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Abstract

In many application areas, the access pattern is navigational and a large fraction of the accesses are perfect match accesses/queries on one
or more words in text strings in the objects. One example of such an application area is XML data stored in object database systems. Such
systems will frequently store large amounts of data, and in order to provide the necessary computing power and data bandwidth, a parallel
system based on a shared-nothing architecture can be necessary. In this paper, we describe how the signature cache approach can significantly
reduce the average object access cost in parallel object database systems. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In order to provide the desired computing power and data
bandwidth, parallel systems are necessary in many cases.
This will be the case in many of the emerging application
areas for object database systems, where large amounts of
data will be stored. A typical example of such an application
area is XML/Web storage.

The shared-everything architecture which symmetric
multiprocessors are based on has a very limited scalability,
S0 our primary interest is in object database systems based
on shared-nothing multicomputers. With the advent of
high-performance computers, and high-speed networks,
we expect multicomputers based on commodity work-
stations/servers and networks to be cost effective.

In many of the emerging application areas for database
systems, data is viewed as a collection of objects, and the
access pattern is navigational. A typical characteristic of the
new applications is that a large fraction of the accesses are
perfect match accesses (PMA) on one or more words in text
strings in the objects/tuples in these databases (these
accesses can also be part of other operations, for example
join). For such accesses, signature files can be used to
reduce the query cost. The main drawback of traditional
signature files is that signature file maintenance can be rela-
tively costly. If one of the attributes contributing to the
signature in an object (or a tuple) is modified, the signature
file has to be updated as well. To be beneficial, a high read to
write ratio is necessary. This is also the case for dynamic
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signature files. In addition, high selectivity is needed at
query time to make it beneficial to read the signature file
in addition to the objects themselves. A better alternative in
the case of dynamic data is to use the signature cache
(SigCache) approach [11]. Instead of storing the signatures
in separate signature files, the signatures are stored together
with the objects, and the most frequently accessed signa-
tures are in addition stored in a SigCache. A signature is in
general much smaller than an object, so that the number of
signatures we can keep in the SigCache is much higher than
the number of objects we can store in the main memory
buffer. When an object is updated and the signature is stored
on the same page, the extra insert cost is only marginal. The
signatures can also be used to reduce the CPU cost when the
objects are already in memory.

In this paper, we describe in detail the use and main-
tenance of the SigCache in a parallel ODB (object database
system) and analyze its performance by the use of cost
functions. As for all access methods, the gain depends on
access patterns. We show that the gain from using the
SigCache approach is significant for most access patterns.
The discussion here is done in the context of parallel ODBs,
but the approach is also applicable for parallel relational and
object-relational database systems experiencing a naviga-
tional access pattern. The techniques presented here should
also be applicable in a distributed ODB, where the potential
gain is even higher because of the higher communication
cost.

The organization of the rest of the paper is as follows. In
Section 2 we give an overview of related work. In Section 3
we describe the parallel ODB used as context for this paper.
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Fig. 1. Architecture of a parallel or distributed database system.

In Section 4 we give a brief introduction to signatures, and
describe the SigCache approach. In Section 5 we develop a
cost model, which we use in Section 6 to study the perform-
ance when a SigCache is used. Finally, in Section 7, we
conclude the paper and outline issues for further research.

2. Related work

Several studies have been performed on using signatures
as a text access method, e.g. Refs. [1,3,4,9]. Less has been
done in using signatures in ordinary query processing, but
signature file techniques have been shown to be beneficial in
queries on set-valued objects [6].

How to employ signatures in queries in ODBs is
described in Refs. [8,10], where the signatures are assumed
to be stored in traditional signature files. Another approach,
similar to field replication [12], is to store the signature of a
referred object inside an object, together with the pointer to
the referred object, in order to make it possible to filter
objects during forward traversal queries [15].

A more detailed analysis of the performance and gain
from using the SigCache approach is given in Ref. [11],
where the focus is the disk bottleneck in a non-parallel
ODB.

3. System model

In this paper we assume a page server ODB executing on
a number of nodes and communicating through a message
based communication network as shown in Fig. 1. An
instance of the database system runs on each node. On
each node, a number of object pages are stored.

In general, a client is connected to one of the nodes.
Simple queries can be run on the same node as the client,
more complex queries are parallelized and run in parallel on
all nodes. When an object is to be accessed, the page where
the object is stored has to be retrieved. If the actual object
page is not resident in page buffer, the page has to be
retrieved from the node where it is stored (possibly the
same node as the transaction is running).

