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Abstract

Cost models are powerful tools for analyzing algorithms, and important in cost-based
query optimization. With increasing amounts of main memory available, it is important
to include buffer performance in the models. In this paper, we describe and validate 1)
buffer models for fine-granularity caching in buffers with locking, and 2) a buffer model
for nodes in multiway-tree indexes in the context of unclustered accesses and non-uniform
access patterns. The validations show a high accuracy of the models. In future self-tuning
database systems, the importance of such models will be even higher than today, and the
models presented in this paper should be ideally suited for use in these applications.
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1 Introduction

Cost models are powerful tools for analyzing algorithms, and important in cost-
based query optimization. They will also be necessary in self-tuning systems, which
will become more important with the increasing complexity of both software and
hardware [2]. Prediction of buffer hit rates is important in order to divide main
memory resources between different tasks/queries.

Analytical modeling in database research has mostly focused on I/O costs. This is
done under the assumption that I/O is the bottleneck. While this is in general true,
buffer performance has an increasing impact on performance, as a result of increas-
ing amounts of main memory available for buffering. It is very interesting (and
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alarming!) that many papers using the analytical approach do not include buffering
aspects, or only do some very simplified assumption, not taking into account access
skew (this is particularly evident in index-related papers).

In this paper we present a model for fine-granularity caching, and a model for
multiway-tree indexes in the context of unclustered accesses and non-uniform ac-
cess patterns. Our models are based on the Bhide, Dan and Dias LRU buffer model
(BDD) [1], which models buffer performance with non-uniform access distribu-
tions. Our models extends the BDD model on the following:

(1) In a mixed workload with both read and write accesses, dirty items in the
buffer can not be immediately replaced, they have to be written back first.
These items are locked. This impact the models, and we study what impact
this has on the accuracy of the model.

(2) Hierarchical accesses (for example in the context of multiway-tree indexes)
are also considered.

The organization of the rest of the paper is as follows. In Section 2 we give an
overview of related work. In Section 3 we outline the motivation for the work pre-
sented in this paper. In Section 4 we describe the access model which is assumed in
the BDD model, and we give a brief overview of the BDD model itself in Section 5.
In Section 6 we study modeling of fine-granularity caching in buffers with locking.
In Section 7 we describe our generalized index buffer model. Finally, in Section 8,
we conclude the paper.

2 Related work

Estimations of block accesses are closely related to our work. The most well-known
model is the Yao model, which assumes uniform distribution [16]. An approxima-
tion to Yao’s formula was presented by Whang et al. [15]. A study of errors when
using Yao’s formula with non-uniform distribution and non-uniform block size was
performed by Luk [6]. Diehr and Saharia studied upper and lower bounds for the
Yao function in [3]. Common for all these models are that they assume unlimited
buffer. Mackert and Lohman modeled index scans with limited buffer [7], but did
not consider hot spots, only uniformly completely random access to an unclustered
index. An extension of this study was performed by Swami and Schiefer [14].

Concurrently with the development of our work, an index buffer model based on
the BDD model has been presented by Leutenegger and Lopez in [5]. Their index
buffer model was done in the context of buffering of R-tree nodes, but can also be
applied to B-trees. The main difference between our model and the one presented
by Leutenegger and Lopez, is that their model only consider a uniform access pat-
tern.
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Fig. 1. Logical access partitions.

3 Motivation

Simulations and analytical modeling have been used extensively in database re-
lated research in order to compare different algorithmic and architectural options.
In evaluations of complex systems, simulations have been most commonly used,
mainly because of their proximity to implementation, the sometimes unrealistic
assumptions sometimes needed to make analytical models, and the problem of in-
corporating concurrent and dynamic events into analytical models. However, sim-
ulations have some very important shortcomings: 1) they are time consuming, and
as a result only a small part of the parameter space can be explored, and 2) it is
not always easy to explain the results! If analytical models are used, we can study
the performance with many different combinations of parameters in a short time. It
is also easier to determine dependencies and explain results with the help of ana-
lytical models. Analytical modeling can also be used together with simulations, to
determine which parameters should be used in the simulations, and to help explain
the results of the simulations.

Our application of the models presented in this paper has in particular been OID
indexes in object database systems, where we have successfully [8–10,12,13] em-
ployed the buffer models in our analysis. We have also deeply appreciated analyti-
cal modeling as a powerful tool in the design of Vagabond [11]. Several bottlenecks
were identified using the analytical models, and many of the solutions were also de-
veloped with the help of the models. Another example of an application area where
the models in this paper would be very suitable, is in the full-text indexes (inverted
lists), which have similar access patterns.

