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Abstract

This report is an introduction to fault-tolerance concepts and systems, mainly from the hardware point
of view. An introduction to the terminology is given, and different ways of achieving fault-tolerance
with redundancy is studied. Knowledge of software fault-tolerance is important, so an introduction to
software fault-tolerance is also given. Finally, some systems are studied as case examples, including
Tandem, Stratus, MARS, and Sun Netra ft 1800.
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1 Introduction

Whatever can go wrong will go wrong at the worst possible time and in the worst possible
way...

—Murphy

Reliability and availability have become increasingly important in today’s computer dependent world.
In many applications where computers are used, outages or malfunction can be expensive, or even disas-
trous. Just imagine the computer system in a nuclear plant malfunctioning. Or the computer systems in a
space shuttle booting just when the shuttle is about to land... These are the more exotic examples. More
close to everyday life, are the telecommunications switching systems and the bank transaction systems.
To achieve the needed reliability and availability, we need fault-tolerant computers. They have the ability
to tolerate faults by detecting failures, and isolate defect modules so that the rest of the system can oper-
ate correctly. Reliability techniques have also become of increasing interest to general-purpose computer
systems. Four trends contribute to this:

The first is that computers now have to operate in harsher environments. Earlier, computers operated in
clean computer rooms, with stable climate and clean air. Now the computers have moved out to industrial
environments, with temperatures over a wide range, dust, humidity and unstable power supply. All these
factors alone could make a computer fail.

Second, the users have changed. Earlier, computer operators were trained personnel. Now, with an
increasing number of users, the typical user knows less about proper operation of the system. The con-
sequence is that computers have to be able to tolerate more. Haven’t we all seen users swearing over a
disappeared document in a text editor (Backup? What is that?), or heard about people that accidently have
poured coffee into the computer?

Third, the service costs increases relative to hardware costs. Earlier the average machine was a very
expensive, big monster. At that time, it was common with one or several dedicated operators to keep the
system up and running. Today, a computer is cheap, and the user has the job of being the “operator”. The
user can not afford frequent calls for field service.

The fourth and last trend is larger systems. As systems become larger, there are more components that
can fail. This means, to keep the reliability at an acceptable level, designs have to tolerate faults resulting
from component failures.

So, what can cause outages of equipment, making fault-tolerance techniques necessary? We can split
them into outages caused by:

e Environment: This s facilities failures, e.g. dust, fire in the machine room, problems with the cooling,
earthquakes or sabotage.

e Operations: Procedures and activities of normal system administration, system configuration and
system operation. This can be installation of a new operating system (requires booting of the ma-
chine), or installation of new application programs (which requires exit and restart of programs in
use).

e Maintenance: This does not include software maintenance, but could be hardware upgrading.
e Hardware: Hardware device faults.

e Software: Faults in the software.

e Process: Outages due to something else, e.g. a strike.

Interesting to note is that, contrary to common assumptions, few outages are caused by hardware faults.
In a modern system, fault-tolerance masks most hardware faults, and the percentage of outages caused
by hardware faults are decreasing. On the other side, outages caused by software faults are increasing.
According to a study on Tandem systems [4], the percentage of outages caused by hardware faults was
30% in 1985, but had decreased to 10% in 1989. Outages caused by software faults increased in the same
period, from 43% to over 60%!



FUNCTION div(a, b: REAL):REAL
BEGIN

div :=a/b;
END;

Figure 1. Example function with a fault.

Organization of This Report

In the next section we will give an introduction to terminology. In Section 3, some basic fault-tolerance
techniques are presented. In Section 4 and 5, we show how these techniques are used in existing sys-
tems, both general-purpose and special high-availability systems. Finally, in Section 6, we summarize the
material presented in this report.

2 Terminology

We have already referred to fault and fault-tolerant without defining them. Here we will try to give a more
precise definition of these, and some other used terms in the area of fault-tolerance. The definitions here
are based on those given by Laprie [12], AviZienis and Laprie [1], Gray [5], and Gray and Reuter [4].