When objects are created or updated, they are stored on

one of the nodes according to a declustering strategy. A
possible strategy is to store related pages (locality sets) on
the same node, another is to distribute new created pages
round robin on the nodes, in order to reduce the probability
of access skew. It has been shown by Venkataraman et al.
[14] that the last strategy is most appropriate in a system
with multiple large clients. In order to reduce the disk access
costs pages can be buffered on servers with idle memory
even if they are not stored in the buffer at their home node.

4. Signatures and the SigCache approach

In order to make this paper self contained, we give in this
section an introduction to signatures and the SigCache
approach. For a more detailed discussion of these issues
we refer to Ref. [11].

4.1. Signatures

In this section we describe how to generate signatures,
how to use signatures to reduce the cost of PMA, and signa-
ture storage alternatives.

4.1.1. Signature generation

A signature can be generated by applying a hash function
on some or all of the attributes of the object. By applying
this hash function, we get a signature of F bits. If we denote
the attributes of an object O; as A, A,,...,A,, the signature of
the object is s; = S,(A;,...A;), where S, is a hash value
generating function, and A,,...,A; are some or all of the
attributes of the object (not necessarily including all of
A Ap).

It is possible to generate the signature from the hash value
of the concatenation of one or more of the attributes.
However, such signatures can only be used for queries on
the same set of attributes that were used to generate the
signature. For this purpose, using an index will in many
cases have a lower cost. In order to be able to support
several query types, that do perfect match on different sets
of attributes, a technique called superimposed coding can be
used. In this case, a separate attribute signature is generated
for each attribute. The object signature is generated by
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performing a bitwise OR on each attribute signature. For
example, for an object with three attributes the signature
is s; = Sp(Ap) OR S, (A1) OR S;,(A,). This results in a signa-
ture that is very flexible in use. It can support several types
of queries with different attributes.

It is not necessary to use all attributes when creating the
superimposed signature. If we know that only D of the
attributes will be frequently used in PMAs, we can generate
the signature from these attributes only. In the case of string
attributes, for example in an XML object, we will generate a
separate signature from each distinct word in the string
attributes and superimpose these word signatures. D will
in this case be the number of distinct words in the object.

4.1.2. Using signatures

A typical example of the use of signatures is a query to
find all objects in a collection of objects where the attributes
match a certain number of values, i.e. the query predicate is
0 = (Aj = vj,...,Ax = v). This can be done by calculating
the query signature s, of the query: s; = Sy(A; = vj, ..., Ay =
vi) (or sq = Sp(v;) OR Sp(v;) OR...OR S;(vy) if superim-
posed coding is used). The query signature s, is then
compared to all the signatures s; in the signature file to
find possible matching objects. A possible matching object,
a drop, is an object that satisfies the condition that all bit
positions set to 1 in the query signature also are set to 1 in
the object’s signature. The drops form a set of candidate
objects. An object can have a matching signature even if
it does not match the values searched for so all candidate
objects have to be retrieved and matched against the value
set that is searched for. The candidate objects that do not
match are called false drops.

4.1.3. Traditional signature files

Traditionally, the signatures have been stored in one or
more signature files separate from the objects/tuples. The
files contain s; for all objects O; in the relevant set. The sizes
of these files are in general much smaller than the size of the
relation/set of objects that the signatures are generated from
and a scan of the signature files is much cheaper than a scan
of the whole relation/set of objects. Two well-know storage
structures for signatures are sequential signature files (SSF)
and bit-sliced signature files (BSSF).

In the simplest signature file organization, SSF, the signa-
tures are stored sequentially in a file. A separate pointer file
is used to provide the mapping between signatures and
objects. In an ODB, the pointer file will typically be a file
with OIDs, one for each signature. During each search for
perfect match, the whole signature file has to be read.
Updates can be performed by updating only one entry in
the file.

With BSSF, each bit of the signature is stored in a separ-
ate file. With a signature size F, the signatures are distrib-
uted over F files instead of one file as in the SSF approach.
This is especially useful if we have large signatures. In this
case, we only have to search the files corresponding to the

bit fields where the query signature has a ‘1’. This can
reduce the search time considerably. However, each update
implies updating up to F files, which is very expensive. So,
even if retrieval cost has been shown to be much smaller for
BSSF the update cost is much higher 100—1000 times
higher is not uncommon [6]. Thus, BSSF based approaches
are most appropriate for relatively static data.

Several improvements of the BSSF have been proposed,
most of them imply some vertical or horizontal decomposi-
tion [5,7]. Variants that use signature compression and
multilevel signatures also exist.

To better support insertions, deletions, and updates
several dynamic signature file methods have been proposed.
These are multiway tree variants and hash file variants.

