
Efficient Top-k Recently-Frequent Term Querying over
Spatio-Temporal Textual Streams

Thu-Lan Dama, Sean Chesterb, Kjetil Nørvåga, Quang-Huy Duonga

aDepartment of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
bDepartment of Computer Science, University of Victoria, Victoria, Canada

Abstract

Massive amounts of data with spatio-temporal-textual information are being generated due to the proliferation of
GPS-equipped mobile devices. Much of this data are social media posts, often used to share and spread personal
updates and news. Exploring valuable information from a dynamic collection of social posts is of great interest and
has attracted many studies. However, because the size of data is huge, the existing methods mostly work with the
time window model where the old data is discarded. In this work, we introduce the task of efficiently discovering
the top-k most popular terms within a user specified bounded region over a stream of social posts, where the recent
posts are more important than the old ones. To make this feasible, we propose a hybrid index structure and algorithms
to efficiently answer such top-k queries. Our index employs a spatial index augmented by top-k time-weighted term
lists and a bulk updating technique to support fast digestion of social post streams. Further, these top-k term lists are
employed in the aggregation step to produce the final results so that incoming queries can be efficiently processed. An
extensive experimental study with a large collection of social posts shows that the proposed methods are capable of
both online aggregation and accurate query processing.

Keywords: Frequent terms, Time-weighted, Spatio-temporal query, Top-k query, Spatial index, Spatio-Temporal
Textual Stream.

1. Introduction

With the rapid proliferation of both GPS-enabled
mobile devices and online social media such as Twit-
ter, Facebook and Sina Weibo, huge amounts of tex-
tual data are being generated with both spatial coor-
dinates and timestamps. Such data, referred to as so-
cial posts, enables exciting real-time spatio-temporal-
textual analytics such as detecting trending terms in an
area [1, 2, 3, 4, 5]. These terms, which could include
new hash tags and latent topics, can provide data sci-
entists and journalists with early leads on current and
emerging events.

Nowadays, more and more people use social net-
works such as Twitter to convey thoughts and interpret
daily events taking place in the surrounding space. The
regular and highlight events will get attention and have
interest from many people. Social network users fre-
quently post and share messages about the events, and

Email addresses: lanfict@gmail.com (Thu-Lan Dam),
schester@uvic.ca (Sean Chester), noervaag@ntnu.no (Kjetil
Nørvåg), quang.huy.duong@ntnu.no (Quang-Huy Duong)

the users discuss the events on social media, where the
featured keywords related to the event will have a high
frequency. Analyzing the most frequent terms in social
posts is crucial in many practical applications [1, 6, 7].
To illustrate, assume we would like to mine and an-
alyze the social media data about points of interests
(interesting places) to give visitors a panoramic view
of outstanding events related to the location that they
are interested in. When tourists visit a place, they
are not only interested in recent events [3], but they
also would like to explore highlight events and fea-
tures that have occurred in the place’s ambiguously-
defined “past”. Particularly for tourists with little prior
knowledge of a place, defining the boundaries of the
minimally-queryable-yet-equally-relevant past is much
more difficult and offers less chance for serendipity than
simply expressing a greater interest towards one event
A that is more recent than another event B, all else be-
ing equal between them. Considering the entire time
frame of events but decaying event relevance based on
recency produces results that exhibit both completeness
and freshness.

Preprint submitted to Elsevier December 10, 2020

Typically, detecting trending terms consists of finding
the k terms used most often in social posts within a user-
specified spatio-temporal range. However, as Fig. 1
illustrates, this straight-forward frequency-based ap-
proach has its limitations. The figure shows a tag cloud
created based on the thirty most popular terms from a
subset of tweets from Oslo and London that were posted
during the week between Christmas and New Year’s
Eve. Although some temporally-specific terms, such as
“jul”, “christmas” and “star” are visible, they are lim-
ited and vastly overshadowed by always-frequent terms,
such as “oslo”, “london”, “norway”, “uk”, “great”,
and “photo.” One approach is to normalise the term
counts by their overall frequency (e.g., [8]) to discard
always-frequent terms, but this biases towards always-
infrequent terms. Another approach is to manipulate the
temporal range, but this may yield stale (if the range is
expanded) or incomplete (if it is shrunk) results.

To circumvent these challenges, this work introduces
and studies a query operator that applies a decaying,
time weighted frequency term; this assigns an exponen-
tially higher score to terms posted most recently. The ef-
fect is visible in Fig. 1 (right): we queried Oslo and Lon-
don within a time window from 2015-12-25 to 2016-01-
01 (New Year’s Eve), but used decay factors on the term
scores to give the newer terms more weight than the old
terms; the result gives much higher weight to the already
present juletide terms, but also includes many other spe-
cific festive terms, such as “2015-12-25”, “family”, “fe-
liz”, and “jesus”.

Simple frequent
count

Time weighted
count

Figure 1: The 30 most common terms around time win-
dow New Year’s Eve using a spatio-temporal range (left) in
Oslo (top) and London (bottom) or an exponentially decaying
freshness function (right), as in this paper.

Investigating decay factors as weighing mechanism for
term querying from spatio-temporal textual streams is
an interesting challenge. It is computationally more

challenging than using a temporal range, because eval-
uating the score of a term: a) is dependent on when the
query is issued; and b) may involve arbitrarily old social
posts. A straightforward method may be to use a spatio-
textual index to retrieve spatially relevant social posts,
and then evaluate the score of each retrieved term. How-
ever, this is expensive because the collection of social
posts that satisfy the spatial constraints could be huge.
To compound the challenge, existing approaches for
evaluating straight-forward frequencies within a spatio-
temporal range assume a static, disk-based setting [1],
which ignores that this spatio-temporal-textual data ar-
rives at a rate of thousands of records per second; oth-
erwise, they assume a streaming data model [2, 3, 4, 5],
which necessitates an explicit temporal range.

We thus propose a new indexing technique to effi-
ciently update and query social posts to retrieve fresh,
complete, spatio-temporally relevant terms. It is based
on a time-weighted term list that maintains terms sorted
by occurrence relevant to a landmark epoch. This al-
lows us to process a query with classic aggregation al-
gorithms, such as TA [9] or BPA [10]. Our idea is suf-
ficiently general that it can be applied to various spa-
tial indexing structures. We evaluate our technique, ap-
plied to both the space partitioning quad-tree and the
more ubiquitous R-tree. While both methods outper-
form a competitive baseline by several orders of mag-
nitude, the quad-tree version achieves much better per-
formance than the R-tree by minimizing the number of
time-weighted term lists that need to be aggregated. To
this end, our main contributions are:

• We introduce, for the first time in the literature, a
location-based time-decaying query to retrieve re-
cently frequent terms within a user specified region
of interest, and we propose both exact and approx-
imate algorithms to address it efficiently;

• We introduce the time-weighted term list structure
(TwTL) to enable both quad-trees and R-trees to
index social post streams;

• We demonstrate how to support fast digestion of
social streams with a batch insertion of simul-
taneous Morton encoding and time-weighted fre-
quency pre-calculation;

• We perform an extensive experimental evaluation
on both real-world and synthetic data to evaluate
query response performance and index cost. The
results show that our methods are highly efficient
in terms of query response time, accuracy and scal-
ability.

2

Reproducibility: The source code used in this paper
is publicly available on GitHub.1

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly present related work. In Section 3,
we define the problem and introduce preliminaries. In
Section 4, we present the index construction and query
operations. In Section 5, we report and discuss the ex-
perimental results. Finally, in Section 6, we conclude
the paper.

2. Related Work

Top-k spatial keyword query. The task of a top-
k spatial keyword query is to retrieve the k most rel-
evant spatio-textual objects by considering both prox-
imity to the query location and textual similarity to the
query keywords [11, 12]. In order to organize spatial
and textual information, many hybrid index structures
have been proposed. The spatial indices can be cate-
gorized into three main categories: tree based (R-tree,
quad-tree) [13, 14, 15, 16], grid based [17, 18], and
space filling curve based [19]. In contrast, most textual
indices use an inverted file structure. However, these
works aim at retrieving top-k geo-textual objects con-
taining queried keywords, which is different from the
task of retrieving top-k terms.

Top-k spatio-temporal term query. Given a user-
specified spatio-temporal region, this query finds the k
most frequent terms in the posts within this query re-
gion [2, 3, 1]. GeoTrend [3] computes the top-k most
trending keywords that are posted within an arbitrary
spatial region and during the last T time units. This
method uses a spatial grid where each cell maintains
a materialized list of top-k trending keywords that ap-
pear within the cell spatial boundaries, where the time
period depends on the size of system’s main memory.
To generate the query results, the lists of top-k trend-
ing keywords in relevant cells are combined. However,
each index cell is equipped with an expiration module;
therefore, any data which is older than T is considered to
have expired and is thrown out. Furthermore, GeoTrend
calculates the trend of keywords by a trend line slope
formula, where the last T time units are divided into
N equal time intervals. The higher values of N, the
more accuracy but the more expensive in computation
and memory; in [3] the value of N was relatively small
(N=8 counters per hash entry).