When a system or module is designed, its behavior is specified. When in service, we can observe its
behavior. When the observed behavior differs from the specified behavior, we call it a failure . A failure
occurs because of an error, caused by a fault. The time between the occurrence of an error and the resulting
failure is the error latency. An example is the function in Figure 1. This function has a fault, it does not
check the value of the variable b. This fault results in a latent error in the function div. If the function
is executed with a zero-value as b-argument, that is an error. When the division is executed, we have a
program failure. Another example is a cosmic ray that discharges a memory cell (fault), causing an error.
When the memory cell is read, we have a memory failure and the error becomes effective. This could be
illustrated as:

Fault — Error — Failure — (Error latency) — Detect

Faults can be hard or soft (transient). A module with a hard fault will not function correctly, it will
continue with a high probability of failing — until it is repaired. A module with a soft fault appears to be
repaired after the failure. A hard fault could be a device with a burnt-up component. This will certainly
not fix itself. A soft fault could be electrical noise interfering with the computer. If this has made a data
transport on a bus fail, a second attempt could work if there is no noise at that time.

Module reliability measures the time from an initial instant to the next failure event. This reliability
is statistically quantified as mean-time-to-failure (MTTF). The average time it takes to repair a module
after the detection of the failure is called mean-time-to-repair (MTTR). As a result, we get the module
availability, which is the ratio of service accomplishment to elapsed time:

MTTF
MTTF + MTTR

A failure is not necessarily caused by “something wrong happening”. It can also be caused by a delay
of correct behavior, a timing failure. System availability is the fraction of the offered load that is processed
with acceptable response times. We classify systems into different availability classes as shown in table 1.
Currently, most general-purpose systems are operating in class 3 or 4. The best fault-tolerant systems are
operating in class 5 [5].

To achieve a reliable, high-available system, two very different approaches can be used: fault-avoidance
and fault-tolerance. While fault-avoidance is prevention of fault-occurrences by construction, fault-tolerance

L1t should be noted that in some literature, failure and error are used interchangeably, and in some literature failure and fault are
used interchangeably.



Unavailability

System Type (min/year) | Availability | Class
Unmanaged 52560 | 90.% 1
Managed 5256 | 99.% 2
Well-managed 526 | 99.9% 3
Fault-tolerant 53 | 99.99% 4
High-availability 5 | 99.999% 5
Very-high-availability 0.5 | 99.9999% 6
Ultra-availability 0.05 | 99.99999% 7

Table 1: Availability of typical system classes [4].

Error Latent error
correction processing
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Figure 2: Taxonomy of error correction approaches.

is the use of redundancy to avoid failures due to faults. Fault-avoidance is difficult, and close to impossible
in large and complex systems. This makes fault-tolerance the only realistic alternative for the classes of
systems we are studying here:

General-purpose computer systems: General-purpose computers in the high-end of the commercial
market, employing fault-tolerance techniques to improve general reliability.

High-available computer systems: Systems designed for availability class 5 or higher, often some
kind of database system or telephone switching system.

Long-life systems: Systems designed for operating for a very long time without any chance of repair.
Long-life systems are typical mobile systems where on-site repair is difficult, or maybe impossible.
Examples are unmanned spacecraft systems like satellites or space exploration vehicles. These sys-
tems differ from other fault-tolerant systems discussed earlier by having redundancy not only in the
electrical systems, but also in mechanical parts. They are also required to achieve correct operation
over long periods of time.

Critical-computation systems: Systems doing some critical work where faulty computations can
jeopardize human life or have high economic impact. This could e.g. be the computers in a space
shuttle, nuclear plant or air traffic control system, where malfunction can be extremely disastrous.

We will in this report concentrate on the first two classes, general-purpose computer systems and high-
available computer systems. The basic techniques are the same for the two other classes, except that the
requirements for those systems are much higher.

3 Fault-Tolerance Techniques

Module reliability can be improved by:

Validation
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Figure 3: Basic failfast design.

e Error correction (or error processing, as it is called by Laprie [12])

Validation is used to reduce errors during the construction process. There are many ways to do this, one
is to develop a model of the system in a formal language and use a validation program for the validation.

Error correction (a taxonomy of the approaches is shown in Figure 2) reduces failures by using redun-
dancy to tolerate faults. Latent error processing tries to detect and repair latent errors before they become
effective. An example is preventive maintenance. Effective error processing tries to correct the error after
it becomes effective. This can be done by masking or recovery. An example of masking is error correcting
codes. Recovery denies the requested service, and sets the module to an error-free state. We have two
forms of recovery, backward and forward recovery. Backward recovery returns to a previous correct state.
This can be checkpoint-restart, which means that the state is stored at regular intervals, and at restart time
the last stored state is loaded and restarted from. With forward recovery, a new correct state is constructed,
e.g. by re-sending a message or re-reading a disk page.