The results in this paper are not limited to analysis of algorithms or systems. Other
important application areas include cost-based query optimization and dynamic
system tuning. In this context, it is important to note that the evaluation of buffer
performance using the models in this paper has a low cost, making them suitable in
an on-line/dynamic context.

4 Access model

We assume accesses to items to be random, but skewed (some items are more often
accessed than others). We assume it is possible to (logically) partition the range of
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Set β0 β1 β2 α0 α1 α2

3P1 0.01 0.19 0.80 0.64 0.16 0.20

3P2 0.001 0.049 0.95 0.80 0.19 0.01

3P3 0.30 0.60 0.10 0.70 0.10 0.20

3P4 0.70 0.10 0.20 0.80 0.10 0.10
Table 1
Partition sizes and partition access probabilities for the access patterns.

KEYs into partitions, where each partition has a certain size and access probability.
This is illustrated in Fig. 1. Note that there is no correlation between KEY and
partition, i.e., KEY=1 can be in partition 2, KEY=2 can be in partition 1, etc.

Our access model is the same as used by Bhide, Dan and Dias in their LRU buffer
analysis [1], to be described in Section 5. This model, based on the independent
reference model, considers a database with a size of N items (for example pages or
objects). The database can be partitioned into p partitions. Each partition contains
βi of the items, as a fraction of the total database size or number of items (see
Fig. 1), and αi of the accesses are to each partition. The distributions within each
of the partitions are assumed to be uniform, and all accesses are assumed to be
independent. We denote an access pattern (partitioning set) for a set of items as Π.
Π has p partitions, and the following has to be true:

(p−1)
∑

0

αi = 1.0

(p−1)
∑

0

βi = 1.0

The studies in this paper use the access patterns summarized in Table 1. Even
though the 80/20 model has been widely employed in many analysis and simu-
lations, and has been satisfactory in the analysis of many problems, it has a major
shortcoming: when applied to calculate the number of distinct items accessed, it
gives a much higher number of distinct accessed items than in a real system. The
reason is that for most applications, inside the hot-spot partition (20% in this case),
there is an even hotter and smaller partition, with a much higher access probability.
This has to be reflected in the model, and is incorporated into the access patterns
3P1 and 3P2, which each consists of three partitions. In both access patterns, the
20% hot-spot partition from the 80/20 model is further partitioned. In 3P1 the 20%
hot-spot partition is further divided into a 1% hot-spot partition and a 19% less
hot partition. The access pattern 3P2 resembles the access pattern close to what we
expect it to be in temporal ODBMSs (which has been the main application area
for some of our research), with a large cold partition, consisting of old versions. In
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Partition Partition Size # of Words in the Book Access Probability

Fraction (Distinct Words) αi

DB EG FS DB EG FS DB EG FS

β0 = 0.01 241 25 94 432188 16341 87174 0.66 0.42 0.50

β1 = 0.19 4583 465 1774 178910 17744 64640 0.27 0.46 0.37

β2 = 0.80 19294 1960 7470 44830 4435 23531 0.07 0.12 0.13
Table 2
Partition sizes and partition access probabilities for three analyzed books, which shows that
our assumptions regarding access pattern can be justified.

order to study the validity of the models also in the case of other parameter ranges,
we have also included the access patterns 3P3 and 3P4.

Some people might question the validity of the assumptions above, and wonder
whether such a large amount of requests going to a small area is a realistic assump-
tion. To show that this is quite reasonable, even on non-temporal data, we will give
an example. Imagine a spell checker, which spell checks a document by comparing
each word in the document against the words in a dictionary which is accessed by
an index. Each word in the dictionary can be though of as an item, while each word
in the document that is spell checked can be considered an item access (we have
to look up this word in the dictionary). The access probability for a book with W
words in total, and N distinct words, can be found as follows:

(1) Define partition sizes βi, for example 0.01, 0.19 and 0.80 as in the 3P1 access
pattern.

(2) Count the number of occurrences for each distinct word. 2

(3) Sort the word/occurrence counts tuples on occurrence counts. The β0N most
frequent words are in partition 0, the next β1N words in partition 1, and the
β2N less frequently used words in partition 2.

(4) The access probability for partition i is the sum of the occurrence count for
each word in the actual partition, divided on W .

