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Abstract

Temporal document databases are interesting in a num-
ber of contexts, in general document databases as well
as more specialized applications like temporal XML/Web
warehouses. In order to efficiently manage temporal doc-
ument versions, a temporal document database system
should be employed. In this paper, we describe the V2 tem-
poral document database system, which supports storage,
retrieval, and querying of temporal documents. We also
give some performance results from a mini-benchmark run
on the V2 prototype.

1 Introduction

In order to efficiently manage temporal document ver-
sions, a temporal document database system should be em-
ployed. In this paper, we describe an approach to tempo-
ral document storage, which we have implemented in the
V2 temporal document database system. Important topics
include temporal document query processing, and control
over what is temporal, how many versions, vacuuming etc.,
something that is necessary for practical use.

We have in a previous project studied the realization
of a temporal XML database using a stratum approach, in
which a layer converts temporal query language statements
into conventional statements, executed by an underlying
commercial object-relational database system. That project
demonstrated the usefulness of a temporal XML databases
in general, and gave us experience from actual use of such
systems. The next step is using an integrated approach, in
which the internal modules of a database management sys-
tem are modified or extended to support time-varying data.
This is the topic of this paper, which describes V2, a tempo-
ral document database system. In V2, previous versions of
documents are kept, and it is possible to search in the his-
torical (old) versions, retrieve documents that was valid at a

certain time, query changes to documents, etc.
Although we believe temporal databases should be based

on the integrated approach, we do not think using special-
purpose temporal databases is the solution. Rather, we
want the temporal features integrated into existing general
database systems. In order to make this possible, the tech-
niques used to support temporal features should be compat-
ible with existing architectures. As a result, we put empha-
sis on techniques that can easily be integrated into existing
architectures, preferably using existing index structures1 as
well as a query processing philosophy compatible with ex-
isting architectures.

The organization of the rest of this paper is as follows.
In Section 2 we give an overview of related work. In Sec-
tion 3 we describe an example application that originally
motivated the work of this project. In Section 4 we give an
overview of our approach and our assumptions. In Section 5
we describe the operations supported by V2. In Section 6
we describe the architecture for management of temporal
documents used in V2. In Section 7 we describe the ar-
chitecture and implementation of V2. In Section 8 we give
some performance results. Finally, in Section 9, we con-
clude the paper and outlines issues for further work.

2 Related work

In order to realize an efficient temporal XML database
system, several issues have to be solved, including efficient
storage of versioned XML documents, efficient indexing of
temporal XML documents, and temporal XML query pro-
cessing. Storage of versioned documents is studied by Mar-
ian et al. [7] and Chien et al. [3, 4, 5]. Chien et al. also
considered access to previous versions, but only snapshot
retrievals. Temporal query processing is discussed in [8].

1History tells us that even though a large amount of “exotic” index
structures have been proposed for various purposes, database companies
are very reluctant to make their systems more complicated by incorpo-
rating these into their systems, and still mostly support the “traditional”
structures, like B-trees, hash files, etc.
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An approach that is orthogonal, but related to the work
presented in this paper, is to introduce valid time features
into XML documents, as presented by Grandi and Man-
dreoli [6].

Another approach to temporal document databases is the
work by Aramburu et al. [2]. Based on their data model
TOODOR, they focus on static document with associated
time information, but with no versioning of documents.
Queries can also be applied to metadata, which is repre-
sented by temporal schemas. The implementation is a stra-
tum approach, built on top of Oracle 8.

3 Example application

In order to motivate the subsequent description of the
V2 approach, we first describe an example application that
motivated the initial work on V2: a temporal XML/Web
warehouse (Web-DW). This was inspired by the work in
the Xyleme project [12]: Xyleme supported monitoring of
changes between a new retrieved version of a page, and the
previous version of the page, but no support for actually
maintaining and querying temporal documents.

In our work, we wanted to be able to maintain a tem-
poral Web-DW, storing the history of a set of selected web
pages or web sites. By regularly retrieving these pages and
storing them in the warehouse, and at the same time keep-
ing the old versions, we should be able to: 1) retrieve the
sites/pages valid at a particular time t, 2) retrieve all pages
that contained one or more particular word at a particular
point in time t, and 3) ask for changes, for example retrieve
all pages that did not contain “Bin Laden” before September
11. 2001, but contained these words afterwards.