Four different types of redundancy are used in fault-tolerant systems, and in the following sections they
will be studied:

e Hardware redundancy
¢ Information redundancy
e Software redundancy

e Time redundancy

3.1 Hardware Redundancy

There are basically two approaches in hardware redundancy: addition of replicated modules, and use of
extra circuits for fault detection.

3.1.1 ModuleReplication

To avoid wrong results and actions being made, it is desirable that that failing modules stops execution
when a fault is detected, with a small fault latency (that means, as soon as possible after the failure).
Modules having this property are called failfast. We also talk about fail-silent modules, which are modules
that only deliver correct results (in the value- and time domain). If it is not possible to deliver correct results
(because of failure), it delivers no results at all [18].

Making a module failfast can be done by duplication. Two identical copies of a module are employed
(see Figure 3a), with a comparator checking the output of the two copies. When the output differs, a fault
is detected. The fault is detected immediately (the fault latency is small), and it is therefore failfast. This
is a widely used technique, because it is easy to realize, and relatively cheap. The cost of duplication is
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Figure 4: Transition diagrams to estimate the MTTF of a duplexed module [4].

twice that of an equivalent simplex system, and the duplication-checking is supported by several micro-
processors. Two examples are the Motorola 88000 and the AMD AMZ29000 which have a master/slave
ability determined by a “test” pin. The outputs of the slave copy are disabled, although it sees the same
input stream as the master. It performs the same operations as the master, and compares with the master’s
outputs.

Another approach is to use three or more modules (N-plex), and apply voting rather than comparison.
If we have three, we have enough redundant information to mask the failure of one of the modules. The
masking is accomplished by means of a majority vote on the three outputs. This is called triple modular
redundancy (TMR), shown in Figure 3b. We say that this module is failvote, since it requires majority. We
could also let the voters first sense which modules are available and then use the majority of the available
modules. This is called failfast voting, and can operate with less than a majority of the modules, which
gives better reliability than just failvote. To increase the reliability further, we can make these designs
recursive; that means failfast/failvote modules connected by a comparator or voter.

Given the MTTF of one component module, the MTTF for various architectures with such modules
can be calculated. This is illustrated with transition diagrams in Figure 4. The shaded areas represent failed
regions. As we can see, duplex does not increase the MTTF. However, the resulting module is failfast,
which is important, as fault-tolerant designs are much easier to design and analyze with failfast modules.
If the duplex module is based on failfast modules, the MTTF is increased to 1.5 of the MTTF of the failfast
component modules.

To dramatically increase the MTTF for a module, repair of a module while the system is operating is
necessary. If the failed module can be repaired sufficiently fast, the MTTF can be very high. One example
is triplex failfast with repair. This approach uses three modules, whose outputs are continuously compared
to achieve error detection. If a miscompare occurs, the system attempts to identify the failed module, using
self-test diagnostics. The failed module is taken out of use, and can be repaired while the rest of the system
is operating. It is interesting to note that a triplex of one-year MTTF modules can give a MTTF of > 106
years using this approach!

However: no chain is stronger than its weakest link. The same applies here as well. If the comparator
at the top of the (possibly recursive) hierarchy fails, we have a problem if no other techniques are used as
well. An example of a technique solving this problem is self-checking, which is explained in Section 3.2.

I nterconnection Reconfiguration

To avoid connection failure (e.g. bus or switch failure) to be fatal, interconnection reconfiguration can
be provided. This is easy to provide if the system already uses some kind of interconnection that have
alternative paths between modules. An example is a computer connected in a hypercube network. Even if
one connection fails, messages can be rerouted vie other connections.



Watchdog Timers and Timeouts

Watch-dog timers and timeouts are used for keeping track of progress. A watchdog timer should be reset
within a certain amount of time, if not, a failure is assumed to have occurred. Timeouts are also based on
the principle that an operations should not take more than a certain time to complete. If an operation has
not completed within a certain maximum time, that indicates a possible failure.

3.2 Information Redundancy

Information redundancy is the addition of extra information to data, to allow error detection and correction.
This is typically error-detecting codes, error-correcting codes (ECC), and self-checking circuits.