Using traditional signature files in a parallel or distributed
object database system is not trivial because signature file
pages and object pages will be differently clustered because
the number of objects on an object page is different from the
number of signatures in a signature file page.

4.2. The SigCache approach

An alternative to store the signatures in separate signature
files is to store them together with the objects on the object
pages and in addition store the most frequently accessed
signatures in a SigCache. This is shown in Fig. 2. The
SigCache is a lookup table where replacement of signatures
is done according to an LRU policy. In this paper we assume
that a clock algorithm with one access bit for each signature
is used for this purpose.

A signature is stored on the same page as its object. This
implies that if an object is resident in main memory (i.e. the
page where the object resides is resident in the page buffer),
its signature will also be resident because it is stored in the
same page. However, the opposite is not true: a signature
can be resident in the SigCache even though its object is not
resident in the buffer. When a page is discarded from the
page buffer, signatures of some of the objects on the page
can be resident in the SigCache.

PMA can use the signatures to reduce the number of
objects that have to be retrieved from disk or another
node. Only the candidate objects with matching signatures
need to be retrieved. In order to identify a signature in the
SigCache each signature needs to have a unique identifier.
In an ODB this will be the OID, in a relational- or object-
relational database system this can be a physical tuple
identifier or the concatenation of relation and key.

A signature is in general much smaller than an object, so
the number of signatures we can keep in the SigCache
is much higher than the number of objects we can store in
the main memory buffer. The fact that the effective space
utilization in an object page buffer is low because of bad
clustering on object pages further increase the amount of
relevant signatures relative to relevant objects. The optimal
size of the SigCache depends on access pattern and total
buffer size relative to the total database size. For optimal
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Fig. 2. Storage of object pages and signatures in main memory. Page buffer to the left and signature cache (SigCache) to the right.

performance, the SigCache size can have a size that is adap-
tively changed by using the cost model that is presented
later in this paper. However, even a fixed SigCache size
can give a relatively stable performance for a wide range
of workload parameters [11].

Signatures are not maintained for all objects in the
system, only when it is beneficial. This can for example
be decided on the granularity of an object class or object
container (also called file). Even when signatures exist, they
are only used in a query if it is considered beneficial with
respect to query cost. This is similar to traditional secondary
indexes where an index is created and maintained only if it
is considered beneficial (this is decided by the database
administrator) and the index is only used in a query if it is
considered beneficial (this is decided during query
planning).

4.2.1. The advantages of the SigCache approach
The SigCache approach has many advantages. The most
important are:

e Traditionally, signatures have only been beneficial for

relatively static data (i.e. a low update rate), for example
text documents. Even when dynamic signature files are
used, the update rate must be low if the use of signatures
should improve performance. Dynamic signature files
also have higher space requirements and search cost
compared to SSF and BSSF.
In contrast to using separate signature files the SigCache
approach is also useful in the case of high update rates. A
signature is in general much smaller than the object it is
created from, so that when an object is updated and the
signature is stored on the same page the extra insert cost
is only marginal. If only a moderate amount of main
memory is used for the SigCache the page buffer hit
rate is only marginally reduced.

e Read accesses in a relational database system are

frequently set accesses, which can benefit from tradi-
tional signature files. In contrast, read accesses in
ODBs are mostly navigational. Even in the case of
collection (for example a set) queries, navigation will
often be the result. Unlike a relational database system
where the queried set is a relation on storage, in an ODB,
a collection can be a collection of references to objects
(OIDs) rather than the objects themselves (an object can
in this way belong to more than one collection). This
navigation can make the average signature retrieval
cost high if the signatures are stored in separate files. If
the most frequently accessed signatures are stored in the
SigCache, this cost can significantly be reduced.

e Previously, signatures have mostly been used to reduce
the I/O-costs. However, signatures can also be used to
reduce the CPU costs. Even if an object is resident in
main memory, a signature comparison can be used before
matching the attributes. Especially in the case of many or
large attributes, this can reduce the CPU cost for a PMA.

4.2.2. Query processing using the SigCache

When a PMA is performed on one or more attributes of an
object, the following algorithm is used to determine if an
object O; is a match, and at the same time maintaining the
contents of the SigCache:

1. A lookup is done for the object’s signature s; in the
SigCache. If successful, the access bit of the signature
in the SigCache is set. If this lookup is not successful, the
signature has to be retrieved from the page where the
object is stored. This page may be resident in the page
buffer, but if it is not, the page has to be retrieved from
disk or from its home node. When the page is found, the
signature s; which is stored on the page is inserted into the
SigCache. The access bit for the signature is set when the
signature is inserted.
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2. The signature s; is compared to the query signature s,. If
not all bit positions set to 1 in s, are set to 1 in s;, we know
for sure that the object does not match the query predi-
cate. If all bit positions set to 1 in sy are set to 1 in s; the
object is a possible match and we have to retrieve the
object in order to compare the value of its attributes with
the query predicate. The page where the object is stored
on might already be in the page buffer (because it has
been accessed recently, or has been brought into the
buffer in order to retrieve the signature of one of the
objects on the page), if not, the page has to be retrieved
from disk or from its home node.