1https://github.com/topkRFT/KYP (To appear after paper
acceptance.)

AFIA [2] uses a multi-layer grid-based index struc-
ture where each cell maintains the k+1 most frequent
terms. Given that a top-k algorithm may need more than
k entries from each list, there is no guarantee that the re-
sulting top-k terms are 100% accurate. Instead, its out-
put is divided into two subsets, one with X terms (where
X ≤ k) that are guaranteed to be in top-k, and the rest
k−X terms that are approximate top-k terms. AFIA only
counts simple frequency, so it does not support answer-
ing trending queries. Furthermore, AFIA returns top-k
frequent terms at different locations in a recent time in-
terval, which is different from our problem: our problem
considers the entire time frame.

Recently, kFST [1] presented a basic analytic query
on geo-tagged data: given a spatio-temporal region, the
objective is to return the most frequent terms in social
posts in that region. kFST employs an R-tree augmented
by top-k sorted term lists (STLs). Then a top-k ag-
gregation algorithm (e.g., RA, NRA [9]) is applied on
the STLs of nodes that intersect with the query region.
However, kFST only counts simple frequency and op-
erates on static data which is less relevant in social net-
works.

Content based Publish/Subscribe. Publish/subscribe
systems support a number of subscribers and allow
them to continuously receive messages/objects rele-
vant to their subscriptions from publishers [20, 6, 21],
where the subscriber specified region and the subscriber
specified keywords in a subscription query perform
as Boolean filters. However, a subscriber may re-
ceive very few or a huge volume of matching objects,
which is depending on the specified query region and
the specified query keywords. Therefore, top-k pub-
lish/subscribe systems were introduced which return a
subscriber only top-k messages/objects that are ranked
based on score functions (i.e., keyword relevance, lo-
cation and freshness) [22, 23, 7]. However, these works
continuously feeds subscribers with relevant geo-textual
objects, which is different from the task of retrieving
top-k terms. Lastly, there does not exist a reasonable
way to adopt these systems to handle our query.

Frequent item counting. There have been numerous
studies to find frequent items from a data stream with
a sliding window model (i.e., valid frequent items are
restricted to those in the current window) [24, 25] or
time decay model (i.e., the weight of the received items
is decreased over time, and the frequent items are then
computed based on time decayed counts) [26, 27, 28].
The time decay model is more desirable because it not
only considers every item that arrives but also incor-
porates the freshness of items. A great deal of work

3

has been proposed to find frequent items from data
streams with the first model, which can be classified into
two main groups: counter-based [24, 29] and sketch-
based [30, 31]. The representative algorithms for this
model are Space Saving [24], Lossy Counting [29],
Count-Min Sketch [30] and FSS [31]. The counter-
based algorithms [24, 29] monitor a subset of items
from the stream by maintaining a set of counters to track
the frequent items over the subset. Sketch-based algo-
rithms [30, 31] use a set of array counters to estimate
the frequency of items. However, differently from the
counter-based techniques, each item is projected into a
set of corresponding sketches by some hash functions.
The frequency of an item is estimated from the counter
of its corresponding sketches.

Many efficient algorithms also have been introduced
for finding frequent items in a time decayed stream [26,
27, 32, 28]. These methods utilize a decay function,
which takes information about an item and returns a
weight for it. There are two ways of measuring items’
weight: as a function of its age, or as an amount of time
between the arrival of item and a fixed point [26]. The
former is referred to as backward decay, as we measure
back from the current time to the item’s timestamp. The
latter is termed forward decay, as we look forward in
time from the stream to see the item. The most com-
monly used decay functions are exponential decay and
polynomial decay [27, 32, 28]. TwMinSwap [27, 32] is
a highly efficient algorithm for this model.

3. Problem Definition

The objective of this paper is to efficiently retrieve
terms that are trending in a given spatial region, without
explicitly defining a temporal window. In this section,
we formally define this top-k recently frequent terms
(kRFT) query (Problem 1).

Definition 1 (Social Post). A social post is a quadru-
ple o = 〈o.id, o.Time, o.Loc, o.Terms〉, where o.id is a
unique id; o.Time is the time of creation; o.Loc is the
2d location of the post (latitude and longitude); and
o.Terms = {t1, t2, . . . } is the multiset of the post’s terms.

Common examples of social posts are geo-tagged
tweets in Twitter and geo-tagged news in news portals.
Given a stream of social posts, D = {o1, o2, . . . , on}, the
vocabulary ofD is the set of all unique terms that occur
in at least one post: VD = ∪o∈Do.Terms.

Example 1. A social post stream,D = {o1, o2, . . . , o10},
is illustrated in Fig. 2. Each oi consists of a creation

(a) Textual and temporal information

Id Time of creation Terms

o1 10:42 Jun 1, 2018 {t1, t2, t4}
o2 09:40 Jun 4, 2018 {t2, t2, t6}
o3 19:02 Jun 2, 2018 {t1, t3, t4, t7}
o4 19:22 Jun 4, 2018 {t3, t6, t8, t8}
o5 17:19 Jun 6, 2018 {t4, t5, t7, t9}
o6 21:12 Jun 4, 2018 {t1, t1, t2, t5, t8, t10}

o7 23:57 Jun 3, 2018 {t4, t5, t6, t9}
o8 10:02 Jun 4, 2018 {t2, t4, t6, t7}
o9 18:31 Jun 1, 2018 {t6, t6, t8, t10}

o10 22:19 Jun 5, 2018 {t5, t7, t9}

(b) Spatial information

Figure 2: Example instance of the kRFT query. (a) Each so-
cial post is associated with a timestamp and multiset of terms.
(b) The blue circle delineates the five social posts that occurred
within the user-specified distance of Oslo’s centre (the pin).
One wants to rank t1–t10 by Eq. 2, using only within-range
posts: {o1, o3, o5, o7, o8}.

time and term list (Fig. 2a) as well as a physical loca-
tion (Fig. 2b). Together, social posts o1–o10 define a vo-
cabulary of 10 unique terms,VD = {t1, . . . , t10}. Fig. 2b
also illustrates a region of interest RQ, the blue circle of
radius 500m centered at the pin (Oslo’s epicentre).

For the sake of brevity, in the rest of the paper, we
use “post” instead of “social post”. As with previous
literature [1, 2, 3, 4], we are interested in the frequency
with which a term appears in a region:

Definition 2 (Regional frequency of a term). Let foi (t)
denote how often term t occurs in oi.Terms. Then, given
a region of interest RQ and a social stream D, the fre-
quency of term t ∈ VD in RQ is:

4

fRQ (t) =
∑

oi∈RQ

foi (t). (1)

Unlike previous literature, however, we score the rel-
evance of a term by applying a decaying weight to the
frequency terms:

Definition 3 (Regional time-weighted frequency of a
term). Let tcurr denote the time of a query and 0 < α ≤ 1
be a decay rate. Then, given a region RQ and a social
stream D, the time-weighted frequency of term t ∈ VD
in RQ is:

wfRQ (t) =
∑

oi∈RQ

foi (t) × α
tcurr−oi.Time. (2)

The exponential time-weighting of frequencies gives
a much higher emphasis to terms that occur in newer
posts. A small value of α gives lower weight to older
posts, whereas α = 1 gives equal weight to everything,
irrespective of creation time. Using time-weighted fre-
quency in lieu of temporal ranges preserves both com-
pleteness (all terms and posts are considered) and fresh-
ness (recency is more important). This gives rise to the
problem studied here, which is to retrieve the k terms
from a social stream that maximize time-weighted fre-
quency, subject to geographic constraints:

Problem 1 (top-k Recently Frequent Terms Query
(kRFT)).

Given: a stream of posts D, a user-specified re-
gion of interest RQ (a centre point and a
radius), and an output size k

Retrieve: the k terms t ∈ VD that best maximize
wfRQ (t) at the querying time.