Error-Detection (and Correction) Codes

Parity codes are used in most modern computers for memory error detection. This is a simple code that
does not require much additional hardware. Another, more advanced code is m-of-n code. This is a code
that requires code words to be n bit of length, and contains exactly m ones. Cyclic and checksum codes
are also common. To check arithmetics operations, arithmetic codes can be used. Arithmetic codes are
preserved by arithmetic operations [21]. The data presented to the arithmetic operation is encoded before
the operation is performed. When the operation is completed, the resulting code is checked to make sure it
is valid.

Codes can also be error-correcting. Data encoded with error-correcting codes (ECC) can contain errors,
but contains enough redundancy to recover the data.

Consistency Checking

This is a verification of the results being reasonable. Examples are range checks; e.g. address checking,
and arithmetic operation checking.

Self-Checking Logic

As mentioned in Section 3.1.1, failure in a comparator element at the top of the hierarchy can be disastrous
(checking-the-checker problem). This single point of failure can be eliminated through self-checking and
fail-safe logic design [16].

A circuit is said to be self-checking if it has the ability to automatically detect the existence of a fault,
without the need for any externally applied stimulus. When the circuit is fault free and presented a valid
input code word, it should produce a correct output code word. If a fault exists, however, the circuit should
produce an invalid output code so that the existence of the fault can be detected. Self-checking is needed
to make fail-silent modules.

3.3 Software Redundancy

In this report we focus on hardware, but to be able to fully understand the use of the hardware techniques,
it is important to know about the software techniques used on top of the hardware. In fact, software is the
most challenging problem in the area of fault-tolerance. As mentioned earlier, today’s hardware is relative
reliable compared to the software.

There are some important differences between software and hardware errors. Physical errors (in hard-
ware) will not recur after they have been discovered and corrected. Unfortunately, this is not the case with
software errors. In the process of correcting a programming error, new errors are likely to be created.
Software development is also a more complex and immature art than hardware design.

It is said that perfect software is possible — it’s just a matter of time and money. This might be true,
but for a large and complex software system, there is not enough of either time or money. Several examples
proving this could be provided; one is the space shuttle software. Even with extensive testing, the software
contained lots of serious errors, the astronauts were, in fact, provided with bug lists before start! One



known bug is that it was not possible for them to use more than one keyboard at a time. If they did, the
input to the computer would be a logical or of the signals from the two keyboards!

3.3.1 N-Version Programming and Softwar e Fault-Tolerance

We have two major software fault-tolerance techniques [4]:

e N-version programming: Write the program N times, then operate all N programs in parallel, and
take a majority vote for each answer. This is an analogy to the N-plexing of hardware modules.

e Transactions: Write the program as a transaction. Use a consistency check at the end, and if the
conditions are not met, restart. It should work the second time...

The big disadvantage with N-version programming is its cost. It is expensive, and repair is not trivial.
It is also difficult to maintain. To get a majority, we need to have at least 3 versions. Programmers tend
to do the same problems, so there is a certain risk of getting the same mistake in the majority of the
programs. It is often argued that you can get better reliability if you use one expensive (and supposedly
good) programmer, than three average, cheaper programmers.

Gray [5] introduces the concept of Heisenbugs and Bohrbugs. Heisenbugs are transient software er-
rors, while Bohrbugs are solid, deterministic bugs. Heisenbug proponents suggest crashing the system and
restarting at the first sign of trouble; the failfast approach. This requires programs implemented as trans-
actions. If not, the system might be brought back to an inconsistent state. If Heisenbugs are the dominant
form of software faults: Failfast + transactions + system pairs results in software fault-tolerance. In general,
transaction-like approaches are found to be superior to N-version programming [14].

3.3.2 SoftwareFault Detection

Many faults can be detected in much the same way as hardware faults are detected. These techniques can
be implemented either in the operating system or as user processes:

e Watchdog timers and timeouts: A watchdog daemon process can watch the life of an application by
periodically sending the process a signal and check the return value to detect if it is alive. Huang and
Kintala shows how this can be implemented and integrated into a system in [7].

e Consistency checking/self-checking: The programs can use assertions to check the results of com-
putations. If the assertion is false, a fault is detected. How to resolve this fault is up to the program.

e Time redundancy: Run the same program several times and compare the results. This is NOT as
trivial as it might seem.