A query on a collection of objects is performed in the
same way once for each object. Also note that by employing
signatures as outlined in the algorithm above the CPU cost
can also be reduced because the signatures are compared
before the object is compared with the search predicate.

4.2.3. Object updates and SigCache maintenance

Every time an object is modified, its signature has to be
modified as well. A signature is stored together with its
object and with respect to concurrency control logging
and recovery the signature is treated as a part of the object.
If the signature of the object is resident in the SigCache, the
signature in the SigCache has to be updated as well. This
implies that a SigCache lookup has to be done for each
object update. However, compared to the number of CPU
instructions necessary to provide persistent storage of an
object, this lookup cost is only marginal.

In a parallel ODB, it is possible that the signature of an
object is stored on one or several nodes different from the
node where its object is to be updated. In order to maintain
signature consistency, all the signatures of the objects on a
page that are stored on other nodes have to be invalidated
before the page can be updated. This is similar to pages
cached at remote servers. Those pages also need to be
invalidated before a transaction can be granted a write
lock on one of the pages.

Only signatures that can contribute in read queries are
beneficial to keep in the SigCache so that when a signature
is updated in the SigCache the access bit is not set. Read
accesses are necessary to make a signature stay in the
SigCache.

4.2.4. Signatures and object-orientation

An object is not necessarily just a collection of simple
value attributes as a tuple in a relational database system. An
object can contain methods and references to other objects
and the objects in a queried collection can be objects of
different classes due to the concept of inheritance. For a
more detailed discussion of these issues we refer to Ref.
[11].

4.2.5. Optimal signature size
The signature size is a tradeoff. Using large signatures

reduces the false drop probability but large signatures also
reduces the number of signatures that can be kept in the
SigCache. Too large signatures will also break the assump-
tion that signatures are much smaller than the objects and in
that way increase the signature maintenance cost. The signa-
ture size should be chosen so that it minimizes the average
object retrieval cost for a large range of parameter values.
When deciding the signature size it is also important to
keep in mind that the signature size can not easily be chan-
ged afterwards if it is too small. If this should be done,
reorganizing the database is necessary because there is no
reserved space for larger signatures on the object pages.

5. Analytical model

The goal of our analysis is to study the gain of using the
SigCache approach in a system with Ny nodes and for this
purpose we develop a cost model that models the average
object access cost. The bottleneck in a parallel system is
normally communication and the transported data volume
of the objects can be used as a measure. We denote the cost
of accessing an object in terms of the average number of
pages required for each object access. We do not consider
the additional update cost caused by storing the signatures
because the size of a signature compared to an object is
small (between 3 and 6% in the study of this paper). The
purpose of this paper is to analyze the effect of using signa-
tures in an ODB so we focus on navigational accesses and
restrict this analysis to PMAs and signatures generated by
the use of the superimposed coding technique.

The database system modeled in this paper is a parallel
page server ODB. Each node in the ODB has a total of M
bytes available for buffering. Thus, when we talk about the
memory size M, we only consider the part of main memory
used for buffering. The most recently used object pages are
kept in a page buffer of size My, and the most recently used
signatures are kept in a SigCache of size M.y The main
memory size M is the sum of the size of the page buffer and
the SigCache, M = Myy¢ + Micache-

Note that the goal of the model is to estimate the impact
of using the SigCache in a parallel system and to calculate
the gain. For this purpose, transferred data volume is an
appropriate measure. If the goal was to find the actual cost
the transferred data volume can be weighted with the
communication cost for the actual system.

5.1. Buffer hit rates

It is important to have an accurate buffer hit model.
For this purpose, we use the Bhide, Dan and Dias LRU
buffer model (BDD) [2]. An important feature of the BDD
model, which makes it more powerful than some other
models is that it also can be used with non-uniform access
distributions.

The analysis in the paper assumes ‘warm’ buffers. This
includes the page buffer as well as the SigCache. In most
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Fig. 3. Partitioned data area. Each partition contains a fraction 3; of the data
granules and «; of the accesses are done to each partition.

systems, this will be the case during normal operation. We
consider this the most important case. In systems where this
assumption is not valid, object pages will be in the buffer
and performance will be bad anyway.