Example 2. Consider the example in Fig. 2, the user-
specified region of interest RQ is the blue circle that in-
cludes the posts {o1, o3, o5, o7, o8}, assume that α = 0.9,
k = 4, the query date time is Jun.06.2018, and time
unit is one day. The regional time-weighted frequency
of terms from the posts related to the region of interest
are calculated by Eq. 2, i.e., wfRQ (t1) = 1 × 0.9(6−1) +

1× 0.9(6−2) = 0.59 + 0.66 = 1.25 because t1 occurred in
o1 and o3. Calculate in the similar way for the remain-
ing terms we have: {t1: 1.25, t2: 1.4, t3: 0.66, t4: 3.79,
t5: 1.73, t6: 1.54, t7: 2.47, t9: 1.73}, where the number
after the colon for each term indicates its regional time-
weighted frequency. Then the resulting top-4 terms of
kRFT are {t4: 3.79, t7: 2.47, t5: 1.73, t9: 1.73}. If only

simple frequency is counted, then the returned top-4 fre-
quent terms are {t4: 5, t7: 3, t1: 2, t2: 2}, which is dif-
ferent from the result of kRFT and includes the very old
terms, e.g., t1; whereas the returned result of kRFT in-
cludes both the long-life permanent frequent terms (e.g.,
t4) as well as new frequent terms (e.g., t9).

Figure 3: Structure of the hybrid quad-tree.

4. Proposed Method

We aim at reporting the top-k most recently frequent
terms from a dynamic collection of posts D for a spe-
cific region of interest. In general, D is treated as a
dynamic data warehouse where posts are continuously
inserted, and we search over a subset of posts within
a specific region to return the top-k time-weighted fre-
quent terms. In order to support efficient insertion of
new data and querying, we propose organizing posts in
a spatial index and annotating the index nodes with pre-
computed time-weighted frequencies of the constituent
terms. The details of our approach are described in the
following subsections.

4.1. Index Structure
Variants of the R-tree [33, 34, 35, 36] are used ubiq-

uitously to support spatio-temporal queries [1, 11, 15].
However, R-trees are not well suited for rapid content
streams and spatio-temporal aggregate queries due to
their poor update performance [37]. Another indexing
alternative is the quad-tree [38, 39], a space partition-
ing tree data structure in which d-dimensional space is
recursively subdivided into 2d regions. Due to its sim-
plicity and regularity, quad-trees have also been widely
adopted in many applications, especially when there is
no strict requirement that the tree is balanced. There-
fore, we adopt quad-tree structure to index posts.

Further, we organize posts into nodes to support: (i)
efficiently identifying the exact set of posts that fall
within the region of interest; and (ii) balancing the num-
ber of posts among the child nodes. In addition, we pre-
calculate the time-weighted frequency of terms which

5

are stored in a Time-weighted Term List (TwTL) for ev-
ery node (cf., Fig. 3). Then, the final result set is com-
puted by retrieving and combining the pre-calculated
TwTL associated with the set of posts belonging to the
search region. The hybrid spatial index is built online
and new posts are optionally inserted in batch. Fig. 3
shows the proposed quad-tree structure; the TwTL and
tree construction process will be presented in the fol-
lowing sections.

4.2. Time-weighted Term List

We introduce the Time-weighted Term List (TwTL)
structure, which stores term statistics to accelerate query
processing in this section.

Definition 4 (Time-weighted Term List). Each TwTL
element is a 2-tuple describing a unique term, t, includ-
ing: the term itself and its accumulated time-weighted
frequency.

However, it is not obvious how to efficiently calcu-
late time-weighted frequency by Eq. 2 given that tcurr

is not fixed: compared to simple frequency counting,
the time-weighted frequency of a term is dynamic. It
is infeasible to maintain up-to-date time-weighted fre-
quency by re-computing all statistics whenever posts are
added or at query time. Further, we need a simple but
effective mechanism to maintain streams of posts. To
address this challenge, we introduce an efficient strat-
egy for calculating the time-weighted frequency without
re-computation, in line with the forward decay model
of [26]. Let ts0 be the earliest timestamp observed in
the stream and teoi = oi.Time − ts0 is the age of oi since
the start monitoring time ts0. Then we have the follow-
ing property:

Property 1. Consider generally the whole world region
and its social streamD, the time-weighted frequency of
term t ∈ VD by Eq. 2 is:

wf (t) =
∑
oi∈D

foi (t) × α
(tcurr−oi.Time). (3)

And

wf (t) ∝
∑
oi∈D

foi (t)
α(oi.Time−ts0) , (4)

where 0 < α ≤ 1, and ts0 is the earliest observed time.

Proof. We can rewrite Eq. 3 as:

wf (t) =
∑
oi∈D

foi (t) × α
(tcurr−ts0) × α(ts0−oi.Time). (5)

Table 1: Example Time-weighted Term List (TwTL).

Term t1 t2 t3 t4 t5 . . .
wf 4.85 6.48 2.48 6.41 5.82

Observe that the middle term α(tcurr−ts0) does not de-
pend on the summation variable oi; so, we can extract it
from the summation:

wf (t)
α(tcurr−ts0) =

∑
oi∈D

foi (t) × α
(ts0−oi.Time). (6)

Moreover, as tcurr is fixed at query time, the extracted
term α(tcurr−ts0) is just a constant weight for all terms.
Thus, (by multiplying the exponent of the remaining α-
term by -1 and taking its reciprocal) we have:

wf (t) ∝
∑
oi∈D

foi (t)
α(oi.Time−ts0) .

Example 3. Table 1 shows an example TwTL structure
where ts0 = o1.Time, α = 0.9, and the time unit is one
day. Term t1 appears in o1 once, in o3 once, and in o6
twice. For all other oi, wf (t1) = foi (t1) = 0. By Eq. 4,
wf (t1) = 1

0.91−1 + 1
0.92−1 + 2

0.94−1 = 1 + 1.11 + 2.74 = 4.85.
Similarly, wf (t2) = 1 + 2.74 + 1.37 + 1.37 = 6.48.

Then each node of the index tree is associated
with one TwTL, which summarizes all terms occurring
therein and its children. This list is updated when insert-
ing posts into the tree. The next subsection will present
how TwTL is augmented to the spatial index.

4.3. Index Insertion in the Hybrid Quad-tree

Inserting an individual post oi into a spatial index is
typically performed by traversing the tree from its root
node to find the leaf node that contains the location of
oi [16, 4], i.e., first executing a query for oi. However,
this approach is not sufficiently responsive for real-time
stream processing with high arrival rates, because it in-
curs an additional load of thousands of queries per sec-
ond. In order to support a high arrival rate, we employ
an efficient bulk insertion technique that compared to
the traditional way of inserting individual posts can re-
duce a large number of comparison operations for term
locations with spatial node boundaries 2.

2Bulk loading is only supported for the quad-tree, which, unlike
an R-tree, never has to rebalance after a node split.

6

The main idea is to insert posts in batches. In particu-
lar, we buffer incoming posts in a memory buffer B and
build a map of their terms at the same time. Further-
more, the location of each post is converted to a Z-order
code (also known as Morton order or Morton code) [40]
in order to enable a fast split into ranges when bulk in-
serting into the quadrants later. The text is split into
terms and stop words are removed on-the-fly to ensure
they do not dominate the top-k results. The buffer B
has two parts: a zlist containing z-order codes of in-
coming posts, and a term map M summarizing terms
from these posts, each entry of M has the form of {t,
[〈oid, foid (t)〉, . . .]}, where oid is the id of post contain-
ing term t and foid (t) is the number of times t appears in
oid. Before inserting, we sort B.zlist in ascending order
of its elements. Then, the bulk insertion is performed
to insert B into the hybrid quad-tree, which consists of
two steps: (1) traversing the tree with batches of terms,
and while traversing, (2) the terms are merged into its
corresponding nodes. The details of these steps are as
follows.

Quad-tree traversal. The terms in map M are first in-
serted into the root node N of the tree as described in
Node insertion below. If N is a non-leaf node, we split
the buffer B into sub-buffers with respect to the quad-
rants of N accordingly. Each sub-buffer encloses a sub-
set of z-orders and a term map that corresponds to one
of the quadrants. Then, the same insertion process is ap-
plied to each of the quadrants using the corresponding
buffer. If N is a leaf node and its contents does not ex-
ceed the predefined maximum node capacity, we store
the arrived posts and merge the contents of B to N. Oth-
erwise, we create four children of N and employ the
same process as on the non-leaf node above.

Node insertion. For each newly arrived term, if there is
no corresponding element in the TwTL of the node N,
N.TwTL, we initialize an element for this term. Then,
entries of a term in M are concatenated to the corre-
sponding term in N.TwTL, and the time-weighted fre-
quency of the arrived term in N.TwTL is incremented by
a value calculated by Eq. 4, where oi is the new post.

Algorithm 1 shows the pseudocode of our index con-
struction method where the whole TwTLs are stored in
all nodes, which is named Full-TwTL. Employing the
z-order and sorting the zlist in ascending order brings
several benefits to the bulk insertion. First, splitting the
zlist of buffer B into several sub-lists according to the
z-ranges of quadrants is easy. Second, posts having lo-
cations which are near others are inserted into tree nodes
that are also nearby in the tree. This, in turn, would im-
prove the query efficiency later.