It should be noted that a temporal Web-DW based on re-
mote Web data poses a lot of new challenges, for example 1)
consistency issues resulting from the fact that it is not pos-
sible to retrieve a whole site of related pages at one instant,
and 2) versions missing due to the fact that pages might
have been updated more than once between each time we
retrieve them from the Web.

4 General overview and assumptions

In previous work on temporal database, including tem-
poral XML documents [7, 8], it has been assumed that it
is not feasible to store complete versions of all documents.
The proposed answer to the problem has been to store delta
documents (the changes between two documents) instead.
However, in order to access an historical document version,
a number of delta documents have to be read in order to re-
construct the historical versions. Even in the unlikely case
that these delta versions are stored clustered, the reconstruc-
tion process can be expensive, in terms of disk accesses cost

as well as CPU cost. As a result, temporal queries can be
very expensive, and not very applicable in practice. We take
another approach to the problem, based on the observation
that during the last years storage capacity has increases at a
high rate, and at the same time, storage cost has decreased
at a comparable rate. Thus, it is now feasible to store the
complete versions of the documents. Several aspects make
this assumption reasonable:

• In many cases, the difference in size between a com-
plete version and a delta version is not large enough
to justify storage of delta versions instead of complete
document version. For example, deltas are stored in
a format that simplifies reconstruction and extracting
change-oriented information, a typical delta can in fact
be larger than a complete document version [7]. Even
a simpler algorithm for creating deltas of document
can generate relatively large deltas for typical docu-
ment. The main reason for this, is that changes be-
tween document versions can be more complex than
typical changes between fixed-size objects or tuples.
For example, sections in a document can be moved,
truncated, etc.

• Even though many documents on the web are very dy-
namic, and for example change once a day, it is also the
case that in many application areas, documents are rel-
atively static. When large changes occur, this is often
during site reorganization, and new document names
are employed.

Instead of storing delta documents, we will rely on other
techniques to keep the storage requirements at a reasonable
level: 1) compression, 2) granularity reduction [10], and
vacuuming.

Although we argue strongly for not using the delta ap-
proach in general, we also realize that in some application
areas, there will be a large number of versions of particu-
lar document with only small changes between them, and at
the same time a small amount of queries that require recon-
struction of a large number of versions. For this reason, we
will in the next version of V2 also provide diff-based deltas
as an option for these areas.

Document names and document version identifiers. A
document is identified by its document name, i.e., every
time a document with a given name is inserted, and there
is already stored a document with the same name, the new
document is considered a new version of the stored docu-
ment.

A document version stored in V2 is uniquely identified
by a version identifier (VID). The VID of a version is per-
sistent and never reused, similar to a logical object identifier
(OID) used in object databases.

2



Time model and timestamps. The aspect of time in V2 is
transaction time, i.e., a document is stored in the database
at some point in time, and after it is stored, it is current
until logically deleted or updated. We call the non-current
versions historical versions.

The time model in V2 is a linear time model (time ad-
vances from the past to the future in an ordered step by step
fashion). However, in contrast to most other transaction-
time database systems, V2 does support reincarnation, i.e.,
a (logically) deleted version can be updated, thus creating a
non-contiguous lifespan, with possibility of more than one
tombstone (a tombstone is written to denote a logical delete
operation) for each document.

5 Supported operations

In this section we summarize the most important user
operations supported by V2 through the V2 API. A more
detailed description of the operations can be found in [9].

Document insert, update, and delete. V2 is a general
document database system, and in some of our application
areas exact round-trip2 of documents is required. As a re-
sult, we use a FileBuffer as the basic access structure, which
is the intermediate place between the outside world (remote
web page or local file), and the document version in the
database. Thus, a document can be inserted into the File-
Buffer from an external source, inserted into the version
database from the FileBuffer, inserted into the FileBuffer
from the version database, or written back to an external
destination, for example a file.

