstudiedhow memorycanbebestutilized in
buffering of OIDX pagesand index entries[10]. In this
case,a temporalOIDX which wasa simpleextensionof a
traditionalOIDX wasassumed.

Therehave also beenmuch work on multiversionac-
cessmethodsandsecondaryindexing of temporaldata,for
exampleusinga TSB-tree[6], R-tree[5],2 or LHAM [7].
However, as will be shown later in this paper, traditional
multiversionaccessmethodsare not suitablefor OID in-
dexing in TODBs. To our knowledge,theonly otherpaper
discussingtheissueof a temporalOIDX is thepresentation
of thePOST/C++temporalobjectstore[13].

3 Multiversion indexing

The entriesin the OIDX are called object descriptors
(OD). The ODs containthe necessaryinformationto map
from OID to physicallocation. In Vagabond,we useone
objectdescriptor(OD) for each version of an object, and
anOD alsoincludesthetimestampof theactualobjectver-
sion. The index structurehasto supportaccessto ODs of
currentaswell ashistoricalversionsof theobjects.Before
wepresentoursolutionto multiversionindexing in thenext
section,wewill describetheuseof physicalcontainers,take
alook onsomecharacteristicsof OIDsandOID search,and
discussdifferentmultiversioningalternatives.

3.1 Physical object containers

Performancecanbeimprovedconsiderablyif index en-
tries from objectsthat areaccessedtogetherclosein time,
areclusteredtogetheron the sameindex nodes. In some
cases,theaccesspatternwill becloseto theobjectcreation
pattern.However, thiscannot bereliedon.

In many pageserverODBs,theobjectsarestoredin con-
tainers(alsocalledfiles). Which containerto put anobject

2TheR-treeis aspatialaccessmethod,but canalsobeusedasatempo-
ral index by indexing keys (OIDs in TODBs) in onedimension,andtime
in theotherdimension.

into, is decidedwhenthe objectis created,andpart of the
OID is usedto identify the containerwherethe object is
stored.In many systems,it is possibleto defineclustering
treesthatcanbeusedby thesystemsasabasisfor theclus-
teringdecision,for exampleclusteringtogetherobjectsthat
arelikely to beaccessedtogether, andmembersof asetthat
are later going to be accessedin scanoperations.A sim-
ilar approachis usedin our indexing structure.Similar to
objectclusteringin pageservers,whichreducesthenumber
of pagesto readandupdate,clusteringtogetherrelatedODs
will reducethecostof index accesses.

All objectsin a databasearemembersof onephysical
container. The containeran object belongsto is encoded
into the OID, and as a consequence,forwarding must be
usedif migrationis desired.Thiswill imply anextralookup
for eachaccessto anobjectthathasbeenmigratedto anew
container.

Givena certainsizeof anOID, usinga fixedpartof the
OID as a containeridentifier reducesthe numberof bits
to representthe uniquenumberof an object. As a conse-
quence,thenumberof objectsthatcanexist is reduced.To
avoid this problem,it is possibleto increasethesizeof the
OID comparedto the size usedif index clusteringis not
employed. This imply an extra cost,but this cost is cheap
comparedto the alternative of not usingthe containerap-
proach. A larger OID will make objectswith object ref-
erenceslarger, but accesscostcanbe reduced,becausein
mostcases,a smallernumberof index nodesneedto bere-
trieved. The reducedOIDX updatecostwill significantly
increasethethroughput.

Thecontainerscanalsobeusedto realizelogicalcollec-
tions, for examplesets(relations),bagsor classextents.3

Scanandqueryagainstcollectionscan thenbe doneeffi-
ciently. It is importantto notethat in otherODBs,wherea
physicalOID is usedor theOIDX hasno supportfor con-
tainers,maintainingclassextentscanbecostly.

It is also interestingto note that the useof containers
givesusmoreflexibility in decidingthelengthof thesearch
pathfor objects.It is possibleto storehot spotobjectsinto
smallcontainersto geta shortsearchpath.

3.2 Characteristics of OIDs and OID search

Whenconsideringappropriateindex structuresandop-
erationson theseindexes, it is importantto keepin mind
someof thepropertiesof anOID:

� If we assumetheuniquepartof anOID to beaninte-
ger, new OIDs arein generalassignedmonotonicin-
creasingvalues. In this case,therewill never be in-
sertsof new key (OID) valuesbetweenexisting keys
(OIDs).

3A classextent is a collectionof all theobjectsof a certainclassin a
database.

� As a result, the keys in the index, the OIDs, arenot
uniformlydistributedoveradomainaskeyscommonly
areassumedto be.

� If anobjectis deleted,its OID will neverbereused.