Algorithm 1: Batch Quad-Tree Construction
Input: A stream of postsD.
Output: Quad-tree QT.

1 Initialize tree QT and buffer B if needed
2 while buffer B is not full do
3 Read oi fromD
4 Calculate z-order from oi.Loc and add to B.zlist
5 Extract terms from oi.Terms and add to B.M

6 Sort B.zlist in ascending order
7 N ← root of QT
8 Call InsertTree(N, B)

9 Function InsertTree(N, B)
10 Merge term map B.M to N.TwTL
11 if N is internal node then
12 Split B into sub-buffers w.r.t. N.quadrants
13 Call InsertTree(N.quadrant, sub-buffer)

accordingly

14 else
15 if N is leaf node And N contains B.zlist

then
16 if (N.capacity + size of

B.zlist) ≤ MaxCapacity then
17 Add B to N;

18 else
19 Merge data of N to B
20 Create N.quadrants
21 Split B into sub-buffers w.r.t.

N.quadrants
22 Call InsertTree(N.quadrant,

sub-buffer) accordingly

Illustrated example. Figure 4 illustrates in detail how
we traverse the Quadtree and insert data to a node in
the tree. Given a spatial region as in Fig. 4 (top-left),
indexed using an Quadtree as presented in Fig. 4 (bot-
tom). The detailed steps of the process are presented in
Fig. 4 (top-right). For the sake of simplicity, in the ex-
ample, we use α = 1.0 and the buffer size B is set to 1
(size of B.M). The algorithm is an approximate method
and value of K is set to 5. The values on edge of the tree
are Morton ranges (from-to) of the child region.

4.4. TopK Time-weighted Term List
In some cases, the Full-TwTL approach described

above requires a lot of memory, especially for the TwTL
at higher-level nodes, which may contain the whole vo-
cabulary V. This would also degrade the query perfor-

7

R1

R11 R12

R13 R14

R2

R21 R22

R23 R24

R221 R222

R223 R224

R241 R242

R243 R244

R3 R4

R41 R42

R43 R44

Step 1: new post o2{t2 t2 t6} with id=2 arrives at the location R224

Step 2: calculate the z-order of o2, we have o2.z − order = 23, then
add this value to zlist of B: B.zlist.add(23)
- Extract terms of o2 with weights, we have 2 terms {t2, t6}, and add
these terms to B.M. So, we have B.M = {{t2,[2,2]}, {t6,[2,1]}}

Step 3: Insert data in buffer B to the Quadtree:
- Tree traversal: start from the Root, traverse down to the corre-
sponding order. On the tree, the branching path from the Root to
the region with z-order value 23 is in orange color.
- Node insertion: after the tree traversal, we found node R224 that
contains post o2{t2 t2 t6}, data will be inserted to this node. For sim-
plicity, we assume the capacity of the node does not yet reach its
maximum setting, the following steps are processed:
+ Store post o2 in the post list of node R224
+ Update the new term data in B.M with the list TwT L of R224. For
instance, if R224.TwT L = {[t1:1], [t6:1]}, after the update with k = 5,
R224.TwT L will be {[t1:1], [t2:2], [t6:2]}

Root

R1

R11

0-3

R12

4-7

R13

8-11

R14

12-15

0-15

R2

R21

16-19

R22

R221

20

R222

21

R223

22

R224

23

20-23

R23

24-27

R24

R241

28

R242

29

R243

30

R244

31

28-31

16-31

R3

32-47

R4

R41

48-51

R42

52-55

R43

56-59

R44

60-63

48-63

Figure 4: Example of Quadtree traversal and node Insertion.

mance because the produced results are aggregated from
several corresponding TwTLs, which contain a large
number of terms. Therefore, we introduce an approx-
imate approach named TopK-TwTL, in which only the
K terms (K counters) having highest time-weighted fre-
quency are maintained at each node. Its index is created
similar to the Full-TwTL approach, except that in the
node insertion step, while merging new arrival terms in
map M to the TwTL list stored in node N, we calculate
and maintain only the K terms with the highest time-
weighted frequency in this node.

Our framework is a time-aware-based approach. In
order to efficiently calculate and maintain the list of

Top-K time-weighted frequent terms we follow the
spirit of TwMinSwap [27]. However, TwMinSwap has
to recalculate frequencies of the currently monitoring
items, whereas our method does not require this step.
The reason is that we employ the proposed equation
Eq. 4 to calculate the time-weighted frequencies of
terms. Further, we start monitoring a new arrival term t
with the initial count as its time-weighted frequency in-
stead of 1. Lastly, we observe that the majority of terms
in post stream are infrequent and many of them have the
same frequency, therefore we follow a flexible top-k ap-
proach, i.e., the TopK-TwTL may contain more than K
counters (monitored terms) when some terms have the

8

Algorithm 2: Construct TopK-TwTL
Input: A map of terms M, the number of counters

K, a decay parameter α.
Output: Top-K time-weighted frequent terms

TopK.
1 TopK ← currently monitored terms
2 for each term t from M do
3 Calculate the added wf of term t from M by

Eq. 4 using α
4 if t ∈ TopK then wft ← wft + wf
5 else
6 if |TopK| < K then
7 TopK ← TopK ∪ {t}
8 wft ← wf

9 else
10 v∗ ← argminv∈TopK wfv
11 if wfv∗ < wf then
12 TopK ← TopK\{v∗} ∪ {t}
13 wft ← wf

14 if wfv∗ = wf then
15 TopK ← TopK ∪ {t}
16 wft ← wf

17 return TopK

same weighted frequency. The detailed steps of the im-
proved algorithm are described in Algorithm 2. The in-
dex structure is built in the same way as in Algorithm 1,
except that lines 10 and 19 are replaced by Algorithm 2
when merging information of terms in map M to the
TwTL stored in this node to maintain only the top-K
terms. Furthermore, at a specific time, the depth of a
quad-tree can not be deeper due to the amount of data
is huge. Therefore, when the tree reaches a maximum
depth, instead of splitting the leaf node we replace a
number of posts stored in the current leaf node by the
new posts in the buffer B. This may affect the accuracy
when the search region is not fully contained in a leaf
node. However, the TopK-TwTL still provides a high
accuracy, as will be demonstrated in the experimental
result section.

4.5. Query Processing

Given a spatial index with pre-calculated time-
weighted term frequencies, queries can be executed as
per Algorithm 3. First, we find the exact set of tree
nodes SN whose TwTLs involve the query region RQ

such that it minimizes the number of nodes in SN start-
ing from the root node of the tree (Algorithm 4). Then,

Algorithm 3: kRFT(T, RQ, k)
Input: Tree T, region of interest RQ, number of

terms k.
Output: Top-k highest time-weighted frequency

terms in RQ.
1 Initialize Tabk = ∅, S N = ∅
2 Calculate z-range = [zmin, zmax] of points in RQ

3 SN ← FindNodes(T.root, z-range)
4 Tabk = mBPA2-TwTL(SN, k) /

mBPA2-TopK-TwTL(SN, k)
5 return Tabk

the second step finds top-k keywords in RQ by aggregat-
ing the time-weighted term lists that are maintained in
SN’ nodes (Algorithm 5). Note that the exact method
Full-TwTL aggregates the values from the Full-TwTLs
stored in corresponding nodes, while the approximate
method TopK-TwTL uses the TopK lists in the nodes.
Further, we follow the spirit of the best position al-
gorithm [10], which executes top-k queries more effi-
ciently than TA [9] by avoiding re-accessing data items
via random access. However, there are several improve-
ments: (1) the involved lists must be sorted first (line 4),
and (2) because the lengths of input lists are different,
we have to check the availability of the current term
(line 10).

5. Experimental evaluation

This section presents an experimental evaluation of
our proposed time-weighted term list (TwTL) and in-
dexing methods for solving kRFT, where we will eval-
uate the algorithms both in terms of query performance
(Section 5.2), and the construction/maintenance cost
of the relevant indexes (Section 5.3). But first, we
describe the computational environment, implementa-
tions, datasets and query selection (Section 5.1).

5.1. Experimental Methodology

Environment. The experiments were run on a server
with dual 14-core 2.00 GHz Intel Xeon E5-2683 v3
(Haswell) CPUs, with 192 GB DDR4 RAM, a 7.3 TB
SATA disk, and Ubuntu 18.04. The relevant datasets
and all data structures are always memory-resident at
query time, and caches are warm.