Retrieving document versions. In order to retrieve a par-
ticular version into the FileBuffer from the version database,
operations for retrieving the current version as well as the
version valid at time t exist. These operations will be suf-
ficient for many applications. However, in order to support
query processing a number of operators will be needed. In-
cluded are operators for temporal text-containment queries
(i.e., queries for document versions containing a particu-
lar word or set of words), the Allen operators [1] (i.e.:
before, after, meets, overlaps, etc.) and
operators for granularity reduction, vacuuming, compres-
sion, and deletion.

6 An architecture for management of tempo-
ral documents

In order to support the operations in the previous sec-
tion, careful management of data and access structures is

2Exact round-trip means that a document retrieved from the database is
exactly the same as it was when it was stored.

important. In this section, we present the architecture for
management of temporal documents as implemented in V2.

As a starting point for the discussion, it is possible to
store the document versions directly in a B-tree, using doc-
ument name and time as the search key. Obviously, this
solution has many shortcomings, for example, a query like
“list the names of all documents stored in the database” or
“list the names of all documents with a certain prefix stored
in the database” will be very expensive. One step further,
and the approach we base our system on, is to use 1) one
tree-based index to do the mapping from name and time to
VID, and 2) store the document versions themselves sepa-
rately, using VID as the search key.

6.1 Document name index

A document is identified by a document name, which
can be a filename in the local case, or URL in the
more general case. It is very useful to be able to
query all documents with a certain prefix, for example
http://www.idi.ntnu.no/grupper/db/*. In or-
der to support such queries efficiently, the document name
should be stored in an index structure supporting prefix
queries, for example a tree-structured index.

Conceptually, the document name index has for each
document name some metadata related to all versions of the
document, followed by specific information for each par-
ticular version. For each document, the document name
and whether the document is temporal or not is stored ( i.e.,
whether previous versions should be kept when a new ver-
sion of the document is inserted into the database.)

For each document version, some metadata is stored
in structures called version descriptors. This includes the
timestamp and whether the actual version is compressed or
not.

In order to keep the size of the document name index as
small as possible, we do not store the size of the document
version in the index, because this size can efficiently be de-
termined by reading the document version’s meta-chunk (a
special header containing information about the document
version) from the version database.3

6.1.1 Managing many versions

For some documents, the number of versions can be very
high. In a query we often only want to query versions valid
at a particular time. In order to avoid having to first re-
trieve the document metadata, and then read a very large
number of version descriptors spread over possibly a large
number of leaf nodes until we find the descriptor for the

3We assume that queries for the size of a document are only moderately
frequent. If this assumption should turn out to be wrong, the size can easily
be included in the version descriptor in the document name index.
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particular version, document information is partitioned into
chunks. Each chunk contains a number of descriptors, valid
in a particular time range, and each chunk can be retrieved
separately. In this way, it is possible to retrieve only the
descriptors that are necessary to satisfy the query. The
chunks can be of variable size, and because transaction time
is monotonously increasing they will be append-only, and
only the last chunk for a document will be added to. When
a chunk reaches a certain size, a new chunk is created, and
new entries will be inserted into this new chunk.

The key for each chunk is the document name and the
smallest timestamp of an entry in the next chunk minus one
time unit. The reason for this can be explained as follows:

1. One version is valid from the time of its timestamp un-
til (but not including) the time of the timestamp of the
next version. Thus, a chunk covers the time from the
timestamp of its first version descriptor until the times-
tamp of the first version descriptor in the next chunk.

2. In the B-tree library we base our system on, the data
item (chunk) with the smallest key larger than or equal
to the search key is returned.

The document metadata is replicated in each chunk in
order to avoid having to read some other chunk in order to
retrieve the metadata. In the current version of V2, the only
relevant replicated metadata is the information on whether
the document is temporal or not.

6.1.2 One vs. two indexes

When designing a temporal index structure, we have to start
with one design decision, namely choosing between 1) one
temporal index that indexes both current and historical ver-
sions, or 2) two indexes, where one index only indexes cur-
rent or recent versions, and the other indexes historical ver-
sions.