As an example, we have used three books: a Danish bible (DB), an English ver-
sion of the Genesis (EG), and a Norwegian book on access methods and query
processing (FS). If we consider the number of distinct words in each of the books
as dictionaries (24118, 2450 and 9338 unique words, respectively), and do a spell
check of the books (655928, 38520, and 175345 word accesses), we obtain the ac-
cess probabilities for the 1%/19%/80% partitions as summarized in Table 2. They
access probabilities show that our assumptions regarding access probabilities can
be justified, and is also consistent with a comparison with the Zipf distribution.

2 Note that each conjugation of a word will be present in the spell checker dictionary. The
actual number of words as would appear in a traditional dictionary would be smaller.
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5 The BDD LRU buffer model

In our analysis, we need to estimate the buffer hit probability in an LRU-managed
buffer given a certain access pattern. This is done based on the LRU buffer model
developed by Bhide, Dan and Dias (the BDD model). In this section, we present
the main results and equations from the model. The derivation and details behind
the equations can be found in [1].

Distinct items. After n accesses with access pattern Π to a database containing
N items, the number of distinct items that has been accessed is (p is the number of
partitions as defined in Section 4):

Ndistinct(n, N, Π) =
p−1
∑

i=0

N i
distinct(n, N, Π)

where N i
distinct(n, N, Π) is the number of distinct items from partition i that have

been accessed:

N i
distinct(n, N, Π) = βiN(1 − (1 −

1

βiN
)αin) (1)

Buffer hit probability. When the number of accesses n is such that the number
of distinct data items accessed is less than the buffer size B (the number of items
that fits in the buffer),

∑p−1
i=0 N i

distinct ≤ B, the buffer hit probability for partition i
is:

Pi(n, Π) = 1 − (1 −
1

βiN
)αin

and the overall buffer hit probability is:

P (n, Π) =
p−1
∑

i=0

αiPi(n, Π)

The steady state average buffer hit probability can be approximated to the buffer hit
ratio when the buffer becomes full, i.e., n is chosen as the largest n that satisfies : 3

p−1
∑

i=0

N i
distinct(n, N, Π) = B

3 Binary search can be used to find n, because N i
distinct are monotonically increasing func-

tions of n.
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Item Cache

Trace Generator

Index

Fig. 2. TSIM architecture.

We denote the average buffer hit probability as:

Pbuf(B, N, Π) = P (n, Π) (2)

where n is chosen as described above.

6 Buffer hit probability in a buffer with locking

The BDD model assumes that all items in the buffer are eligible for replacement.
However, this is not the case in a buffer with dirty items, for example in a page
buffer, object buffer, or index item cache. To avoid a very costly synchronous
writeback of items in the buffer, items are written back to the database/index asyn-
chronously in the background, using some strategy to reduce disk arm movement.
This means that some of the items in the buffer are locked and cannot be discarded
until they have been written back to disk. In this section, we study the inaccura-
cies of the original model in the context of a buffer with locking, and describe
two possible approaches to reduce the inaccuracies: the DCOMP and the insert-
compensating BDD (IC-BDD) models.

6.1 The simulation approach

In the validation of the model we used the TSIM simulator, a toolbox originally
developed for studies of different temporal object identifier indexes. Fig. 2 gives an
overview of the parts of the architecture of the TSIM that is relevant for this paper:

• Trace generator: The trace generator generates access requests (i.e., keys), which
are handled by simulator. Requests from the trace generator can be generated on
the fly, based on defined access patterns, or they can come from traces from real
programs running against a temporal ODBMS. The results reported in this paper
are from an artificially generated workload, as will be described shortly.

• Item cache: This is a cache, with cache replacement according to the clock al-
gorithm.
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• Index: This module contains an index, which during the simulations reported in
this paper is simulated by a main-memory structure.

The workload consists of read, write, and create requests. There are no separate
delete requests, but delete can in this context be considered a write operation, be-
cause the key will be removed. The following parameters are used to specify the
workload:

• Π: The access pattern (see Section 4). Both read and write accesses are performed
according to this access pattern.

• Pwrite: The probability that an operation is a write or create operation.
• Pnew: The probability that a write operation creates a new item (object, index

entry, etc.).
• Fdirty: The fraction of the items in the item cache that are allowed to be dirty, i.e.,

not yet inserted into the index.
• N : The total number of items in the index.