Implemented algorithms. Recall from Section 2 that
there are no relevant methods in the literature to solve
the kRFT query: existing algorithms for returning top-k
frequent terms assume static data, require a pre-defined

9

Algorithm 4: FindNodes(N, z-range)
Input: A tree node N and z-range of query region

RQ.
Output: Set of satisfied nodes SN and its

TwTLs/TopK-TwTLs.
1 if N is a leaf node then
2 if z-range ⊂ N.z-range then
3 return N and its TwTL/TopK-TwTL

4 else return ∅
5 if N.z-range is totally enclosed in z-range then
6 return N and its TwTL/TopK-TwTL

7 else
8 SN ← ∅
9 Decompose z-range into sub-z-ranges

according to N.quadrants
10 for each quadrant in N.quadrants do
11 if quadrant.z-range ⊇ a sub-z-range in

sub-z-ranges then
12 SN ← SN ∪ FindNodes(quadrant,

sub-z-range)

13 return S N

temporal interval, and/or cannot straight-forwardly sup-
port a query-time-dependent decay factor on the fre-
quency counts. Therefore, we implemented two base-
lines by adapting the existing methods STL-LI (Full
Lists on All Nodes) and STL-li (Partial Lists on All
Nodes) of kSFT [1], and named it as RTiFull and RTi-
TopK, respectively. STL-LI and STL-li works with
static dataset and only count static simple term fre-
quency. Both STL-LI and STL-li index all posts in
an R-tree, where a sorted term list containing pairs of
terms and its simple frequencies is maintained in the
tree node, and STL-LI and STL-li follow the sprits
of RA and NRA to produce results from the relevant
term lists. Meanwhile, the adapted RTiFull and RTi-
TopK maintain TwTL/TopK-TwTL in its nodes, insert
posts individually into its index and follow the same
query processing schema as with our quad-tree versions.
The R-tree implementation uses the QuadraticSplit [33]
method to split nodes. The quad-tree implementation
encodes nodes by Morton code (Z-order) [40] so that
each quad-tree node has a unique Morton range [41].
Furthermore, we implemented a naive method, Baseli-
nescan, which adopts a spatial first strategy: it scans
the dataset to find the set of posts produced within the
query region, and then naively calculates the top-k re-
sult terms from this subset. Baselinescan returns the

Algorithm 5: mBPA2-TwTL(SN, k)
Input: Set of nodes SN and its

TwTLs/TopK-TwTLs, the number of result
terms k.

Output: k terms with highest time-weighted
frequencies.

1 Initialize result set Tabk ← ∅, which can contain k
elements

2 for each node Ni ∈ SN do
3 Li = Ni.TwT L / Ni.TopK-TwTL
4 Sort Li in ascending order of term’s

time-weighted frequencies
5 Initialize position list Pi ← ∅ containing the

positions of seen data items in Li

6 Initialize the best position bpi ← 0

7 repeat
8 for each list Li ∈ SN.TwTLs / SN.TopK-TwTLs

do
9 t = Li[bpi + 1]

10 if t is not null AND t < Pi then
11 wfreq = wfLi (t)
12 Pi ← Pi ∪ bpi + 1
13 for each list Lj ∈ SN.TwTLs /

SN.TopK-TwTLs do
14 Do random access for t in L j to find

wfLj (t)
15 wfreq← wfreq + wfLj (t)
16 Update Pj

17 Tabk ← Tabk ∪ {〈t,wfreq〉}
18 λ =

∑|SN |
i=1 wf (Li[bpi])

19 v∗ ← argminv∈Tabk wfv

20 until λ < wfv∗
21 return Tabk

exact kRFT result; it is thus also used as a benchmark to
evaluate the accuracy of the approximate TopK-TwTL
methods and the correctness of the Full-TwTL imple-
mentations. Hence, in all, we compare five algorithms:
four index-enabled techniques (the two proposed meth-
ods Full-TwTL and TopK-TwTL employing quad-tree,
RTiFull and RTiTopK) and a naive scan method. All
algorithms were implemented in Java and are publicly
available on GitHub.

Datasets. We used two datasets, named WW and CN,
where WW is a real-world dataset and CN is a semi-
real-world dataset. The summaries of these two datasets
are shown in Table 2, while its details are described be-
low.

10

WW dataset. This is the primary experimental dataset
and consists of n = 125 million (M) geo-tagged tweets
collected from the whole world using the public Twitter
streaming API. Each tweet contains a timestamp, a pre-
cise longitude and latitude, and a text message contain-
ing 11 terms on average (not including stopwords). The
temporal domain covers late December 2015 and early
January 2016. To measure scalability, we prepared three
other datasets which contain n = 15, 30 and 60 million
tweets by extracting subsets from the n = 125M WW
dataset, and we name these datasets 15M, 30M and 60M
respectively. A subset is created by selecting the first 15,
30 or 60 million tweets from the original dataset (which
is in temporal order).

CN dataset. This dataset contains approximately 30
million weibos (microblogs) posted from week 47 to
week 52 (the last 6 weeks) in 2012 which is extracted
from the Weiboscope Open Data3. The Weiboscope
dataset was collected from Sina Weibo in China. How-
ever, the information about location of every weibo is
not available. In order to use the dataset for our pur-
pose, we create a geographic coordinate to each weibo
as follows: we first pick a city in China randomly using
a uniform distributed function, and then add a random
distance to its longitude and latitude. The average text
message length of the CN dataset is 21, which is longer
than that of the WW dataset. We also create two other
datasets which contain 10 million and 20 million weibos
by extracting subsets from the CN dataset in the same
way as for the WW dataset. Note that because of the
way locations are created for the CN dataset, the dataset
will not contain distinct hotspot locations as is the case
for the WW dataset. The reason for doing it this way
is to be able to study query and indexing performance
for a context with less distinct hotspots than the WW
dataset scenario.

Queries. For the query experiments, we generate sev-
eral sets of 200 independent queries grouped in two cat-
egories: (i) the output size k is fixed to 10 while the
query radius r is varied from 1km to 20km, in particu-
lar r ∈ [1, 2, 5, 15, 20] (km); and (ii) the query radius r
is fixed to 10km while the output size k is varied from
10 to 100, in particular k ∈ [10, 20, 40, 60, 80, 100]. For
each query, we select a random tweet (or a weibo) from
the medium sized WW dataset, n = 30M (or from CN
dataset, n = 20M) and centre the query at the location of
this tweet/weibo. As a result, every query will return a
non-empty result (at a minimum, producing a non-zero

3https://hub.hku.hk/cris/dataset/dataset107483 [vis-
ited August 27, 2019]

score for all terms in that tweet/weibo), and there are 11
sets of queries in total. Each plotted data point reports
the average for all 200 queries in the relevant query set.

Unless otherwise indicated in the plot or caption, the
parameters assume default values as follows: the decay
factor α = 0.9 as suggested in the literature [27, 32], the
output size k = 10, the query region radius is 10km, the
node capacity is 1000, the default size of TopK-TwTL
(K) is 500, the batch size is 12000 tweets/weibos, and
the time unit is one day.

5.2. Query Performance

In this section, we evaluate the query performance of
the algorithms.

5.2.1. Query response time
Figs. 5–6 show the average query response time for

the four index-enabled methods. The plots on the top
vary the output size (k ∈ [10, 100]) and those on the
bottom vary the query radius (r ∈ [1, 20] km). In par-
ticular, Fig. 5 shows the average query response time
for the four index-enabled methods on the WW dataset.
The plots on the left show performance at 30M tweets;
those on the right, at 60M. Meanwhile, with the CN
dataset, the plots on the left of Fig. 6 show performance
at 20M weibos; those on the right, at 30.39M (or the
whole CN dataset). The performance of Baselinescan is
not shown, because it requires approximately 140 sec-
onds on WW dataset and 100 seconds on CN dataset, ir-
respective of query parameters (k, radius); i.e., it is out-
performed by 3–6 orders of magnitude and hinders the
readability of the plots. Nonetheless, this indicates that
specialized methods are necessary for real-time kRFT
queries.

Overall, we can see from the plots that the quad-tree
methods (Full-TwTL and TopK-TwTL) perform fastest.
At the most extreme query parameters, the performance
gap between the exact TwTL applied to the quad-tree
versus the R-tree reaches 18.3× (k = 100) and 9.9×
(r = 20). For the approximate/Top-500 TwTL, the gaps
grow to 18.6× and 6.5×, respectively. At the least ex-
treme (most probable) query parameters, these meth-
ods retain performance gaps of 11.6×, 13.6×, 15.3×,
and 59.7×, respectively. In other words, the quad-tree
performs substantially better at probable query values;
while the gap between the quad-tree and R-tree perfor-
mance shrinks as k and r increase, it is still over 6-fold
when the query region encompasses roughly 1200 km2.
Thus, we conclude that, in terms of raw query perfor-
mance, the TwTL is more suitable to the quad-tree and
both trees are far preferable to not using a TwTL.

11

Table 2: Statistics of datasets.