In anon-temporal(one-version)OIDX, theentriesin the
OIDX areseldomupdated,andremoval of entriesbelong-
ing to objectsthat have beendeletedcanbe donein batch
and/orasabackgroundactivity. If usingatreebasedOIDX,
new entrieswill be addedappend-only. By combiningthe
knowledgeof the OIDX propertiesandusing tunedsplit-
ting, anindex spaceutilizationcloseto 1.0canbeachieved.
If somethingsimilar to containerclusteringis used,how-
ever, insertscould be needed,andspaceutilization would
decrease.Thiscanbeavoidedby usingahierarchyof multi-
way treeindexes,aswill beshown later.

Index accesseswill mostly be for perfectmatch,there
will beno key range(in this casea rangeof OIDs) search.
(With containerclustering,wewill alsohaveOID rangeac-
cesses.However, accessingobjectsin acontainerwill often
resultin additionalnavigationalaccessesto referencedob-
jects.)

It is importantto rememberthat therewill in generalbe
nocorrelationbetweenOID andobjectkey, sothatanordi-
nary objectkey rangesearchwill not imply an OID range
searchin theOIDX. If valuebasedrangesearcheson keys
(or otherattributesin objects)arefrequent,additionalsec-
ondaryindexesshouldbeemployed, for exampleB+-trees
or temporalsecondaryindexes.

In a TODB, the existenceof object versionsincreases
complexity. For example,we needto beableto efficiently
retrieveODsof historicalaswell ascurrentversionsof ob-
jects,andsupporttime rangesearch,i.e., retrieve all ODs
for objectsvalid in a certaintime interval. To do this, we
needa morecomplex index structurethanis sufficient for a
non-temporalODB.

We will in thefollowing subsectionsstudyseveralalter-
nativewaysto organizethetemporalOID indexing,anddis-
cussadvantagesanddisadvantagesfor eachof thefollowing
alternatives:

1. Oneindex structure,with all ODs, currentaswell as
historicalversions.

2. Oneindex structurefor currentODs,with links to the
historicalversions.

3. Nestedtreeindex, oneindex with versionsubindexes.

4. Two separateindex structures,one for currentODs,
andonefor historicalODs.

3.3 One index structure

If only oneindex is used,we have the choiceof using
a compositeindex, which is anextensionof the treebased
indexesusedin non-temporalODBs,andusingoneof the
generalmultiversionaccessmethods.

Composite index. With this alternative, we usethe con-
catenationof OID andcommit time,

�������	�
����
asthe

index key, as illustratedto the left in Figure1. By doing
this, the ODs of the differentversionsof an objectwill be
clusteredtogetherin theleafnodes,sortedoncommittime.
As a result,searchfor the OD of the currentversionof a
particularobjectaswell asretrieval of ODsfor versionsof
oneparticularobjectcreatedduringa particulartime inter-
val canbedoneefficiently.

This is also a useful solution if versioningis usedfor
multiversionconcurrency controlaswell. In thatcase,both
currentandrecentobjectswill befrequentlyaccessed.It is
alsopossiblethatmany of thefutureapplicationsof TODBs
will accessmoreof the historicaldatathanhave beenthe
caseuntil today, somethingthatmight makethisalternative
usefulin the future. However, thereareseveraldrawbacks
with this alternative:

1. Evenin anindex organizedin physicalcontainers,leaf
nodeswill containamix of currentandhistoricalODs.
TheODsof currentversionsarenotclusteredtogether,
somethingthatmakesa scanover the ODs of current
versionsinefficient.

2. An OIDX is spaceconsuming,a size in the orderof
20%of thesizeof thedatabaseitself not beingunrea-
sonable.In thecaseof migrationof old versionsof ob-
jectsto tertiarystorage,it is desirable,andin practice
necessary, thatpartsof theOIDX itself canbemigrated
aswell. This is difficult whencurrentandhistorical
versionsresideon thesameleaf pages.

The compositeindex is usedin the POST/C++tempo-
ral objectstore[13] (basedon theTexasobjectstore[11]).
In POST/C++,objectsareindexedwith physicalOIDs,and
a variantof the compositeindex structureis usedto index
historicalversions. Becauseof the useof physicalOIDs,
whenan object is updatedin POST/C++,a new object is
createdto holdthepreviousversion.After thepreviousver-
sionhasbeencopiedinto thenew object,thenew versionis
storedwherethepreviousobjecthadpreviously resided.A
positive sideeffect of doing it this way, is that currentand
historicalobjectversionsareseparated.

Use of general multiversion access methods. Usinggen-
eral multiversionaccessmethods,for examplea TSB-tree

...
...

O: 1
T: 1

O: 2
T: 3

O: 5
T: 7

O: 9
T: 13

O: 0
T: 0

O:834
T: 1454

O: 956
T: 1534

O: 0
T: 0

O: 0
T: 0

O: 5
T: 143

O: 5
T: 435

O: 5
T: 1467

O: 5
T: 143

O: 9
T: 13

O:820
T: 1234

O: 9
T: 13

...
...