We have performed the simulations with the access patterns in Table 1. Default
values for the other parameters are Pwrite = 0.2, Pnew = 0.2, and Fdirty = 0.2. The
total number of items has been set to N = 50000. This might seem too small, but
the difference between using N = 50000 and a larger value of N is only marginal.

The simulations have been run in two modes, READ DB and FILL DB:

• In the READ DB mode we are only interested in the hit rate for a read-only
workload when the index is in a stable condition. When using this mode, we
first insert all N items into the index. After the items have been inserted, a large
number of read accesses to the index are performed in order to “warm up” the
item cache. After the warm-up phase, we assume the item cache is in a stable
condition, and we measure the hit rate from a number of read accesses.

• In the FILL DB mode, we want to measure the hit rate under a more typical
workload, with both read and write accesses applied to the system. One problem
when doing this, is that the analytical models are based on an index in a stable
condition.

6.2 Results from using the unmodified model

Fig. 3 shows the simulated item cache hit rate for read-only accesses (obtained
using the READ DB mode), compared with the calculated hit rates based on the
BDD buffer model. For all access patterns, the deviations between the model and
the simulations are in general less than 1%. The accuracy of the model in the case
of a read-only workload is as expected, because the accesses are done following
the assumptions behind the BDD model. The reason for the few inaccuracies that
can be observed, is that the item cache uses the clock algorithm, which is only
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Fig. 3. Item cache hit rate for read-only accesses.

an approximation to the LRU algorithm (for sufficiently large buffers the clock
algorithm is a good approximation of the LRU strategy [4]).

Fig. 4 shows the simulated item cache hit rate in the case of a workload of both
read and write accesses (obtained from using the FILL DB mode). In this case, the
deviation between unmodified model and the simulation is much higher. The reason
for this, is that dirty items are locked in the item cache until they have been written
to the index. Many of these dirty items are not hot-spot items, and would otherwise
have been replaced in the item cache.

6.3 The DCOMP model

The fraction of the items in the buffer that are locked depends on the writeback rate.
A high writeback rate results in less locked items and increases the buffer hit rate,
but in general it also increases the average writeback cost. We denote the fraction
of the items in the buffer that are allowed to be dirty as Fdirty (which means that the
writeback rate should be high enough to keep the number of dirty items less than
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Fig. 4. Item cache hit rate with mixed workload.

FdirtyB). To model the behavior of the dirty items in the buffer we use a simple
extension of the BDD mode, which we call the DCOMP model. In the DCOMP
model we use Equation 2, but exclude the slots in the buffer used by the dirty items
when we calculate the buffer hit ratio:

PbufD(B, N, Π, Fdirty) = Pbuf((1 − Fdirty)B, N, Π) (3)

This equation is valid with relatively low values of Fdirty. In Section 6.3.3 we will
study how larger values of Fdirty affect the accuracy of the model.

6.3.1 Model validation

To model the behavior of the dirty items, we exclude the slots in the item cache
used by the dirty items when we calculate the item cache hit ratio, i.e., we calculate
the hit ratio for a buffer less than the one we actually have, by using the DCOMP
model as described in Section 6.3. Fig. 5 illustrates the much higher accuracy we
obtain when using the DCOMP model.
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Fig. 5. Item cache hit rate with mixed workload, compared with DCOMP model.
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Fig. 6. Deviation between simulation and the DCOMP model, using the default parameters.

When studying in detail the accuracy of the models, we will use the deviation be-
tween model and simulation as a measure. The deviation is calculated according
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Fig. 7. Deviation between simulations and the DCOMP model with different write rates.

to:

D =
P Simulated

buf − P Model
buf

P Model
buf

100%

Fig. 6 shows the deviation using the default parameters when simulating in the
READ DB and FILL DB modes.

6.3.2 The effect of different write and create rates

Fig. 7 illustrates the effect different write rates have on the deviation. For high write
rates the deviation is higher than expected. However, this is a result of the way the
creation rate is linked to the write rate in our simulation model: the create rate is
given as a percentage of the write rate. This becomes very evident when we study
the deviation with different create rates, illustrated in Fig. 8.