Dataset WW CN

#Social posts 125M 30,390,646

Temporal domain from late Dec-2015 to early Jan-2016 from week 47 to week 52, 2012
Avg. message length 11 21

|V| 7,548,262 4,165,647

Full-TwTL TopK-TwTL RTiFull RTiTopK

10 20 40 60 80 100
0

2

4

6

8

R
es

po
ns

e
tim

e
(s

)

n = 30M

10 20 40 60 80 100
0

2

4

6

8

n = 60M

(a) Output Size, k.

5 10 15 20
0

2

4

6

8

R
es

po
ns

e
tim

e
(s

)

n = 30M

5 10 15 20
0

2

4

6

8

n = 60M

(b) Radius (km).

Figure 5: Query response time relative to output size k (a), radius (b), and number of posts (left vs. right) for indexed methods on
WW dataset. The baseline scan (not shown) is 4–5 orders of magnitude slower.

Considering the Top-500 TwTL approximation in
terms of Fig. 5, we see that the R-tree query response
time is accelerated by 1.1–1.4× relative to the Full-
TwTL, depending on the values of k and r. In con-
trast, the quad-tree query response time improves by
1.7–1.9× as k varies and by 1.2–5.3× as r varies. In
terms of Fig. 6, the R-tree query response time is accel-
erated by 3.4–6.5× relative to the Full-TwTL, depend-
ing on the values of k and r. Meanwhile, the quad-tree
query response time improves by 1–1.4× as k varies and
by 1–1.3× as r varies; that is to say, the quad-tree re-
sponse time benefits more from the approximation on

the real-world dataset, but it is also more sensitive to the
query radius. Unsurprisingly, the approximate methods
are always faster than their exact analogues.

The overall distribution of query response time (in
milliseconds) of the four index-based methods is illus-
trated using box plots in Fig. 7 (note logarithmic scale
on Y axis). The query response time varies less for
TopK-TwTL than the others, and most of its response
times is less than 1 second. Furthermore, there is sub-
stantially more variation in query response time for the
R-tree-based versions than that of the quad-trees. The
reason for this will be further discussed in the next sub-

12

Full-TwTL TopK-TwTL RTiFull RTiTopK

10 20 40 60 80 100
0

2

4

6

8
R

es
po

ns
e

tim
e

(s
)

n = 20M

10 20 40 60 80 100
0

2

4

6

8
n = 30.39M(CN)

(a) Output Size, k.

5 10 15 20
0

2

4

6

R
es

po
ns

e
tim

e
(s

)

n = 20M

5 10 15 20
0

2

4

6
n = 30.39M(CN)

(b) Radius (km).

Figure 6: Query response time relative to output size k (a), radius (b), and number of posts (left vs. right) for indexed methods on
CN dataset. The baseline scan (not shown) is 3–6 orders of magnitude slower.

100

102

104

106

R
un

tim
e

(m
s.

)

RTiFull RTiTopK Full-TwTL TopK-TwTL

Figure 7: Box plot of query time on 60M dataset, r = 10km,
k = 100.

section.
Finally, the dataset size, as measured by the num-

ber of posts (left plots versus right plots in Figs. 5–6),

has a linearly proportionate effect on the response time
of the Full-TwTL method. At smaller values of k and
r, the approximate Top500-TwTL dampens the effect
of a growing dataset: the two-fold increase in tweets
produces only a 1.25–1.35× increase in response time.
However, for the extreme values of k and r, the effect
of n on the approximate method is similar to that on the
exact method. Thus, we conclude that, in terms of raw
query performance, the approximate Top500-TwTL can
provide enhanced scalability, but mostly on the range of
values that one expects to see in practice.

5.2.2. Node and TwTL accesses
Fig. 8 illuminates the trends in Section 5.2.1: the

n = 30M scalability plot on WW dataset and the n =

20M scalability plot on CN dataset with respect to ra-
dius (which showed greater effect than k) are repeated,
but this time measuring the number of (internal and
leaf) nodes accessed (left) and the number of TwTL’s
aggregated (right). Recall from Algorithm 4 that the
number of lists aggregated correlates with the number
of leaf nodes, but it is possible to retrieve TwTL’s at

13

Full-TwTL RTiFull

5 10 15 20
0

2

4

Radius (km)

N
od

es
(×

10
0)

n = 30M

5 10 15 20
0
1
2
3
4

Radius (km)

L
is

ts
(×

10
0)

n = 30M

(a) On the WW.

5 10 15 20
0

1

2

Radius (km)

N
od

es
(×

10
0)

n = 20M

5 10 15 20
0

0.5

1

Radius (km)

L
is

ts
(×

10
0)

n = 20M

(b) On the CN.

Figure 8: Number of nodes traversed (left) and number of lists aggregated (right) relative to radius on the WW and CN datasets.

internal nodes. Broadly, we observe the same trends,
but the number of lists mirrors the response time closer
than node accesses do. The R-tree based index, in con-
trast to the quad-tree, is not a disjoint partitioning of
the data space; thus, the query region may cover (in-
tersect) many (leaf) nodes, which in turn requires pro-
cessing more lists. We see similar slopes with respect
to nodes accessed by each method on the WW dataset;
thus, the higher cost of the R-tree is attributable to ac-
cessing more leaf nodes. With the CN dataset, the in-
dexed R-tree is more balance and shorter in terms of
tree-height than that of the quad-tree index since this
dataset is more evenly distributed and does not contain
hotpots as with the WW dataset, which result in the
traversed nodes of R-tree index is less than that of the
quad-tree.

The disjoint partitioning is what enables the quad-tree
to leverage TwTLs in the internal nodes to resolve mul-
tiple ranges of posts in the query region that can be eas-
ily retrieved based on the Z-curve. With the R-tree, the
same query region may include many overlapping leaf
nodes, which in turn requires aggregation from a large
number of term lists (TwTLs).

5.2.3. Query accuracy
Fig. 9 completes the query-time trade-off of using (ei-

ther) approximate TopK-TwTL implementation by eval-
uating query accuracy. It plots accuracy as the frac-
tion of correct top-k terms returned by the approximate
TopK-TwTL approach compared to the naive approach
Baselinescan (or, equivalently, either Full-TwTL imple-
mentation). We vary both the decay factor α and the
approximation cut-off K as indicated in the legend, and
vary the output size k along the x-axis. Note that the
red-square trend line corresponds to Figs. 5–6 (top-left).

Overall, we see that Top500-TwTL achieves 90–95 %
accuracy on the WW dataset and 99.9 % on the CN

TopK=200 α=0.90 TopK=500 α=0.90
TopK=200 α=0.99 TopK=500 α=0.99

20 40 60 80 100
85

90

95

100

Output Size, k

A
cc

ur
ac

y
(%

)

(a) On WW, n = 30M.

20 40 60 80 100
85

90

95

100

Output Size, k

(b) On CN, n = 20M.

Figure 9: Query accuracy for TopK-TwTL relative to k and α.

dataset, despite only considering up to 500 terms per
list. The result shows that the accuracy on CN is a little
bit higher than on CN. This is explained as follows. The
datasets used in this evaluation are the 30M subset from
WW and 20M subset from CN. The WW subset con-
tains 30M posts that are distributed all over the world,
while the CN subset contains 20M posts over China
only. The difference in the accuracy of the method in
WW and CN datasets may be from the distribution den-
sity and the length of tweets. With the CN dataset, more
tweets are concentrated to the same region than in WW,
this could lead to largely differentiate the set of frequent
terms than in a less density region as in WW dataset. A
factor that also impacts to the accuracy is the vocabu-
lary. One of the reasons that the accuracy in CN dataset
is higher than in WW dataset, is because the vocabulary
size of CN dataset is much smaller than the vocabulary
size of WW dataset (see Table 2). Moreover, the results
are very stable, despite each x-axis value corresponding
to a separate, randomly generated query set. Broadly,

14

α has a larger effect on accuracy than does increasing
K from 200 to 500; this is unsurprising, as a value of α
very close to 1.0 renders temporality decreasingly rele-
vant; so, the contribution of the top terms has less sub-
stantial effect on the final score than for lower values of
α.

We observe that the accuracy on the WW dataset in
Fig.9a is increasing with the increase of output size, K.
The reason for this is as follows. In this evaluation, we
evaluate the accuracy of the method using the approx-
imate implementation, where we consider the recency
and terms with different weights. Here we give more
important/weight to the recent terms than the out-date
ones. By doing so, it will make slight fluctuations in
the results that some recent terms may have higher rank
than the old terms. Therefore, frequent terms will inter-
change their rank slightly under our weighting schema,
but overall in a very larger list of frequent terms (high
value of K), the set of the most frequent terms is the
same. This explains for the reason why with the higher
value of K, it could make a higher accuracy as in the
figure.

We also note that α = 1.0 is equivalent to straight-
forward frequency counting (e.g., [1]) within the tem-
poral window in which our dataset was collected. Fig. 9
therefore suggests that a time-decay model is prerequi-
site to effective TopK-TwTL approximation.