The important advantage of using two indexes is higher
locality on non-temporal index accesses. We believe that
support for temporal data should not significantly affect ef-
ficiency of queries for current versions, and therefore either
a one-index approach with sub-indexes or a two-index ap-
proach should be employed. One of our goals is to a largest
possible extent using structures that can easily be integrated
into existing systems, and based on this we have a two-index
approach as the preferred solution. An important advantage
of using two indexes is that the current version index can be
assumed to be small enough to always fit in main memory,
making accesses to this index very cheap.

The disadvantage of using one index that indexes only
current document versions, and one index that only indexes
historical versions is potential high update costs: when a
temporal document is updated, both indexes have to be up-
dated. This could be a bottleneck. To avoid this, we use

a more flexible approach, using one index that indexes the
most recent n document versions, and one index that in-
dexes the older historical versions. Every time a document
is updated and the threshold of n version descriptors in the
current version index is reached, all but the most recent
version descriptors are moved to the historical version in-
dex. This is an efficient operation, effectively removing one
chunk from the current version index, and rewriting it to the
historical version index.

When keeping recent versions in the current version in-
dex, we trade off lookup efficiency with increased update
efficiency. However, it should be noted that this should
in most cases not affect the efficiency of access to non-
temporal documents: We expect that defining documents
as non-temporal or temporal in general will be done for
collections of documents rather than individual documents.
This will typically also be documents with a common pre-
fix. These will only have a current version descriptor in
the index, and the leaf nodes containing the descriptors will
have the entries for many documents, and should in many
cases achieve high locality in accesses.

6.1.3 Lookup operations on the document name index

In a temporal document database, a typical operation is to
retrieve the current version of a particular document, or the
version valid at a particular time. Using the architecture de-
scribed in this section, this will involve a lookup in the doc-
ument name index in order to find the VID of the document
version, followed by the actual retrieval of the document
version from the version database.

Retrieving the current version simply involves a search in
the current version document name index. When retrieving
the version valid at time t, the version descriptor can be in
either the 1) historical or 2) current version index. In which
index to start the search, depends on whether we expect that
most such retrievals are to recent (current version index) or
older (historical version index) versions. The best strategy
also depends on the number of versions of most documents.
In V2 it is possible for the user to give hints about this when
requesting the search. When query processing is added to
the system, this decision can be made by the query opti-
mizer. One simple strategy that should work in many cases
is simply to 1) maintain statistics for hit rates in the indexes
versus the age of the requested document, and 2) use this
statistics to start searching in the historical version index if
the time searched for is less than current time minus a value
t. Note that even if there is no entry for the document in
the current version index, it is possible that it exists in the
historical version index. The reason for this is that informa-
tion about temporal documents that have been (logically)
deleted is moved to the historical version index even if the
chunk is not full (because we want the current version index
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only to contain information about non-deleted documents).

6.2 Version database

The document versions are stored in the version
database. In order to support retrieval of parts of docu-
ments, the documents are stored as a number of chunks (this
is done transparently to the user/application) in a tree struc-
ture, where the concatenated VID and chunk number is used
as the search key.

The most significant part of the version key is the VID.
The VID is essentially a counter, and given the fact that
each new version to be inserted is given a higher VID than
the previous versions, the document version tree index is
append-only. This is interesting, because is makes it easy to
retrieve all versions inserted during a certain VID interval
(which can be mapped from a time interval). One interest-
ing use of this feature is reconnect/synchronization of mo-
bile databases, which can retrieve all versions inserted into
the database after a certain VID (last time the mobile unit
was connected).

In some situations, for example during execution of some
queries, we get VIDs as results. In this way, we are able
to retrieve the actual document versions. However, often
information about the documents is requested at the same
time, for example the document name. For this reason,
some metadata is stored in a separate header, or meta-chunk.
In this way, it is easy to do the reverse mapping from VID
to document name. Currently we also store the timestamp
in the meta-chunk, because we decide the timestamp at an
early stage anyway. However, if we later should use another
approach for timestamp management, this can be changed.
The meta-chunk also contains the size of the document ver-
sion.

As described previously, V2 has a document-name index
that is divided in a current (or rather recent) and historical
part. This approach, as has been proposed in the context
of traditional temporal databases, could also be used for the
version database. However, for several reasons we do not
think this is appropriate:

• First of all, considering the typical document size
which is much larger than tuples/objects in traditional
temporal databases, the locality aspect is less impor-
tant.