As mentioned, the buffer models assume a stable condition. A high insert rate (high
Pnew) breaks this assumption, as new items are inserted into the index so fast that the
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Fig. 8. Deviation between simulations and the DCOMP model with different create rates.

item cache does not necessarily stabilize. However, as long as the number of dirty
items in the item cache is low (set by the parameter Fdirty) and the DCOMP model
is used, the high insert rate in itself is not the main contributor to the deviation
between the model and the simulations. The deviations are a side effect of the
way the simulations are done. The proportional size of the access pattern partitions
are constant, which means that the number of items in the hot-spot partition is
constantly increasing. In a real system, we can expect the number of items in this
partition to be more constant.

6.3.3 The effect of different amounts of dirty items in the item cache

We assumed previously that the dirty items in the item cache did not contribute to
the hit rate, because many of these items would be “cold” items that would have
been discarded if they were not dirty. If we allow a large percentage of the items
in the item cache to be dirty, this will result in an underestimation of the hit rate,
because a larger amount of these dirty items will actually be read and contribute
to the simulated hit rate. This is illustrated on Fig. 9. A fraction of dirty items
larger than approximately Fdirty = 0.3 results in an unacceptable high deviation
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(d) 3P4 access pattern.

Fig. 9. Deviation between simulations and the DCOMP model with different amounts of
dirty data in the item cache.

between the simulations and the model. However, in practice Fdirty will be less than
0.3 because a large number of dirty items (or objects) means a large checkpoint
interval (to keep recovery time short, the checkpoint interval should not be too
long). In practice, Fdirty will also be much less than the default value used in this
study, resulting in less deviation.

6.4 The IC-BDD model

We have just seen that the accuracy of the DCOMP model is reduced in the case
of a combined high write and create rate. The reason for this, is that the creation
of a new items essentially can be viewed as an access to a “non-existing item”; at
creation time it does no have an access behavior related to any of the partitions in
the access pattern. Thus, another approach is to model the creation of an item as an
access to a very large partition, where the probability of accessing an item twice is
(close to) zero. In order to model this within our framework, we introduce a new
large partition with access probability equal to the creation rate PC = PwritePnew.
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Fig. 10. Deviation between simulation and the IC-BDD model, using the default parameters
and mixed workload (FILL DB).

Based on the original access pattern, we calculate the hit rate using the BDD model
with the following modified access pattern ΠIC :

• The new partition has α = PwritePnew and β = 1 − 1
S

, where S is a large scaling
factor.

• The original partitions are redefined to be αi = αi(1−PwritePnew) and βi = βi/S.

and hit rate calculated by:

PbufIC(B, N, Π) = Pbuf(B, NS, ΠIC) (4)

We will now study the accuracy of this model using the same parameters as in the
previous section.

Fig. 10 shows the deviation using the default parameters when simulating in the
READ DB and FILL DB modes. It shows reduced deviation (i.e., increased accu-
racy) compared with the DCOMP model.

Fig. 11, 12 and 13 illustrate the deviation between simulations and the IC-BDD
model with different parameters. The result is a significantly reduced deviation in
the case of high write rates and large amounts of locked data, but slightly increased
deviation in the case of high create rates.

7 Multiway-tree index model

Multiway-tree indexes are heavily used, and models of buffer performance for ac-
cesses to these are important. However, the assumptions behind the BDD model in-
clude independent accesses, while in accesses to hierarchical indexes, accesses are
only partially independent. In this section, we describe an extension to the BDD
model making it suitable for modeling such indexes as well, and provide results
from our validations with have been performed using different index sizes, buffer
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(c) 3P3 access pattern.
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(d) 3P4 access pattern.

Fig. 11. Deviation between simulations and the IC-BDD model with different write rates.

sizes, index page fanouts, and access patterns.

7.1 Index access model

In our model, we assume low locality in index pages. We also assume accesses to
index entries to be random, but skewed (some items are more often accessed than
others). We assume it is possible to (logically) partition the range of index entries
into partitions, where each partition has a certain size and access probability. This
is illustrated in Fig. 14 (note that this is not how it is stored on disk, this is just a
model of accesses). The upper part illustrates the physical realization of an index
tree. The lower part of the figure shows the index from a logical view. We have
indicated with arrays how the entries are distributed over the leaf nodes.