Full-TwTL TopK-TwTL

1530 60 125
0
2
4
6
8

10

Number of Posts (M)

In
de

x
Si

ze
(G

B
)

(a) On WW.

10 20 30.39
0

5

10

Number of Posts (M)

(b) On CN.

Figure 10: Index size relative to the number of posts.

5.3. Index Construction and Maintenance

In these experiments, we evaluate several notions of
“cost” for the tree data structures. As such, we differen-
tiate between QTi* and QTb* as incremental and batch
quad-tree construction, respectively. The R-tree only
has an incremental (RTi*) method, as batch construc-
tion of TwTL-enabled R-trees is quite inefficient: node
splits that incur rebalance operations require rebuilding
the lists.

5.3.1. Index size
Fig. 10 reports the size of the spatial index structure

(quad-tree) and its time-weighted term lists relative to
the number of tweets/weibos. As expected, the TopK-
TwTL approximation requires significantly less mem-
ory than the exact Full-TwTL, ranging from 5.3–6.1×.
Moreover, the index size grows linearly with the num-
ber of posts. In particular, considering that the raw sizes
of the 15M, 30M, 60M, and 125M input WW datasets
are 1.32, 2.64, 5.29, and 10.9 GB, respectively, the Full-
TwTL requires similar space to the original data and the
Top500-TwTL represents a 5–6-fold compression. With
the CN dataset, the raw sizes of the input 10M, 20M,
and 30.39M datasets are 1.3, 2.63, and 4.03 GB, respec-
tively, the Full-TwTL also requires more space to the
original data, and the Top500-TwTL represents a 2–5-
fold compression on this dataset.

5.3.2. Construction time
Figs. 11–13 illustrate the time required (in thousands

of seconds) to construct the complete spatial indexes
with TwTL annotations (Algorithm 1), relative to node
capacity, number of maintained counters (terms) K, and
number of posts.

Node capacity. When building the index, if the number
of posts stored in a leaf node reaches MaxCapacity, this
node needs to be split and new child nodes are created.
As splits are especially expensive, we first evaluate con-
struction time as MaxCapacity varies from 1000–3000
posts (Fig. 11). Note that the MaxCapacity of RTi refers
to the capacity of a leaf node, while the capacity of its
internal nodes was set to 100 to reduce its restructuring
cost.

We observe that increases in MaxCapacity slow down
the RTi* methods, but the quad-tree techniques are un-
affected by this input parameter: this reflects the much
higher cost of re-organising leaf node data when an R-
tree node is split. We can also observe already an (ex-
pected) general trend: the cost of constructing an in-
dex over 30M tweets (right) is twice that of 15M tweets
(left) for all methods. Although the TopK* approxi-
mation methods are faster in terms of query response
time, they need more time to build its indices than the
Full-TwTL methods. This is because of maintaining a
TopK-TwTL in each node (Algorithm 2) is more expen-
sive than updating a Full-TwTL, which simply merges
all the weighted-frequencies for every term.

TopK list size. Fig. 12 shows construction time rela-
tive to the approximation threshold (the number of cur-
rently monitored terms) for the approximate methods.
Note that the middle data point (K = 500) corresponds

15

QTiFull QTiTopK QTbFull QTbTopK RTiFull RTiTopK

1000 2000 3000
0

5

10

Node capacity

Ti
m

e
(m

)

n = 15M

1000 2000 3000
0

10

20

Node capacity

n = 30M

(a) On WW.

1000 2000 3000
0
2
4
6
8

Node capacity

Ti
m

e
(k

s)

n = 10M

1000 2000 3000

5
10
15
20

Node capacity

n = 20M

(b) On CN.

Figure 11: Construction time relative to node capacity (m: minute, M: million).

QTiTopK QTbTopK RTiTopK

200 500 1000
0

5

10

TopK list size

Ti
m

e
(m

)

n = 15M

200 500 1000

5

10

15

20

TopK list size

n = 30M

(a) On WW.

200 500 1000
0

10

20

30

TopK list size

Ti
m

e
(k

s)

n = 10M

(b) On CN.

Figure 12: Construction time relative to TopK list size (m: minute, M: million).

QTiFull QTiTopK QTbFull
QTbTopK RTiFull RTiTopK

15 30 60 125
0

20
40
60
80

100

Number of posts (M)

C
on

st
ru

ct
io

n
tim

e
(m

)

(a) On WW.

10 20 30.39
0

10

20

30

Number of posts (M)

(b) On CN.

Figure 13: Construction time relative to number of posts (m:
minute, M: million).

exactly to the leftmost data point (capacity = 1000)
in Fig. 11, and the result on CN 20M dataset is not

QTiFull QTiTopK QTbFull
QTbTopK RTiFull RTiTopK

15 30 60 125
0

10

20

Number of posts (M)

R
at

e
(p

os
ts

/m
s)

(a) On WW.

10 20 30.39
0
2
4
6
8

10

Number of posts (M)

(b) On CN.

Figure 14: Digestion rate relative to number of posts.

showed because RTiTopK requires a large amount of
time to finish when K = 1000. Here, the batch method
(QTbTopK) scales linearly with K, whereas the incre-

16

QTiFull QTiTopK QTbFull QTbTopK RTiFull RTiTopK

5 10 15 20
0

2

4

6

Batch Number

In
se

rt
io

n
Ti

m
e

(s
)

(a) On WW.

5 10 15 20
0

5

10

Batch Number

In
se

rt
io

n
Ti

m
e

(s
)

(b) On CN.

Figure 15: Insert time relative to batch number.

QTbFull QTbTopK

6000 9000 12000

2

4

Batch size

Ti
m

e
(m

)

n = 15M

6000 9000 12000

2

4

Batch size

n = 30M

(a) On WW.

6000 9000 12000

2

4

Batch size

Ti
m

e
(k

s)

n = 10M

6000 9000 12000

2

4

6

Batch size

n = 20M

(b) On CN.

Figure 16: Construction time relative to batch size (m: minute, M: million).

mental methods (QTiTopK and RTiTopK) are slower
overall but scale sub-linearly. QTbTopK scales better,
especially when the average text message is long (e.g.,
with the CN dataset), because of the buffering step when
building its index, a map of arriving terms (B.M) was
pre-summarized (lines 2–5, Algorithm 1), while the in-
cremental methods insert post individually.

Post count. Fig. 13 shows construction time relative to
the number of posts, which is an extension of the com-
parison already shown between the left and right plots
of Figs. 11 and 12. Mostly, construction time matches
the linear scaling of the index sizes observed in Fig. 10.
The exception is RTiTopK, the degradation of which ac-
celerates with n. We attribute this to the more expensive
search cost of RTi*: an incremental insert first finds the
correct insertion node before updating the logarithmic
top-K priority queue. As n increases, so does this search
cost, impacting the incremental construction time of the

data structure. Moreover, as n increases, the number of
(possibly upward propagating) node splits (and there-
fore TwTL reconstructions) also increases, as there are
more nodes in the tree.

5.3.3. Index maintenance
The final experiments analyse the cost of batch main-

taining the index in the presence of a stream of inserts.

Digestion rate. Fig. 14 shows the average number of
posts (tweets/weibos) indexed per second, effectively
the reciprocal of Fig. 13. QTb* obtains a stable diges-
tion rate at n ≥ 60M on WW dataset, and reaches a
digestion rate 4.25× and 7.74× higher than QTi* and
RTi*, respectively. On CN dataset, QTb* obtains a sta-
ble digestion rate at n ≥ 20M, and reaches a digestion
rate 1.82× and 4.62× higher than QTi* and RTi*, re-
spectively.

17

Batch processing. Fig. 15 reports insertion time and
its trend for inserting each consecutive batch of 12 000
tweets/weibos. The performance of RTi* is highly un-
stable, as the expensive node splits and TwTL recompu-
tations occur randomly. By contrast, all four QT* meth-
ods insert each batch faster than either RTi* method
and perform more stably. Fig. 16 shows the effect of
batch size on QTb* construction: both methods improve
slightly for batches of 12 000 tweets/weibos compared
to 6 000 tweets/weibos.

As a summary, the extensive experiments and em-
pirical analyses presented in this section have shown
that the massive improvements in indexing and response
times achieved by our methods make it possible to an-
swer the real-time query kRFT and cope with the whole
post stream.