• Second, it would involve more work during update, be-
cause we would not only write a new version, but also
read and rewrite the previous version (move from cur-
rent to historical version database). It is also possible
to achieve the same in a more flexible and less costly
way by actually creating two separate databases, and
regularly move old versions to the historical database,

for example as a result of vacuuming or granularity re-
duction processing.

6.2.1 Non-temporal documents

For some documents, we do not want to store their history.
When such a non-temporal document is updated, the pre-
vious version of the document becomes invalid. However,
instead of updating the document in-place, we append the
new version to the end of the version database. The pre-
vious version can be immediately removed from the ver-
sion database, but a more efficient approach is to regularly
sweep through the version database and physically delete
old versions, compacting pages (moving contents from two
or more almost-empty database pages into a new page), and
at the same time vacuum old temporal documents.

There is also another reason for doing updates this way:
documents do not have a fixed size, and quite often new
versions will be larger than the previous versions. In that
case, in-place updating would often result in 1) splitting of
pages, 2) writing to overflow pages, or 3) wasted space if
space is reserved for larger future versions. All these three
approaches are expensive and should be avoided.

6.3 Full-text index

A text-index module based on variants of inverted lists
is used in order to efficiently support text-containment
queries.

In our context, we consider it necessary to support dy-
namic updates of the full-text index, so that all updates from
a transaction are persistent as well as immediately available.
This contrasts to many other systems that base the text in-
dexing on bulk updates at regular intervals, in order to keep
the average update cost lower. In cases where the additional
cost incurred by the dynamic updates is not acceptable, it is
possible to disable text-indexing and re-enable it at a later
time. When re-enabled, all documents stored or updated
since text indexing was disabled will be text-indexed. The
total cost of the bulk-updating of the text-index will in gen-
eral be cheaper than sum of the cost of the individual up-
dates.

As mentioned previously, one of our goals is that it
should be possible to use existing structures and indexes in
systems, in order to realize the V2 structures. This also ap-
plies to the text-indexing module. The text-index module
actually provides three different text-index variants suitable
for being implemented inside ordinary B-trees. Each variant
have different update cost, query cost, and disk size charac-
teristics:

Naive text-index: This index uses one index record for
every posting, i.e., a (word,VID) tuple in the index for each
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document version containing word (although the word is in
practice only stored once in the index). The advantage of
this index structure is easy implementation, and easy inser-
tion and deletion of postings. The disadvantage is of course
the size: in our experiments the disk space of naive text-
indexes was close to the size of the indexed text itself.

Chunk-based text index: This index uses one or more
chunks for each word. Each chunk contains the index word,
and a number of VIDs. For each VID inserted into the
chunk, the size increases, until it reaches its maximum size
(typically in the order of 0.5-2 KB, but should always fit
in one index page). At that time, a new chunk is created for
new entries (i.e., we will in general have a number of chunks
for each indexed word). The size of this text-index variant
will be much lower than the previous variant, because the
number of records in the index will be much low, meaning
less overhead information. The disadvantage is higher CPU
cost because more data has to be copied in memory for each
entry added (this is the reason for the chunk size/insert cost
tradeoff, giving chunk sizes relatively smaller than maxi-
mum size constrained by the index page size). However, the
text-index size is much lower than the previous approach. In
order to support zig-zag joins, each chunk uses the VID in
addition to the index words as the chunk key.

Improved chunk-based text index: Traditionally the
size of text-indexes is reduced by using some kind of
compression. The compression techniques usually ex-
ploit the fact that documents can be identified by a docu-
ment number, making them ordered, and that in this way
each document number di can be replaced by the distance
d = di − di−1. This distance usually requires a lower num-
ber of bits for its representation. Given the size of the mod-
erate size of our chunks and the desire to keep complex-
ity and CPU cost down, we use a simpler approach, where
we use a constant-size small integer in order to represent
the distance between two VIDs. Each chunk contains the
ordinary-sized VID for the first version in the chunk, but
the rest of the VIDs are represented as distances, using short
16-bit integers. In the case when the distance is larger than
what can be represented using 16 bit, a new chunk is started.
It should be noted that this will in practice happen infre-
quently. When using the improved chunk-based text index,
we have in our experiments experienced a typical text-index
size of less than 7% of the indexed text. This size can be fur-
ther reduced if the text-index is compacted (the typical fill-
factor of the index in the dynamic case is 67%, but this can
be increased to close to 100% with reorganization). This
can be useful if the document database is static most of the
time, and dynamic only in periods.