O: 2
T: 3

O:834
T: 1454

O: 956
T: 1534

O: 0
T: 0

O: 0
T: 0

O: 5
T: 435

O: 3
T: 7

O: 4
T: 143

O:820

O: 1
T: 4

O: 1
T: 1

O: 4
T: 68

O: 4
T: 9

O: 9
T: 1330

O: 6
T: 467

O: 9
T: 1045

O: 9
T: 876

O: 9
T: 520

O: 10
T: 528

O: 4 O: 10

O: 10

Figure 1. One-inde x structure . To the left, a composite inde x using the concatenation of OID and
commit time , as the inde x key, and to the right, an inde x using version linking.

[6], R-tree[5], or LHAM [7], is alsoan alternative. How-
ever, LHAM is of little usefor OID indexing, becauseit
canhave a high lookupcostwhenthecurrentversionis to
besearchedfor. As this will bea very frequentlyusedop-
eration,LHAM is not suitablefor our purpose.

TSB-treesandR-treeshave bothgoodsupportfor time-
key rangesearch,and make index partitioning possible.
However, when indexing ODs, most querieswill be OID
lookups,andwhenOID is the key, supportfor key range
searchis of little use. Even if the useof TSB- or R-trees
could give bettersupportfor temporaloperations,we be-
lieveefficientnon-temporaloperationsto becrucial,asthey
will probablystill be the most frequentlyusedoperations.
Thesemultiversion accessmethodswill increasestorage
spaceandinsertcostconsiderably, andthis contradictsour
importantgoalof supportingtemporaldata,while still hav-
ing index performancecloseto a non-temporalODB. Sec-
ondaryindexes,ontheotherhand,will typically berealized
from oneof theseaccessmethods.

3.4 Index with version linking

To avoid thedisadvantagesof thepreviousindex alterna-
tive,only theODsof thecurrentversionsof theobjectsare
keptin theindex. EachOD in theindex hasa list of ODsof
thehistoricalversions,asillustratedto theright in Figure1,
andtheODsof thehistoricalversionsarekeptin this list.

To reduceaccesscostsfor historicalversions,it is pos-
sible to link the objectversionsinsteadof the ODs. This
hassimilaritieswith theapproachusedin POSTGRES[12],
wherea link exists from oneversionof a tuple to the next
(in POSTGRESthe list startedwith the oldestversion,so
that in order to retrieve the currentversionthe whole list
hadto betraversed).

A linked list approach,whetherit is theODsor theob-
jectsthatarelinked,hassomeseriousdisadvantages.For all

�����������

� �������
���

� ���������������

� �������
�����

���

���

� � � ��� � � � ���

� ���
 "!#!%$ &('*)($ +-,.,

/10 +-+-!%2#3�$,/1054 ,.+-6 758(,.9

:(6 ;�,/105< 6 7=8(,.9

>?3�$ 3: 0(45@ , �

A?B)($ +-,.,

Figure 2. Nested ST inde xing [4].

operationson temporalversions,thelist mustbetraversed,
resultingin extradiskaccesses.

3.5 Nested tree index: index with version
subindexes

A betteralternative thanusinga list, is to usea nested
treeindex, which indexescurrentversionsin a superindex,
andhistoricalversionsin subindexes.

An example of a nestedtree index is the Surrogate-
Time (ST) index [4], illustratedin Figure2. Thesurrogate
superindex indexesthekey valuesof the tuples,andis im-
plementedwith aB+-tree.Eachleafnodeentryhasadirect

pointer to the currentdatatuple, aswell asa pointer to a
time subindex. The time subindex is an append-onlytree,
with time asthekey value. Eachentry in thesubindex has
a pointerto thedatatuplewith thetimestampin thekey of
theentry.

3.6 Separate indexes for current and historical
versions

In orderto makereadaccessesto currentversionaseffi-
cientaspossible,oneindex for ODsof currentversionsof
objectscanbeused,andaseparateindex for ODsof histor-
ical versions.Theindex for thehistoricaldatacanbeorga-
nizedaseitherof thethreepreviousindex organizations.

Theproblemwith this approachin thecontext of logical
OIDs, is thatevery time a new versionis created,we have
to updatetwo indexes.While this might at first seemto be
thecasewith thepreviousalternativeaswell, keepin mind
that a subindex tree will in generalhave a much smaller
heightthananindex indexing all ODs.More important,the
sizeof theindex for currentversionswill bethesameasthe
superindex in the nestedindex tree. Also notethat even if
thecurrentversionof anobjectalwaysresidesin thesame
physicallocation, the currentversionindex still hasto be
updatedat every objectupdatebecausethe timestamphas
changed.