6. Conclusion

In this work, we have introduced a new query type
named kRFT, which returns the top-k locally popular
terms in social stream data consisting of a huge amount
of posts with high arrival rate. We propose both ex-
act and approximate methods for answering this query
efficiently. Our methods employ a quad-tree structure
that admits batch insertion of posts to handle streaming
workloads. Furthermore, a summary of time-weighted
frequencies, TwTL, is maintained in the tree nodes and
updated efficiently to support efficient query process-
ing. The result set is computed by aggregating the sum-
maries which belong to the query region. The exact
method Full-TwTL maintains time-weighted counts of
all terms, while the approximate method TopK-TwTL
only maintains a relaxed TopK most time-weighted fre-
quent terms. Extensive experiments are conducted to
evaluate the proposed methods both on real-world and
semi-synthetic datasets, and the results show that our
framework is capable of working with real-life social
post streams. In particular, the time cost for building
index of the QTbTopK approach increases slowly when
the dataset becomes larger. Further, it is able to return
results rapidly with high accuracy.

References

[1] P. Ahmed, M. Hasan, A. Kashyap, V. Hristidis, V. J. Tsotras, Ef-
ficient computation of top-k frequent terms over spatio-temporal
ranges, in: Proc. of the 2017 ACM SIGMOD, 2017, pp. 1227–
1241.

[2] A. Skovsgaard, D. Sidlauskas, C. S. Jensen, Scalable top-k
spatio-temporal term querying, in: the 30th IEEE ICDE, 2014,
pp. 148–159.

[3] A. Magdy, A. M. Aly, M. F. Mokbel, S. Elnikety, Y. He, S. Nath,
W. G. Aref, GeoTrend: spatial trending queries on real-time mi-
croblogs, in: Proc. of the 24th ACM SIGSPATIAL, 2016, pp.
7:1–7:10.

[4] Y. Xu, L. Chen, B. Yao, S. Shang, S. Zhu, K. Zheng, F. Li,
Location-based top-k term querying over sliding window, in:
Proc. of the 18th WISE, 2017, pp. 299–314.

[5] L. Chen, S. Shang, B. Yao, K. Zheng, Spatio-temporal top-k
term search over sliding window, World Wide Web 22 (5) (2019)
1953–1970.

[6] L. Guo, D. Zhang, G. Li, K.-L. Tan, Z. Bao, Location-aware
pub/sub system: When continuous moving queries meet dy-
namic event streams, in: Proc. of the ACM SIGMOD, 2015,
pp. 843–857.

[7] L. Chen, S. Shang, Z. Zhang, X. Cao, C. S. Jensen, P. Kalnis,
Location-aware top-k term publish/subscribe, in: Proc. of the
34th IEEE ICDE, 2018, pp. 749–760.

[8] A. Simitsis, A. Baid, Y. Sismanis, B. Reinwald, Multidimen-
sional content eXploration, Proc. of the VLDB Endowment 1 (1)
(2008) 660–671.

[9] R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms
for middleware, in: Proc. of the 20th ACM SIGMOD-SIGACT-
SIGART, 2001, pp. 102–113.

[10] R. Akbarinia, E. Pacitti, P. Valduriez, Best position algorithms
for top-k queries, in: Proc. of the 33rd VLDB, 2007, pp. 495–
506.

[11] L. Chen, G. Cong, C. S. Jensen, D. Wu, Spatial keyword query
processing: An experimental evaluation, Proc. of the VLDB En-
dowment 6 (3) (2013) 217–228.

[12] A. Almaslukh, A. Magdy, Evaluating spatial-keyword queries
on streaming data, in: Proc. of the 26th ACM SIGSPATIAL,
2018, pp. 209–218.

[13] M. Hadjieleftheriou, E. Hoel, V. J. Tsotras, Sail: A spatial index
library for efficient application integration, GeoInformatica 9 (4)
(2005) 367–389.

[14] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, K. Nørvåg, Effi-
cient processing of top-k spatial keyword queries, in: Proc. of
the 12th SSTD, 2011, pp. 205–222.

[15] Z. Li, K. C. Lee, B. Zheng, W.-C. Lee, D. Lee, X. Wang, IR-
Tree: an efficient index for geographic document search, IEEE
Transactions on Knowledge and Data Engineering 23 (4) (2011)
585–599.

[16] H.-J. Hong, G.-M. Chiu, W.-Y. Tsai, A single quadtree-based
algorithm for top-k spatial keyword query, Pervasive and Mobile
Computing 42 (2017) 93–107.

[17] S. Vaid, C. B. Jones, H. Joho, M. Sanderson, Spatio-textual in-
dexing for geographical search on the web, in: Proc. of the 9th
SSTD, 2005, pp. 218–235.

[18] A. Khodaei, C. Shahabi, C. Li, Hybrid indexing and seamless
ranking of spatial and textual features of web documents, in:
Proc. of the 21st DEXA, 2010, pp. 50–466.

[19] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, T. Suel,
Text vs. space: Efficient geo-search query processing, in: Proc.
of the 20th ACM CIKM, 2011, pp. 423–432.

[20] L. Chen, Y. Cui, G. Cong, X. Cao, Sops: A system for efficient
processing of spatial-keyword publish/subscribe, Proc. VLDB
Endow. 7 (13) (2014) 1601–1604.

[21] X. Wang, Y. Zhang, W. Zhang, X. Lin, W. Wang, AP-Tree: Ef-
ficiently support location-aware publish/subscribe, The VLDB
Journal 24 (6) (2015) 823–848.

[22] A. Shraer, M. Gurevich, M. Fontoura, V. Josifovski, Top-k
publish-subscribe for social annotation of news, Proc. VLDB
Endow. 6 (6) (2013) 385–396.

[23] L. Chen, G. Cong, X. Cao, K. Tan, Temporal spatial-keyword
top-k publish/subscribe, in: Proc. of the 31st IEEE ICDE, 2015,
pp. 255–266.

18

[24] A. Metwally, D. Agrawal, A. E. Abbadi, An integrated effi-
cient solution for computing frequent and top-k elements in
data streams, ACM Transactions on Database Systems (TODS)
31 (3) (2006) 1095–1133.

[25] M. Dallachiesa, T. Palpanas, Identifying streaming frequent
items in ad hoc time windows, Data & Knowledge Engineering
87 (2013) 66–90.

[26] G. Cormode, V. Shkapenyuk, D. Srivastava, B. Xu, Forward de-
cay: A practical time decay model for streaming systems, in:
25th IEEE ICDE, 2009, pp. 138–149.

[27] Y. Lim, J. Choi, U. Kang, Fast, accurate, and space-efficient
tracking of time-weighted frequent items from data streams, in:
Proc. of the 23rd ACM CIKM, 2014, pp. 1109–1118.

[28] S. Wu, H. Lin, L. H. U, Y. Gao, D. Lu, Novel structures for
counting frequent items in time decayed streams, World Wide
Web 20 (5) (2017) 1111–1133.

[29] G. S. Manku, R. Motwani, Approximate frequency counts over
data streams, in: Proc. of the 28th VLDB, 2002, pp. 346–357.

[30] G. Cormode, S. Muthukrishnan, An improved data stream sum-
mary: the count-min sketch and its applications, Journal of Al-
gorithms 55 (1) (2005) 58–75.

[31] N. Homem, J. P. Carvalho, Finding top-k elements in data
streams, Information Sciences 180 (24) (2010) 4958–4974.

[32] Y. Lim, U. Kang, Time-weighted counting for recently frequent
pattern mining in data streams, Knowledge and Information
Systems 53 (2) (2017) 391–422.

[33] A. Guttman, R-trees: A dynamic index structure for spatial
searching, in: Proc. of the ACM SIGMOD, 1984, pp. 47–57.

[34] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The r*-
tree: An efficient and robust access method for points and rect-
angles, in: Proc. of the ACM SIGMOD, 1990, pp. 322–331.

[35] N. Beckmann, B. Seeger, A revised r*-tree in comparison with
related index structures, in: Proc. of the ACM SIGMOD, 2009,
pp. 799–812.

[36] T. Lee, B. Moon, S. Lee, Bulk insertion for r-trees by seeded
clustering, Data & Knowledge Engineering 59 (1) (2006) 86–
106.

[37] D. Šidlauskas, S. Šaltenis, C. W. Christiansen, J. M. Johansen,
D. Šaulys, Trees or grids?: Indexing moving objects in main
memory, in: Proc. of the 17th ACM SIGSPATIAL, 2009, pp.
236–245.

[38] I. Gargantini, An effective way to represent quadtrees, Commu-
nications of the ACM 25 (12) (1982) 905–910.

[39] G. R. Hjaltason, H. Samet, Speeding up construction of pmr
quadtree-based spatial indexes, Proc. of the VLDB Endowment
11 (2) (2002) 109–137.

[40] G. M. Morton, A computer oriented geodetic data base and a
new technique in file sequencing, International Business Ma-
chines, 1966.

[41] P. Van Oosterom, T. Vijlbrief, The spatial location code, in: The
7th International Symposium on Spatial Data Handling, 1996,
pp. 1–17.

19