3.3.3 SoftwareFault Masking

As said earlier in this report, redundancy is one of the keys to high reliability. It is tempting to try to do the
same with software. However, this rises some questions: How do you pair-and spare software modules,
messages and remote procedure calls? Gray and Reuter [4] show that process pairs could be the solution.

Process pairs need to interact, and a reliable message systems is needed, because messages can be lost,
duplicated, delayed, corrupted and permuted. By implementing sessions, timeouts and message sequence
numbers, all message failures are converted to lost messages. By combining this simple failure model
with message acknowledgment, sender timeout and message retransmission, the message systems becomes
highly reliable.

Processes fail by occasionally being delayed for some repair period, having all their data reset to null
state, and then having all their input and output messages discarded. With process-pairs, we have one
working process, the primary. When the primary fails, the second (the backup) takes over for the primary
and continues the computation. One problem is, how should the backup know when the primary has failed?
One way to do this is having the primary send I’m Alive messages to the backup. When the backup knows



it should have received several messages, but have received none, it assumes the primary has failed, and
takes over.
Gray and Reuter [4] describes three kinds of takeover:

e Checkpoint-restart
e Checkpoint message

e Persistent

With checkpoint-restart, the primary records its state on a duplex storage module, and the at takeover,
the backup starts by reading these pages. The primary could also send its state changes as messages to
the backup, and at takeover the backup gets its current state from the most current message. This is called
the checkpoint message technique. With third technique, persistent, all state changes are implemented as
transactions. At takeover, the backup process restarts in the null state and lets the transaction mechanism
clear up (undo) any recent uncommitted state changes.

These techniques have some disadvantages. With checkpoint-restart, we have a long repair time (read-
ing the pages take time). This yields highly reliable, but not highly available process execution. With
checkpoint message, we rely on all messages sent from the primary being received by the backup. This
is dangerous! Persistent process pairs seems as the best technique: It is “easy” to implement and easy to
understand.

There is also a second approach to implement resilient processes: replicated execution [17]. In this
approach, several processes execute the same program concurrently. Here the reliability of the execution
could be increased by taking a majority vote on the output from the processes.

3.4 Time Redundancy

Hardware- and information- redundancy requires extra hardware. This could be avoided by doing oper-
ations several times in the same module and check the results, in stead of doing it in parallel on several
modules and compare the outputs. This reduces the amount of hardware at the expense of using additional
time, and is especially suitable if faults are mostly transient. It could also be used to distinguish between
permanent and transient faults.

4 Fault-Tolerance in General-Purpose Computers

People may not realize to which extent fault-tolerance techniques are used in general-purpose comput-
ers to increase their reliability. Techniques used in general-purpose computers are also utilized in more
specialized fault-tolerant computers, so it is a good starting point to study these computers.

Based on the assumption that most errors are transient, recovery consists primarily of retry by the error-
detection mechanisms [16]. A retry is usually not done immediately, but after a pause. During that time,
the source of the transient error, e.g. power instability, might have disappeared.

A computer is usually divided into three main sections: processor, primary memory and 1/0. These sec-
tions often employ slightly different fault-tolerant techniques. Error detection and recovery mechanisms in
a typical system is presented in table 2. On memory data, parity is used. In the more expensive computers,
and now also increasingly on cheaper computers, double-error-detecting codes are also used. In addition,
parity is used on address and control information. Recovery can be done with single error-correcting codes
on data and retry on address and control information parity error. Memory, under software control, can in
some systems (e.g. VAX 8600) be dynamically reconfigured to exclude bad pages.

Many of the techniques used on memory, can also be used on I/O. Retry is often extensively used here,
especially on devices as disks this is an effective approach.

A processor contains many registers. To provide fault-tolerance here, the same techniques as those used
on memory can be used. In addition, duplication of control logic is commonly used.

To increase availability, repair time has to be minimized. One way to do this, is remote diagnostics.
When a fault is detected, either the computer or an operator notifies a service center, possibly located far

10



| | Detection | Recovery |

Memory | Parity and double-error-detecting code Single error-correction code, retry and dy-
namically reconfigurable memory

110 Parity Retry

Processor | Parity, duplication and comparison Retry

Table 2: Error detection and recovery mechanisms.

away from the computer site. The service center can connect to the computer, and use diagnostic programs
if necessary. The personnel at the service center can either fix the problem from their site (in case of
software problems) or ship a replacement module (in case of hardware failure) to the failing site.