4 VTOIDX: The Vagabond Temporal OIDX

In Vagabond,acontaineridentifieris includedin theob-
ject identifier, which is composedof threeparts:

1. Server groupidentifier (SGID), which is the identifier
of theserverwheretheobjectwascreated.This is only
usedin a distributedsystem.

2. ContainerIdentifier (CONTID), which identifies the
physicalcontainertheobjectbelongsto.

3. Uniqueserialnumber(USN). Eachobjectcreatedona
particularserverSGIDandto beincludedin container
CONTIDgetsa USNwhich is onelargerthanthepre-
viousUSNallocated.

Our maingoalsin thedesignof theVagabondTemporal
OIDX (VTOIDX) was:

1. Support for temporaldata, while still having index
performanceclose to a non-temporal(one-version)
databasesystem.Evenif theuseof otherindex struc-
turescouldgivebettersupportfor temporaloperations,
webelieveefficientnon-temporaloperationsto becru-
cial, asthey will still bethemostfrequentoperations.

CEDGFIH(J KML

NIO D?J K?L NIO D?J K?L NIO D?J KMLNIO D?J K?L

C O D?J K?L C O D?J KML

Figure 3. The Vagabond temporal OIDX.

2. Efficient object-relationaloperation.This is achieved
by the useof physicalcontainers,which is described
below.

3. Flexible tertiarystoragemigrationof partitionsof the
index.

We will now describetheindexing approachin morede-
tail, first thephysicaldataorganization,andthentheopera-
tionson theindex.

4.1 VTOIDX physical data organization

Basedontheanalysisof thedifferentOIDX alternatives,
we have designedthe VTOIDX. The VTOIDX is an hier-
archyof multi-way treeindexes,with threelevels,asillus-
tratedin Figure3:

1. Containerindex (CONTIDX), whichindexesthephys-
ical containersin adatabase.

2. CurrentversionOIDX (CVOIDX), which indexesall
ODsof thecurrentversionsof objectsin onecontainer.

3. Historicalversionsubindex (HVOIDX), whichindexes
ODsof historicalversionsof objects.

The strict hierarchyin our index might at first look inef-
ficient, asit is likely to result in a highernumberof index
levelsthanasolutionwith oneindex for all currentversions,
from all containers.However, several factorsdictatesthe
useof separateindexesfor eachcontainer:

� By having separateindexes for eachcontainer, it is
easierto maintainhigh spaceutilization,becauseeach
subindex index is append-only.

� Containermigrationto tertiary storageis flexible and
canbedonetransparently.

� With a separateindex for eachcontainer, it is not nec-
essaryto storetheCONTIDfor eachentryin thenodes
(althoughsomeof thesameeffect canbeachievedby

usingprefix compressionof the OID in the index en-
tries). This increasesfan-outaswell asthenumberof
ODs in the leaf nodes.As long astheupperlevelsof
thetreearebuffered,thebenefitsof moreODsin aleaf
nodeoutweightstheextracostof thehighernumberof
levels.

In therestof thissectionwedescribethemostimportant
detailsof the dataorganizationin the VTOIDX. We start
with a descriptionof thethreeindexesin thehierarchy, de-
scribetheuseof subindex caching, andcommentson some
additionaldetailsof theindex trees.

Container index. There is one CONTIDX for each
database,and it indexes the physical containersin the
database.Thepointersin the leaf nodespointsto a current
versionOIDX, onefor eachcontainer. Theentriesin inter-
nal nodesaswell asleaf nodesare(CONTID,pointer)
tuples.

Note that the containersthemselves are not versioned,
only thecontentsof thecontainers.Versioningof thephysi-
calcontainerswouldmakeindex managementcomplex and
costly, andalsooccupy morestorage. The versionof the
containeris given implicit by which objectsarevalid at a
certaintime.

Current version OIDX. Thereis oneCVOIDX for each
container, andit indexestheODsof all thecurrentversions
of theobjectsin thecontainer. TheCVOIDX andHVOIDX
combinationis basedontheSTindex (seeSection3.5),and
theCVOIDX itself is similar to thesurrogatesuperindex in
theST index.

The entries in the internal nodes in a CVOIDX are
(USN,pointer) tuples. Becausethereis a separatein-
dex for eachcontainer, the CONTID is given implicitly.
This is alsothe casefor the SGID, aseachserver only in-
dexestheobjectsthatis createdon theactualserver.

The leaf nodesof the CVOIDX containthe ODs of the
currentversionsof the objectsin the container. Similar to
theentriesin theinternalnodesof theCVOIDX, we do not
storethe SGID and CONTID part of the OID in the OD,
only the USN. To further increasethe numberof ODs in a
CVOIDX leaf node,prefix compressionof the restof the
OD, in particulartheUSN, canbeused.