Text Index

Document


Index

Version


Database


Text Indexing

Operations


Document Version

Management


API

Operators


External

Documents


Figure 1. The V2 prototype architecture.

7 Implementation of the V2 prototype

The current prototype is essentially a library, where ac-
cesses to a database are performed through a V2 object,
using an API supporting the operations and operators de-
scribed previously in this paper.

In the current prototype, the bottom layers are built upon
the Berkeley DB database toolkit [11], which we employ to
provide persistent storage using B-trees. However, we will
later consider to use a XML-optimized/native XML storage
engine instead. An XML extension to Berkeley DB will be
released later this year, and would be our preferred choice
sine this will reduce the transition cost. Other alternatives
include commercial products, for example Tamino, eX-
celon, or Natix. Using a native XML storage should result
in much better performance for many kinds of queries, in
particular those only accessing subelements of documents,
and also facilitate our extension for temporal XML opera-
tors. The main parts of the architecture of V2 are illustrated
in Figure 1.

8 Performance

The performance of a system can be compared in a num-
ber of ways. For example, benchmarks are useful both to
get an idea of the performance of a system as well as com-
paring the system with similar systems. However, to our
knowledge there exists no benchmarks suitable for tempo-
ral document databases. An alternative technique that can
be used to measure performance, is the use of actual execu-
tion traces. However, again we do not know of any available
execution traces (this should come as no surprise, consider-
ing that this is relatively new research area). In order to
do some measurements of our system, we have created a
execution trace, based on the temporal web warehouse as
described in Section 3.
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8.1 Acquisition of test data and execution trace

In order to get some reasonable amount of test data for
our experiments, we have used data from a set of web sites.
The available pages from each site are downloaded once a
day, by crawling the site starting with the site’s main page.
This essentially provides an insert/update/delete trace for
our temporal document database.

The initial set of pages was of a size of approximately
91 MB (approximately10000 web pages). An average of
510 web pages were updated each day, 320 web pages were
removed (all pages that were successfully retrieved on day
di but not available at day di+1 were considered deleted),
and 335 web new pages were inserted. It should be noted
that the update/insert rate is relatively high because many
of the web sites were web-newspapers/magazines that were
updated daily. The average size of the updated pages was
relatively high (37.5 KB), resulting in an average increase
of 45 MB for each set of pages loaded into the database
(with 90% fill factor, this equals 40 MB of new text into the
database).

We kept the temporal snapshots from the web sites lo-
cally, so that insertion to the database is essentially loading
from a local disk. In this way, we isolate the performance
of the database system, excluding external factors as com-
munication delays etc.

For our experiments, we used a computer with a 1.4 GHz
AMD Athlon CPU, 1 GB RAM, and 3 Seagate Cheetah
36es 18.4 GB disks. One disk was used for program/OS,
one for storing database files, and one for storing the test
data files (the web pages). The version database and the
text index has separate buffers, and the size of these are ex-
plicitly set to 100 MB and 200 MB, respectively. The rest
of the memory is utilized by the operating system, mostly
as disk page buffers. The database page size is set to 8 KB.

8.2 Measurements

We now describe the various measurements we have
done. All have been performed both using the naive and
chunk-based text indexes, and both with and without com-
pression of versions. In order to see how different choices
for system parameter values like chunk sizes and cache
sizes affects performance, we have also run the tests with
different document/version/text-index chunk sizes and dif-
ferent cache size for the version database and the text index.