Software techniques are also heavily used to increase fault-tolerance. One widely used technique is
transaction processing, e.g. in databases. Computer-, power- or disk-failure should not be enough to dam-
age the database if the necessary precautions are taken.

5 Fault-Tolerance in Some High-Availability Systems

Most high-availability systems are based on dynamic redundancy. Multiple processors and extensive use
of error detection and correction techniques are used to improve reliability. The fault-tolerant computers
we are going to discuss have much in common:

e Modularity: Hardware and software are based on modules of fine granularity. This makes self-check,
diagnostics and repair considerable easier.

e Replication of modules.

e On-line maintenance: It is important to make diagnostics and repair while the system is in service.
The systems can also be made capable of contacting service centers after a failure of a hardware
component is detected. The service centers can then find the right replacement part, and ship it to the
customer together with installation instructions. In fact, the customer might not even have discovered
the failure before the courier knocks on the door with the replacement part!

o Simplified user interfaces: Many failures can be traced back to mistakes done by the operator. Sim-
plified user interfaces can reduce the probability of failure considerably.

e Several independent power supplies. Failure in a single power supply should not make the whole
system fail. In addition, many fault-tolerant systems have a battery system, which can supply at least
the main memory with enough power. The processor can be put to sleep, and when power is back,
the system can be put back in service immediately. This avoids a possibly very time consuming
restart.

Traditionally, many of the systems that need high availability have been some kind of on-line trans-
action systems, e.g. telecommunication databases, banking systems, or travel reservation systems. As a
result, most fault-tolerant computers are designed and optimized for such applications.

5.1 Tandem Computers

The first commercially available system designed for high availability in general-purpose computing, was
the Tandem 16 NonStop system. The system was designed for transaction processing, and the three main
goals was to [9]:

1. Provide autonomous fault detection, system reconfiguration and repair without interrupting the func-
tions of the fault-free components within the system.

11
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2. Tolerate all single faults. When a hardware or software module fails, another module immediately
takes over the failing module’s function.

3. Using modularity to make the system easy expandable and improve the maintainability of the system.

Hardware

The Tandem concept was based on replication of processors, memories and disks both to tolerate failures
and provide modular expansion of computing resources. All modules are designed to be fail-fast. The
computer architecture is loosely coupled, consisting of two to 16 multiprocessor units connected via a
dual-bus system (see Figure 5).

Checksums, parity error checking, error correcting memories and watchdog timers are used to detect
faults on the bus and memories. Each processor in the Tandem system receives power from its own dedi-
cated power supply.

Software

Each processor module runs independently of each other, and the system manage faults through the Guardian
operating system. The system uses process pairs and checkpoint-messages. When a process is created, a
primary process is created on one processor module, and a backup process is created on another module.
As explained in 3.3.3, status information is periodically sent to the backup process. If the primary process
fails, the backup process takes over.

The operating system periodically probes the component modules to check for errors. If errors are
detected, failing modules are taken out of service. This means that recovery from hardware failures has to
be implemented in the applications.

To reduce the probability of faults in the software, consistency checks and defensive programming
techniques are used. All communication is done by messages.

Modern Tandem Systems

The first Tandem system was introduced in 1976. The processor module, NonStop I, included a 16-bit
processor and up to 512 KB of main memory. Since then, processor architecture has evolved through sev-

12
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eral models. The last models, CLX800 and Cyclone are high-performance processors employing modern
techniques as, e.g., deep pipelines. The buses connecting the processor modules have basically the same
structure as in 1976, but they have since 1989 been realized with fiber-optic links.

5.2 Stratus

Another system competing in the same market as Tandem, is Stratus. Tandem is based on pairing, and needs
software help to recover from hardware failures. Stratus is based on pair-and-spare, the spare component
continues processing until the faulty component can be replaced. No data errors are visible to the software.
This gives easy programming. Also, there should be no performance degradation because of faults. The
problem with this approach is that it is very hardware intensive. E.g., four processors are used to perform
the functions of one processor.

Hardware

Each processor board in the Stratus system consists of two processors. These processors are driven in lock-
step by the same clock. Processes running on the system are mirrored, and the outputs are compared. If the
outputs do not match, the board removes itself out of service. The operating system now runs diagnostic
tests on the board. If the error was caused by a transient fault, the board is put back in service. If the fault
was permanent, the board has to be replaced. This can be one while the system is in service, hot swap. Two
processor boards are running the same functions, with the same data. When one board fails, the other can
continue without interruption.