EachCVOIDX leaf nodecontainsa pointer to the cor-
respondingHVOIDX, which indexestheODsof historical
versions.TheCVOIDX leaf nodealsocontainsthenumber
of ODsandthesmallestandlargestUSNof ODsresidingin
theHVOIDX.

Historical version OIDX. For each leaf node in the
CVOIDX, thereis a separateHVOIDX subindex tree,with
ODs of the non-currentversionsof objectsthat resideor

have residedin theactualleaf node.TheHVOIDX is sim-
ilar to the subindex in the ST index (seeSection3.5), but
insteadof usingonesubindex for eachkey valueasin the
original ST subindexes,severalobjectsshareonesubindex
in our index. Thesubindex usesthe concatenationof OID
andcommit time,

���*���E�
����
, as the key. In this case,

we have efficient accessto the ODs of a particularobject,
which will beclusteredtogether, andat thesametime have
clusteredODsof currentversionsin acontainer.

In the HVOIDX trees, the concatenationof USN and
commit time, PRQTS �	�
����

, is usedasthe index key dur-
ing insertandsearchin thetree.Entriesin theinternalnodes
of aHVOIDX treeare(PUQTS �E���*��

,pointer) tuples.
TheleafnodescontaintheODsonly, becauseeachOD con-
tainsUSNaswell asthetimestamp.

Whenindexing non-temporalobjects,deletinganobject
meansthat the object and its OD can be removed. With
temporalobjects,however, we needto keeptheODsof an
objectevenwhenit hasbeendeleted.A tombstoneOD is
usedto representthedeleteaction,andto storethecommit
timestampof thetransactionthatdeletedit. Wecouldeither
storethe tombstoneOD in the CVOIDX leaf nodewhere
the OD of the currentversionpreviously hasbeenstored,
or storeit in theHVOIDX subtree.To make scanover cur-
rent versionsof an containeras efficient aspossible,it is
bestto storethetombstoneOD in theHVOIDX subtree.In
this way, CVOIDX leaf nodesonly containtheODsof the
currentversionof objectsthat arealive. Note that in this
case,not all OIDs representedin theHVOIDX subtreesare
in the CVOIDX leaf nodes,only thoseof objectsthat are
still alive.

WheneachCVOIDX leaf nodehasoneHVOIDX sub-
tree,it is possiblethatsomeHVOIDX subtreesonly have a
veryfew entries.Tooptimizespaceusage,severalCVOIDX
leafnodescouldshareoneHVOIDX subtree.However, this
would give eachHVOIDX root nodemore than one par-
ent,andeachtime theHVOIDX wasupdatedeachof these
have to beupdated,which increasesthe insertcost. We do
not think this will be beneficial. We believe the subindex
cachingintroducedbelow will reducethe needfor shared
HVOIDXs, andit is alsovery likely thatmostmembersof
a containerwill have the sameversioningcharacteristics.
In general,we expectthespaceutilization to beacceptable
evenif sharingis not used.

Subindex caching. Whena temporalobjectis updated,a
new OD is created,and the old onepusheddown into an
HVOIDX. As a result,both the leaf nodein the HVOIDX
aswell as a leaf nodein the CVOIDX hasto be updated
(plus internalnodesin the caseof nodesplits). To reduce
thenumberof nodesto rewrite,andacorrespondingnumber
of installationreads,the ODs of the mostrecenthistorical
versionsarestoredin the leaf nodesof the CVOIDX. We

call this techniquesubindex caching.
A certainnumberof slotsin the CVOIDX leaf nodesis

reserved for ODs of historicalversions.In addition,other
emptyslotscanbeused.Emptyslotswill exist whentheac-
tualleafnodehasnotbeenfilled yet(it is therightmost/most
recentleaf nodeof theCVOIDX), andasa resultof object
deletions. Only when the CVOIDX leaf nodeis full, the
ODsof thehistoricalversionsare“pusheddown”, in batch,
into the HVOIDX tree. The subindex cachingshouldsig-
nificantly reducetheaverageupdatecost.

Whenwe later discussoperationson the VTOIDX, we
will considerHVOIDX entriescachedin theVTOIDX asa
partof theHVOIDX, i.e., whenwe describeoperationson
theHVOIDX, thisalsoincludestheHVOIDX entriesstored
in theCVOIDX leaf nodes.

Comments on the index trees. Many of the insertoper-
ationsin the VTOIDX will actuallybe appendoperations.
In thestandardB V -treeinsertalgorithm,contentsin a split
node are distributed over the old and new node. If en-
tries are only appendedto the index, this would result in
a treewith only 50% spaceutilization. To avoid this, we
usetunedsplitting, a techniquealsousedin theMonotonic
B V -tree[2] for the samepurpose.Whentunedsplitting is
used,entriesarenot distributedevenly over theold andthe
new nodewhena nodeis split, only thenew entryis stored
in thenew node.