Loading and updating. The first part of the tests is load-
ing data into the system. Loading data into a document
database is a heavy operation, mainly because of the text
indexing. Our text indexes are dynamic, i.e., are updated
immediately. This implies that frequent commit operations
will result in a very low total update rate. However, for our

intended application areas we expect much data to be loaded
in bulk in each transaction. For example, for the web ware-
house application we assume commit is only done between
each loaded site, or even set of sites. We load all the updates
for one day of data in one transaction. In the first transac-
tion, the database is empty, so that approximately 10000
pages are inserted into the system. For each of the follow-
ing transactions, on average of 510 web pages/documents
are inserted, 320 documents logically deleted, and 335 doc-
uments inserted, as described above. Note that in order to
find out whether a web page has changed or not, the new
page with the same name has to be compared to the existing
version. Thus, even if only 510+335 document versions are
actually inserted, approximately 10000 documents in total
actually have to be retrieved from the database and com-
pared with the new document with the same URL during
each transaction. For each parameter set, we measure the
time of a number of operations. The most important mea-
surements which will discuss below is:

• The update time for the last transaction, when the last
set of documents are applied to the system.

• After the initial updates based on test data, we also in-
sert a total of 10000 new pages with documents names
not previously found in the database, in order to study
the cost of inserting into a database of a certain size,
compared to updates (when inserting, no comparison
with the previous version is necessary).

• In order to study the cost of inserts of individual docu-
ments, when only one document is inserted during one
transactions, we also insert a number of documents at
different sizes from 800 B to 30 KB, using a separate
transaction for each. As a measure of this cost, we use
the average time of the insert of these documents. Be-
cause we have not enabled logging, every insert result
in every disk page changed during the transaction to
be forced to disk (this is obviously a relatively costly
operation).

Query and retrieval: After loading the database, we do
some simple test to measure the basic query performance.
The operations are text lookup of a set of words, and with
some additional time operations as described below. When
searching, we have used three categories of words:

• Frequently occurring words, which typically occurs in
more than 10% of the documents. In our database, all
entries for one frequently occurring word typically oc-
cupies in the order of 10 disk pages.

• Medium frequently occurring words, which occurs
in approximately 0.5% of the documents). In our
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(a) Update set of web pages.
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(b) Insert new set of web pages.
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(c) Insert single document.

Figure 2. Load and update performance. The size is given as number of update transactions, each
typically increasing the database size with 40-50 MB.

database, all entries for a medium frequently occur-
ring word fit in one disk page (but are not necessarily
stored in one disk page, because the chunks can be in
two different pages).

For each query we used different words, and for each query
type we used several of the words and use the average query
time as the result. In practice, a set of such basic opera-
tions will be used, and only the resulting documents are to
be retrieved. Thus, for each query we do not retrieve the
documents, we are satisfied when we have the actual VIDs
available (the retrieval of the actual versions is orthogonal
to the issue we study here). The query types presented in
this paper were:

• AllVer: All document versions that contain a particular
word.

• TSelMid: All document versions valid at time t that
contained a particular word. As the value for time t

we used the time when half of the update transactions
have been performed. We denote this time t = tMid.

For all text-containment queries involving time, the meta-
chunk of the actual versions have to be retrieved when we
have no additional time indexes.

8.3 Results

We now summarize some of the measurement results.
The size given on the graph is the number of update trans-
actions. As described, the first one loads 10000 documents,
giving a total database size of 91 MB, and each of the fol-
lowing increase the size with between 40 and 50 MB. The
final size of the version database is 9.7 GB (1.9 GB when

compression is enabled). Based on measurements with dif-
ferent chunk size, we found that a chunk size of 400 B
was a suitable choice for both the version database and the
text index (a tradeoff between overhead and CPU/memory-
bandwidth usage).

8.3.1 Load and update cost

The initial loading of the document into the database was
most time consuming, as every document is new and have
to be text indexed The loading time of the first set of docu-
ments (inserting 10000 documents) was 56 s without com-
pression, and 71 s with compression enabled. At subsequent
updates, only updated or newly created documents have to
be indexed. In this process, the previous versions have to be
retrieved in order to determine if the document has changed.
If it has not changed, it is not inserted. Figure 2a shows this
cost for different database sizes. The size is given as num-
ber of update transactions. After the initial load, 91 MB of
text is stored in the database, and each transaction increases
the amount with approximately 45 MB of text, up to a total
of 9.7 GB. The cost of updating/inserting a set of web doc-
uments increases with increasing database size because of a
decreasing buffer hit rate for disk pages containing the pre-
vious document version and pages where postings have to
be inserted. From the graph we see that the increase in cost
using the improved chunk-based text index is much lower
than when using the naive text index. One of the main rea-
sons is that more disk pages have to be written back in the
case of the naive text index. Also note the last point (at
196) on the graph for naive text index/no compression in
Figure 2a. The cost at this point is lower than the cost at
the previous point (at 168). This might seem like an error,
but the reason is actually that the documents loaded at this
point resulted in less updated documents than at the previ-
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(b) Medium frequent words.