The memory in a Stratus system also work in lock-step pairs. Self-checking logic is used for control,
and error-correcting codes used for data.

The processor modules are connected via a duplicated module bus called StrataBus, shown in Figure
6. This bus uses parity on groups of signals.

Software

Stratus supports its own operative system VOS as well as an extended version of UNIX. Both systems
provides support for multiple processors and transactions (also distributed transactions).

As said previously, the Stratus architecture isolates users from almost all hardware failures. Still, there
might be bugs in the system (read this as “there is certainly bugs in the system”!). The Stratus system uses
software recovery technigues to minimize system crashes due to system bugs [16].
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5.3 MARS

As mentioned in Section 2, failures can also be caused by a delay of correct behavior, timing failure. In
the Tandem and Stratus systems, this kind of failures are usually not considered too critical. In some
real-time applications, timing failures can be just as disastrous as other kind of failures. One fault-tolerant
system where timing failures are of major concern is the MARS computer system, under development
at the Technical University of Vienna. MARS is an architecture for the realization of computer systems
for distributed fault-tolerant real-time applications. This is not a commercial system yet, but its planned
industrial applications include rolling mills and railway-control systems, in which the controlled system
imposes hard deadlines [10].

Hardware

In general, distributed systems are better suited for fault-tolerance than central systems. If we consider the
system as operational as long as just some nodes are available (as opposed to having all nodes available),
the fault-tolerance capability exists without extra cost, if the appropriate software mechanisms are used
(discussed by Hariri et al [6]). In distributed systems, smallest replaceable units (SRUs) can be defined
[18]. Two or more fail-silent SRUs can be grouped together and form a fault-tolerant unit (FTU). In the
MARS system, a FTU consists of three SRUs. One of them work as a “shadow”, and transmits nothing
on the bus as long as none of the two other SRUs fail. After the failure, the shadow SRU replaces the
failed SRU, see Figure 7. As shown on the figure, the SRUs communicate over a duplicated bus, based
on Ethernet cables. A TDMA? communications protocol is used instead of CSMA/CD to get bounded
communication times.

Several FTUs are clustered, and these clusters are connected to form the whole distributed system.

A SRU in the MARS system consists of two independent parts: an application unit and a communica-
tion unit. Both are based on off-the-shelf components. To provide error detection, parity bits are used on
RAM and FIFOs. A watchdog timer is used on the communication unit.

Software

To be able to have bounded execution times, a very small micro kernel operation systems is used. Software
fault-tolerance have to, mainly, be implemented by the application software. According to Kopetz et.al.
[11], an architecture for hard real-time applications must be complemented by an appropriate methodol-
ogy to achieve predictable timing behavior. As a result of this, the MARS design environment has been
developed, which helps in design and verification of applications.

2TDMA = Time-Division, Multiple-Access.
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5.4 Fault-Toleranceon Clusters

Highly available systems can be made from general-purpose computers with no extra hardware except
duplicated interconnection network. The problem with general-purpose machines is that they are not fail-
fast, but this can be solved with an abstract machine on top of the hardware.

Several research groups have done studies employing computer clusters3. In this report, we present
two examples of this approach, the HA (Highly Available) Cluster, and ClustRa, a ultra high availability
database system based on ordinary workstations.

54.1 TheHA Cluster

The HA Cluster [2], developed at IBM Israel Science and Technology, provides highly available data
through replication of data on a cluster of machines. The cluster consists of two or more machines inter-
connected by a high-speed bus (see Figure 8). In the prototype, IBM AS/400 machines are used, connected
via a pair of fiber-optic high-speed buses (to get redundancy). Workstations and terminals are connected to
the cluster via a local area network.

To get data redundancy, data is replicated at a primary and one or more backup sites. When a site
fails, data has to be retrieved from one of the backup sites, and a recovery process has to be conducted
when the failing site is repaired. This is not a trivial process, and how to do this efficiently is currently a
hot research area. The high availability is transparent, which means that neither applications nor databases
need to be changed. The prototype has been tested with a commercial database application, with acceptable
throughput.

542 ClustRa

ClustRa is a database engine originally developed for telephony applications [20, 8]. In addition to high
availability, these applications require high throughput (a high transaction rate), and real time response
time.