For all the trees in the VTOIDX, we employ a no
merge/removeon emptystrategy. With this strategy, nodes
arenot mergedwhenthespaceutilization in thenodesgets
undera certainthresholdbecauseof deletedentries. Only
when a nodeis empty, will it be removed. This is com-
monly usedin B V -tree-implementations,because1) merg-
ing is costly, 2) in general,thereis a certainrisk thata split
might happenagainin the nearfuture, and3) in practice,
this strategy doesnot resultin low spaceutilization [3]. In
theCONTIDX andCVOIDX we know thatCONTIDs and
OIDs will not be reused,andthat we will have no inserts.
Deleteoperationscanstill betoo costly, especiallybecause
they will involve subtreesaswell. For this reason,we use
theno merge/removeon emptystrategy in theseindexesas
well, andinsteadrely on backgroundreorganizationof the
indexesto compactindex pageswith low spaceutilization.

4.2 Operations on the VTOIDX

In thissectionwedescribethemostimportantoperations
ontheVTOIDX, whicharedoneasaresultof containerand
objectoperations.

Creating or deleting containers. Creatinga new con-
taineris doneby insertinga new entryinto theCONTIDX.

Thevalueof a new CONTIDwill alwaysbelargerthanex-
isting CONTIDs, so this will actuallybe an appendopera-
tion, andtunedsplitting is usedto achieve high spaceuti-
lization.

Physicallydeletinga containeris doneby deletingthe
containerentryin theCONTIDX. Thisoperationshouldbe
doneafter the correspondingCVOIDX and HVOIDX in-
dexeshavebeendeleted.

While physicallydeletinga containeris easy, theconse-
quencescanbe moretroublesome.In the caseof deleting
a database,thereareno problems,thereshouldbe no ac-
cessesto objectsin a non-existing databaseat a later time.
Deleting a container, on the other hand, is more trouble-
some.Therecanbereferencesto theobjectsin thedeleted
containerfrom objectsin othercontainers.If a currentver-
sionof anobjectreferencesanobjectin adeletedcontainer,
that is probablyan error, but previous versionsof objects
might referenceobjectsin the deletedcontaineras well.
This leavesuswith two alternatives. Which alternativesto
chooseshouldbeup to thedatabaseadministrator:

1. Requirethe applicationcodeto do somekind of ex-
ceptionhandlingwhenatemporalquerytriesto access
a deletedcontainer.

2. Keepthe CVOIDX and associatedHVOIDXs in the
system,but flag all updateattemptsaserrors.

Search for current object version. Searchfor theOD of
the currentversionof an object is doneby first using the
CONTID, which is a partof theOID, to do a lookupin the
CONTIDX to getapointerto theCONTIDX wheretheOD
residesin. When the CONTIDX root nodehasbeenre-
trieved,theUSNof theOID is usedto searchtheCVOIDX,
andif the objectwith the actualOID existsandis valid, it
will be found in a CVOIDX leaf node. For both searches,
thestandardB V -treesearchalgorithmis used.

Create new object. Whenanew objectis created,theap-
plicationthatcreatedtheobjectdecideswhichcontainerthe
object(andits OD) shouldresidein, andanew OID is allo-
cated.

If the transactioncommits,the OD of thenew objectis
insertedinto the VTOIDX. This is doneby first retrieving
the actualCVOIDX root node in the sameway as when
searchingfor an object. If thereis free spacein the right-
mostleaf node,theOD of thenew objectis insertedthere.
If not, a new CVOIDX leaf nodeis allocated,andthenew
OD is storedthere.If thereis overflow in theparentnode,a
new nodeis allocatedat that level aswell, andthis applies
recursively to thetop.

Update temporal object. Whenanobjectis updated,the
OD for thenew versionhasto beinsertedinto thetree.The
first stepis to find theCVOIDX leafnodewherethecurrent
versionof theOD is stored.

In thecaseof a non-temporalobject,theold OD is sim-
ply replacedwith the new one. In the caseof a temporal
object,theold OD is replacedwith thenew OD, andtheold
OD is insertedinto the HVOIDX subindex wherethe his-
torical versionsarekept. While theuseof theUSNonly is
usedin key comparisonuntil this point,wheninsertsareto
be doneinto the HVOIDX, the concatenationof USNand
commit time, PRQTS �	�
����

, is usedas the HVOIDX in-
dex key. Note that in this case,we have also insertsinto
thetree,andnotonly appendoperations.Therefore,weuse
the standardB V -treeinsertalgorithmin this case,without
employing tunedsplit. To reducethe averageupdatecost,
we alsoemploy subindex cachingasdescribedpreviously.
In this case,whenwe pushdown ODsto theHVOIDX, we
have morethanoneOD to insert,andthe averagecostfor
eachOD is reduced.