We denote the number of leaf nodes as N 0
tree. A leaf node containing index entries

contains unrelated entries from different partitions. This means that the access pat-
tern for the leaf nodes is different from the access pattern to the index entries from
a logical view. We use the initial index entry partitioning (the index entry access
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Fig. 12. Deviation between simulations and the IC-BDD model with different create rates.

pattern) as basis for deriving the index page partitioning (the index page access
pattern) (see Fig. 14). With a totally unclustered index, the index entries from the
different partitions are distributed over the leaf nodes with binomial distribution.
To simplify this analysis, we make some approximations and assumptions: The
second most hot area has a number of entries sufficiently larger than the number
of leaf nodes, i.e., β0

1 > 1
F

. This is a reasonable assumption, with a page size of
8 KB, this gives β0

1 > 0.002. We assume that the accesses to entries not belonging
to the hottest hot spot can be modeled as random and uniform, and it is the hottest
hot spot area alone that decides the index page access pattern. Further, we approx-
imate the binomial distribution by assuming the index entries are distributed over
the leaf nodes with uniform distribution. Simulation results show that the error is
acceptable.

We consider two cases: 1) the number of hot spot entries is smaller than the number
of leaf nodes, β0

0N < N0
tree, and 2) the number of hot spot entries is larger than the

number of leaf nodes, β0
0N > N0

tree.

The number of hot spot entries is smaller than the number of leaf nodes: When
the number of items in the hot spot area is less than the number of leaf nodes, pages

17
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(a) 3P1 access pattern.
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(b) 3P2 access pattern.
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(c) 3P3 access pattern.
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(d) 3P4 access pattern.

Fig. 13. Deviation between simulations and the IC-BDD model with different amounts of
dirty data in the item cache.
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Fig. 14. Multiway-tree index.

belong to one of two partitions L0 and L1: those that have a hot spot entry, and
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those that have not:

βL0 = β0
0N/N0

tree αL0 = α0
0 + βL0

∑p−1
i=0 α0

i

βL1 = 1 − βL0 αL1 = 1 − αL0

The number of hot spot entries is larger than the number of leaf nodes: In the
case where there is one or more hot entry in each page, we will with a uniform
distribution over the pages have some of the pages with one hot index entry more
than the others. Especially in the case where there are few hot index entries in each
page, it is important to capture this fact in the model. We now have two partitions,
one with the pages containing that extra index entry, and the other with those pages
that do not:

βL0 = (β0
0N − bβ0

0N/N0
treecN

0
tree)/N

0
tree αL0 = βL0N

0
tree

dβ0

0
N/N0

treee

β0

0
N

βL1 = 1 − βL0 αL1 = 1 − αL0

With an increasing number of hot spot index entries in each page, the access pattern
will get more and more uniform.

7.2 General index buffer model

We now present a general index buffer model, where the granularity for access is
a page. Even though searches to the leaf page can be considered to be random and
independent, nodes accessed during traversal of the tree are not independent.

In the generic tree used in this model, the size of one index page is SP , and the size
of one index entry Sie. This give a fanout F = bSP /Siec and with a database con-
sisting of N objects to be indexed, the number of leaf nodes is N 0

tree ≈ N
UbSP /Siec

.
This assumes 100% space utilization. In a dynamic tree (for example a typical
B-tree) the space utilization U will be lower, and the number of leaf nodes is
N0

tree ≈ N
bSP /Siec

. The space utilization does not qualitatively affect the results, so
for simplicity we will assume U = 1.0 for both internal and leaf pages in the rest
of this paper.

Our approach to approximate the buffer hit probability, is based on the obvious ob-
servation that each level in the tree is accessed with the same probability (assuming
traversal from root to leaf on every search). Thus, with a tree where the index nodes
has a fanout F , the number of levels in the tree is H = 1+dlogF N0

treee. We initially
treat each level in the tree as one partition, thus, initially we have H partitions. Each
of these partitions is of size N i

tree, where N i
tree is the number of index pages on level

i in the tree. The access probability is 1
H

for each partition.
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To account for hot spots, we further divide the leaf page partition into p′ partitions,
each with a fraction of βLi of the leaf nodes, and access probability αLi relative
to the other leaf page partitions. Thus, in a “global” view, each of these partitions
have size βLiN

0
tree and access probability αLi

H
. In total, we have p = p′ + (H − 1)

partitions. The hot spots at the leaf page level make access to nodes on upper levels
non-uniform, but as long as the fanout is sufficiently large, and the hot spot areas
are not too narrow, we can treat accesses to nodes on upper levels as uniformly
distributed within each level. With the modifications described, a tree of height
H , and p′ leaf page partitions, the equations for αi and βi (access probability and
fractional size of each partition) becomes:

αi =







αLi

H
if i < p′

1
H

if p′ ≤ i < p
βi =







βLiN
0
tree

Ntree
if i < p′

N i
tree

Ntree
if p′ ≤ i < p

The total number of nodes in the tree, Ntree, can then be calculated as:

Ntree =
H−1
∑

i=0

N i
tree where N i

tree =
⌈

N i−1
tree

F

⌉

We denote the overall buffer probability, by using the BDD buffer hit probability
equation with αi and βi as defined above as Pbuf ipage(B, Ntree) where B = b

Mipages

SP

c
is the buffer size, and Ntree is the total number of index pages in the tree.