Figure 3. Text containment, all versions.

ous point.
If a document does not already exist in the database (the

name is not found in the document name index), there is
no previous version that has to be retrieved. However, it
is guaranteed that the document has to be inserted and in-
dexed. This is more expensive on average. This is illus-
trated in Figure 2b, which shows the cost of inserting a set
of new documents into the database as described previously.

Figure 2c illustrates the average cost of inserting a single
document into the database, in one transaction. The cost in-
creases with increasing database size because pages in the
text index where postings have to be inserted are not found
in the buffer. It also illustrates well that inserting single
documents into a document database is expensive, and that
bulk loading, with a number of documents in one transac-
tion, should be used when possible.

As can be seen from the graphs in Figure 2, the use of
compression only marginally improves performance, and in
some cases also reduces the performance in the case of in-
sert/update. However, the retrieving the actual documents,
and in particular large documents, the cost will be signifi-
cant. It is also likely that when using larger databases than
the one used in this study, but with the same amount of main
memory, the gain from using compression will increase be-
cause of the increased hit rate (when using compression,
the database will in total occupy a smaller number of pages,
thus increasing the hit ratio). However, the main advantage
of using compression is the fact that it reduces the size of
the version database down to 20% of the original size. This
is important: even though disk is cheap, a reduction of this
order can mean the difference between a project that is fea-
sible and one that is not.

8.3.2 Query cost

Figure 3 illustrates the cost of retrieving the VIDs of all
document version containing a particular word. As ex-

pected, the costs increases with increasing database size.
The main reason for the cost increase with smaller database
sizes is a higher number of versions containing the actual
word, resulting in an increasing number of VIDs to be re-
trieved. When the database reaches a certain size, only parts
of the text index can be kept in main memory, and the re-
sult is reduced buffer hit probability (as is evident by the
sharp increase after 140 update transactions, which equals a
database size of 6.8 GB).

Figure 4 illustrates the average cost of retrieving the
VIDs of all document versions valid at time t = tMid that
contained a particular word. For more details on other kind
of queries, as well as disk space usage, we refer to [9].

9 Conclusions and further work

We have in this paper described the V2 temporal doc-
ument database system, which supports storage, retrieval,
and querying of temporal documents. We have described
functionality and operations/operators to be supported by
such systems, and more specifically we described the archi-
tecture for management of temporal documents used in the
V2 prototype. We also provided a basis for query process-
ing in temporal document databases, including some addi-
tional query operators that are useful in a temporal docu-
ment database. All of what has been described previously
in this paper is implemented and supported by the current
prototype. This is also what we believe to be one of the
most important contributions of this paper; to actually inte-
grate existing aspects of various areas in temporal database
management into a working system, capable of managing
temporal documents.

We have studied the performance of V2, using a bench-
mark based on a real-world temporal document collection.
The temporal document collection is created by regularly
retrieving the contents of a selected set of Web sites. We
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Figure 4. Temporal text containment, time selection at time t = tMid.

have studied document load/update time, as well as query
performance using the operators described previously. As
we expected, the performance results indicate good perfor-
mance in the case of large transactions (essentially bulk-
loading of data), where an amount of 155 text files/1.7 MB
of text is indexed per second.

One of the main reasons for developing this prototype
was to identify performance bottlenecks in temporal doc-
ument databases, as well as have a toolbox to work with
in our ongoing work on temporal XML databases. Future
work include a temporal browser, which should make it pos-
sible in a user-friendly way to ask for a page valid at a par-
ticular time, and in the case of Web documents, automati-
cally retrieve and display the page valid at that time when
following a link. Such a browser could also make it easier
to see changes between versions valid at particular times.
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