Delete object. In the caseof a non-temporalobject, the
OD is simply removedfrom theactualCVOIDX leaf node
whereit resides.

In thecaseof atemporalobject,thecurrentOD is moved
fromtheCVOIDX to theHVOIDX, andanadditionaltomb-
stoneOD is insertedinto theHVOIDX subindex (thetomb-
stoneOD is an OD wherephysicallocationis NULL, and
the timestampis the commit time of the transactionthat
deletedit).

As mentionedpreviously, weusea no merge, removeon
emptystrategy, nodesarenotmergedwhenthespaceutiliza-
tion in thenodesgetsundera certainthreshold.Only when
anodeis empty, will it beremoved.WhenaCVOIDX node
is removed,the entriesin the HVOIDX subtreeis inserted
into the HVOIDX of oneof its two neighbornodes. The
USNrangeandHVOIDX counteris updatedto reflect the
change.

Vacuuming. Eventhoughstoragecostis decreasing,stor-
inganevergrowingdatabasecanstill betoocostlyfor many
applicationareas.A largedatabasecanalsoslow down the
speedof thedatabasesystemby increasingtheheightof in-
dex trees(eventhoughthis canbeavoidedwith multi level
indexes,at thecostof a morecomplex system).As a con-
sequence,it is desirableto beableto physicallydeletedata
which hasbeenlogically deleted,andnon-currentversions
of datathat is not deleted. This is calledvacuuming(but
notethatvacuumingis alsosometimesusedasanotherterm
for themigrationof historicaldatafrom secondarystorage
to tertiarystorage).

Whenobjectversionsarevacuumed,their ODsresiding
in theHVOIDX will bedeleted.This is doneaccordingto

thestandardB V -treedeletealgorithm.

Search for object version valid at time W(X . First,asearch
is doneto find theCVOIDX leafnodewheretheOD of the
currentversionof the object resides. If the timestampof
thisOD is lessthan W(X , thisOD is theresultof thesearch.If
not, theHVOIDX is searchedto find theOD of this object
that have the largesttimestamplessthan W X . Note that the
ODsof deletedobjectsonly residein the HVOIDX. Thus,
even if an OD with the actualOID is not found in an the
CVOIDX leaf node,we still have to searchtheHVOIDX if
wedo not geta matchin theCVOIDX leaf node.

Search for start or end time of an object. To find the
timeanobjectwascreated,a lookupis doneto find theOD
of the first versionof the object. Similarly, to find the end
timeof anobject,a lookupis doneto find theOD of thelast
versionof theobject.

Search for current version of all objects in a container.
This is thetraditionalscanoperation.In theVTOIDX, this
is donein the sameway asin a traditionalB V -tree,by re-
turningtheentriesin theCVOIDX leafnodes.

Search for all versions of an object. This operationis
doneby first retrieving the CVOIDX leaf nodewherethe
OD of the currentversionof the object resides,and then
retrieve theODsof all versionsof this objectfrom thecor-
respondingHVOIDX.

Search for objects in a container valid at time W X . In
this operation,all CVOIDX leaf nodeshave to besearched
for matchingODs. Becausedeletedobjectsarenot repre-
sentedin theleafnode,all HVOIDX subindexeshave to be
searchedas well, becausethey may have ODs of deleted
objectsvalid at time W(X . Theonly casewherethesearchin
theHVOIDX subindex canbeavoidedis:

� If theUSNof theODsin theCVOIDX leaf noderep-
resenta contiguousarea. In that case,we know there
will be no ODs of deletedobjectsin the HVOIDX
subindex.

� And all ODs in the CVOIDX leaf nodehave a times-
tampolderthan W X .

If this typeof queryis expectedto befrequent,it would
be beneficialto keepthe tombstonesODs of deletedob-
jectsin the CVOIDX leaf nodes.If this is done,we could
avoid further searchesin the HVOIDX if all objectsrep-
resentedby the particularCVOIDX leaf nodewasdeleted
beforetime W X . In thatcase,weknow thatthey couldnot be
valid at time W X . As wedonotknow for surethefrequencies

of differentquerytypesin future systems,it is difficult to
sayif this kind of querywill be frequentenoughto justify
keepingtombstonesof deletedobjectsin theCVOIDX leaf
nodes.

Update all objects in a container. Only objectsthatare
still valid canbeupdated,sothisoperationis essentially:

1. RetrievetheODsof all currentobjectsin thecontainer.

2. Eachobject updatecreatesa new OD to be inserted
into the VTOIDX. WheninsertingODs into the con-
tainerin this way, it will bedoneveryefficiently.