7.3 Validation of the index buffer model

In order to validate our hierarchical index buffer model, we have compared simu-
lation results with the analytical model. The simulations have been performed with
different index sizes, buffer sizes, index page fanouts, and access patterns.

The index buffer simulations have been performed using the access patterns sum-
marized in Table 1. Access pattern 3P1 is used as default.

7.3.1 The index buffer simulator

The simulator itself is quite simple. It maintains an LRU chain of index pages
currently resident in the buffer. The simulator can operate with either a traverse or
a no traverse strategy.

Using a traverse strategy means that a complete traversal is needed from root to leaf
for every leaf node access. In some index implementations, however, the leaf page
would be self describing. When doing a search in the tree, we would first check if
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Fig. 15. Overall buffer hit probability for access pattern 3P1 with different buffer sizes,
fanout F=64 to the left, and fanout F=2048 to the right.

the relevant leaf page is already in the buffer. Only if the leaf page is not resident,
we would need to traverse the tree. We call this a no traverse strategy.

The equations in the BDD model assumed a hot buffer. Therefore, we warm up the
buffer by doing a large number of requests, before we start measuring the buffer hit
probability.

All simulation results in this section are results from simulations with an index tree
with 200000 leaf pages. With a leaf page size of 1024 entries, this is sufficient to
index approximately 200 million items. We have also performed simulations using
larger index trees, but with the same qualitative result.

7.3.2 Results

Fig. 15 shows the overall buffer hit probability for indexes with fanout F=64 and
F=2048 (note that the number of leaf pages is the same for both indexes). We see
clearly how the buffer hit performance increases close to the point where a new
complete index tree level has space in the buffer. After that point, it rises more
slowly, until it reaches the point when most of the next level fits completely in the
buffer. In the figure, we also see how close the model is to the simulation results
(we have used a logarithmic scale for the buffer size axis to emphasize deviations,
without logarithmic scale, the curves would be overlapping).

Fig. 16 shows the relative deviation between estimated and simulated buffer hit
rate. The deviation is very small for all access patterns.

The results presented until this point have been achieved using a traverse strategy.
When simulating a no-traverse strategy, we are satisfied if the leaf page requested is
in the buffer. With the traverse strategy, we assume that the leaf pages in the buffer
do not contain enough information to be accessed directly. In this case, we traverse
the tree from the root node to leaf page, and do a buffer allocation and replacement
each time we ask for a node that is not resident in the buffer. An access to a node
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(d) 3P4 access pattern.

Fig. 16. Relative deviation between buffer hit rate in analytical model and simulations.

resident in buffer, makes the node move to the front of the buffer chain.

To study the impact of a no-traverse strategy on the buffer hit probability, we have
compared the simulations done with the no-traverse strategy, and compared the
results with the results of the analytical model, which assumed complete traversal.
In Fig. 17, we have plotted the relative deviation between estimated and simulated
buffer hit rate in the case of a no-traverse strategy. This shows that the deviation is
very small in this case as well.

8 Conclusions

Cost models are powerful tools for analyzing algorithms, and important in cost-
based query optimization. With increasing amounts of main memory available, it
is important to include buffer performance in the models. We have in this paper
described a buffer model for fine-granularity caching in buffers with locking, and a
buffer model for multiway-tree indexes in the context of unclustered accesses and
non-uniform access patterns.
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(c) 3P3 access pattern.
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Fig. 17. Relative deviation between buffer hit rate in analytical model and simulations when
the no traverse strategy is used.

In order to validate the analytical models, we have compared them with simulation
results. The simulations have been performed with different access patterns and
parameter combinations. By comparing simulations with the models, we found that
typical deviations between models and simulations are acceptable.

We have already used the models presented in this paper in a number of projects,
in order to find bottlenecks and find suitable parameters for resource usage, with
improved performance as the result. We will continue using the models for this
purpose, and also work on adapting them for the use in other contexts.
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