The ClustRa hardware platform is a cluster of workstations, interconnected with a communications
network, e.g., ATM. A node is the unit of failure, and if a component inside a node fails, the node can be
replaced while the rest of the system is operating. High availability is achieved by replication of data. To
handle more serious failures, e.g., environmental failures, the system can be spread over two sites (e.g. one
in Trondheim and one in Oslo).
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5.5 Sun Netra ft 1800

Even though the trend now is to achieve fault-tolerance by employing ordinary workstations in clusters,
single node fault-tolerance is still interesting. The most recent product of this category is the Sun Netra
ft 1800 server [19]. Sun Netra ft 1800 is a telecommunication platform, specifically designed for mission
critical applications that cannot be down even for short periods, and provides class 5 availability, e.g.,
> 99.999 percent hardware availability.

Hardware Sun Netra ft 1800 is based on Sun’s Ultra Enterprise 450, but have eliminated all single points
of failure. Processing, storage and 1/0 elements are duplicated (Figure 9), and can be replaced while the
system is operating, i.e., hot swapping. The power supply module is also duplicated, but no UPS function
is provided.

As illustrated in Figure 10, each CPU set can have 4 UltraSPARC processors. Main memory is orga-
nized into 4 banks of 4 modules, and data in storage and on bus is ECC-protected.

The CPU sets have synchronized clocks, and runs in tight lockstep. Error checking is done as part of an
I/O-transaction (comparing for errors at each clock cycle would have negative impact on performance). The
CPU set error checking process is illustrated in Figure 11. After a failed CPU set has been identified and
replaced, it is re-synchronized with the other CPU set. Re-synchronization involves copying the processor,
register, and 1/O states to the new CPU set. This is done while the other CPU set operates as normal. This
is important, as the re-synchronization can be time consuming, e.g., copying the memory can take several
minutes.

Software The Sun Netra ft 1800 runs a standard Solaris kernel. The kernel runs on top of a fault free
virtual machine interface, illustrated in Figure 12.

Achieving > 99.999 percent availability would be impossible if the system must be turned off to
perform upgrades. Software upgrades typically takes at least an hour or more, and might be needed more
than once a year. 5 minutes downtime would be impossible to achieve under such circumstances. To avoid
software upgrade downtime, Sun Netra ft 1800 supports a feature called split mode, in which one half of
the server can run the applications, while the other is upgraded and tested.

3A cluster is multiple machines interconnected by a high speed network.
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5.6 Other Systems

The systems described above represent typical fault-tolerant systems, but many other fault-tolerant com-
puter systems exists, or have existed. Some are, or have been, commercially available, like Sequoia, BiiN,
NCR 9800, CCI Power6/32FT, and Parallel XR650, while others are only research computers.

6 Summary

Fault-tolerance techniques will become even more important the next years. The ideal, from an application-
writer’s point of view, is total hardware fault-tolerance. Trends in the market, e.g. Stratus and Sun Netra,
shows that this is the way systems go at the moment. There is also, fortunately, reason to believe that
such systems will become considerable cheaper than today. Technology in general, and miniaturization
in particular (which leads to physically smaller and in general cheaper systems) contributes to this. Much
research is also being done with clusters of commercial general-purpose computers connected with redun-
dant buses. In that case, the software has to handle the failures. However, as shown with the HA Cluster
and Sun Netra, that could also be done without affecting the user programs and applications.

7 Bibliographic Notes

A short introduction to the area is given in the article High-Availability Computer Systems by Gray and
Siewiorek [5]. Other introductory articles are [13] and [3]. A comprehensive guide to the design, evalua-
tion, and use of reliable computer systems is the book Reliable Computer Systems: Design and Evaluation
by Siewiorek and Swarz [16]. This book also includes case studies and is the “guru” book in this area.
An article by Siewiorek [15] gives a more “compressed” presentation of the commercial computers pre-
sented as examples in the book. For a more “lightweight” introduction than the book by Siewiorek and
Swarz, Design and Analysis of Fault Tolerant Digital Systems by Johnson [9] is recommended. Software
fault-tolerance through transactions is studied thoroughly in Transaction Processing: Concepts and Tech-
niques by Gray and Reuter [4]. For probing further, the other material cited in this report can be consulted,
together with the web pages of the relevant commercial companies.
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