Migration to tertiary storage. Any subtree of the
VTOIDX canbemigratedto tertiarystorage.All nodesin
all levelsof theVTOIDX areaddressedby a 64 bit logical
locationaddress,which is usedto selectstoragedeviceand
locationon theactualstoragedevice.

Lookupsin an index storedon tertiary storagewill be
costlycomparedto lookupsin anindex storedondisk. This
is especiallythe casefor singleOD lookups. The costfor
scanoperationsis relatively cheaper, especiallyin thecase
of alargesubtree.Whenaccessingtertiarystorage,themain
cost is usually the seektime. The datatransferitself can
usuallybedonewith a relatively high bandwidth.Whena
subtreeis migratedto tertiary storage,it shouldbe written
in a way thatmake scanoperationson thesubtreeascheap
aspossible.

4.3 Concurrency control aspects

Ordinarytreelocking algorithmscanbeusedto control
accessto thetree.Notealsothatduringnormalprocessing,
only ODs of non-temporalobjectsaremodified. Whena
new versionof a temporalobject is created,a new OD is
createdandinsertedinto thetree.

In traditionalsystems,leaf nodesareusuallylinked to-
gether. This can be usedto make someof the B V -tree
operationsmore efficient and improve concurrency in the
VTOIDX.

5 Conclusions

OID indexing in TODBs posesgreatchallenges. Be-
causeof the updatecosts,it caneasilybecomethe bottle-
neckin suchsystems.Previousstudiesof OID indexing in
TODBshaveshown thatachieving acceptableperformance
canbe difficult if most of the OIDX doesnot fit in main
memory. In this paper, we have describedan index struc-
ture, the VTOIDX, that shouldperformwell, even in sys-
tems where the OIDX is much larger than the available

main memorybuffer. The VTOIDX shouldalsobe capa-
bleof fulfilling thegoalof OIDX lookupperformanceclose
to conventionalsystemson currentdata,goodperformance
on object-relationaloperations,andflexible tertiarystorage
migration,which will beimportantfor futureTODBs.

References

[1] A. Eickler, C. A. Gerlhof,andD. Kossmann.Performance
evaluationof OID mappingtechniques.In Proceedingsof
the21stVLDBConference, 1995.

[2] R. Elmasri, G. T. J. Wuu, and V. Kouramajian. The time
index andthemonotonicB Y -tree. In A. U. Tansel,J. Clif-
ford, S. K. Gadia,S. Jajodia,A. Segev, andR. Snodgrass,
editors,Temporal databases:theory, designandimplemen-
tation. TheBenjamin/CummingsPublishingCompany, Inc.,
1993.

[3] J. Gray andA. Reuter. TransactionProcessing:Concepts
andTechniques. MorganKaufmannPublishers,1993.

[4] H. GunadhiandA. Segev. Efficient indexing methodsfor
temporalrelations. IEEE Transactionson Knowledge and
DataEngineering, 5(3),1993.

[5] A. Guttman.R-trees:A dynamicindex structurefor spatial
searching.In ACM SIGMOD, June1984.

[6] D. LometandB. Salzberg. Accessmethodsfor multiversion
data.In Proceedingsof the1989ACM SIGMOD, 1989.

[7] P. Muth, P. O’Neil, A. Pick, andG. Weikum. Design,im-
plementation,andperformanceof theLHAM log-structured
history data accessmethod. In Proceedingsof the 24th
VLDBConference, 1998.

[8] K. Nørvåg. ThePersistentCache:Improving OID indexing
in temporalobject-orienteddatabasesystems.In Proceed-
ingsof the25thVLDB Conference, 1999.

[9] K. Nørvåg and K. Bratbergsengen. Log-only temporal
object storage. In Proceedingsof the 8th International
Workshopon Databaseand Expert SystemsApplications,
DEXA’97, 1997.

[10] K. NørvågandK. Bratbergsengen.OptimizingOID index-
ing cost in temporalobject-orienteddatabasesystems. In
Proceedingsof the 5th International Conferenceon Foun-
dationsof DataOrganization,FODO’98, 1998.

[11] V. Singhal,S. Kakkad,andP. Wilson. Texas: An efficient,
portablepersistentstore. In Proceedingsof theFifth Inter-
nationalWorkshopon PersistentObjectSystems, 1992.

[12] M. Stonebraker. Thedesignof thePOSTGRESstoragesys-
tem. In Proceedingsof the13thVLDB Conference, 1987.

[13] T. SuzukiandH. Kitagawa. Developmentandperformance
analysisof a temporalpersistentobjectstorePOST/C++.In
Proceedingsof the 7th AustralasianDatabaseConference,
1996.