A database in the BDD model has a size of N data gran-
ules (e.g. pages) partitioned into p partitions. As shown in
Fig. 3, each partition contains a fraction ; of the data
granules, and «; of the accesses are done to each partition.
The distributions within each of the partitions are assumed
to be uniform and all accesses are assumed to be indepen-
dent. We denote an access pattern (partitioning set) IT =
(g, evs Ap—1, Bos---» Bp,l). For example, for the 80/20
model, IT= (0.8,0.2,0.2,0.8). In this paper, we will study
performance with the 80/20 access pattern, which we denote
2P8020 and a 90/10 access pattern, which we denote
2P9010.

5.1.1. The BDD buffer model

We will briefly explain the main equations in the BDD
model, the derivation and details behind the equations can
be found in Ref. [2].

After n accesses to the database, the number of distinct
data granules (pages, objects, or index entries) from parti-
tion i that have been accessed is:

; 1 a;n
Niistina(n, N, II) = ,BiN(l - (1 - 35N) )
The total number of distinct data granules accessed is:

[) .
Nigtinet (1, N, II) = Z Ncliistinct(n’ N, II)

i=1
When the number of accesses n is such that the number of
distinct data granules accessed is less than the buffer size B
(the number of data granules that fits in the buffer),
>P , Bi(n) = B, the buffer hit probability for partition i is:

1 a;n

The overall buffer hit probability is:
P

P(n,ID) = )" a;Pi(n, I)
i=1

The steady state average buffer hit probability can be
approximated to the buffer hit ratio when the buffer becomes
full, i.e. n is chosen as the largest n that satisfies:

p .
Z N(;istinct(n, N, H) =B
i=1

We denote the average buffer hit probability as:
Pbuf(B,N, H) = P(nv H)

where n is chosen as described earlier.

5.1.2. Page buffer hit rate

The number of disk pages necessary to store a database
with Ny, objects assuming page size Sp and an average
object size of Sy bytes:

Nb'S bi
Nobjpages = [ 05{ . J—|
P

If we store F bits signatures of all objects on the object
pages as well the number of disk pages is:

[Nobj(Sobj +[F/8]) —|
Nobjpages = — ¢«

Sp

With a page buffer size of My, bytes and an overhead
for each item in the buffer of S, bytes we can keep
Nppur = [Mppui/Sp + Sonl of these pages in main memory.
The buffer hit rate in this case is:

Pbufﬁpage = Pbuf(pruf, Nobjpages’ 1))

5.1.3. SigCache hit rate

For each signature in the SigCache, we need to store
object identifying information in order to know which
object it belongs to. It is not necessary to store the whole
OID for each signature, variants of prefix compression or
multilevel access tables can be employed. Assuming Sp
bytes in average are needed to know which object a signa-
ture belongs to, the number of signatures that fits in the
SigCache is:

Mscache J
[F/8] + S, + Sip

The SigCache hit rate is:
Pscache = Pbuf(NscachevNobj7 H)

N, scache — [

5.2. Object access cost

One or more objects are stored on each page. When an
object page is to be retrieved, the probability that this page
resides on the requesting node is 1/Ny. We denote the cost
of retrieving a page from another node as Sp. Thus, the
average cost of reading one page from the database is:

1
Creadpage = (1 - N_N)(l - Pbuf_page)SP

In order to reduce the object access cost, objects are usually
placed on pages in a way that makes it likely that more than
one of the objects on a page that is read will be needed in the
near future. This is called clustering. In our model, we
define the clustering factor C as the fraction of an object
page that is relevant, i.e. if there are N, paee = Nobj/Nobjpages
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Table 1
Default system model parameters

Table 2
Default workload parameters

Parameter Value Parameter Workload I Workload IT
Sp 8 KB Sobj 128 bytes 2048 bytes
Ny 4 and 32 nodes C 0.2 0.8
Son 8 bytes Nopj Ny X 32 mill. Ny X 2 mill.
Sb 4 bytes D 4 attributes 128 attributes
Py 0.001 0.001
Ppyia 0.4 0.8
objects on each page and n of the objects on the page will be I 2P9010 2pP9010
F 32 bits 1024 bits

used before the page is discarded from the buffer C =
1INy page- If Ny page < 1.0, i.e. the average object size is
larger than one page, we define C = 1.0. The average object

access cost is:

nosig 1

readobj = CN

o_page

Creadpage

We model the database read accesses as (1) ordinary object
accesses and (2) perfect match accesses, which can benefit
from signatures. We assume the PMA to be a fraction Ppya
of the read accesses and that P, is the fraction of matched
objects that are actual drops. The false drop probability
when a signature with F bits is generated from D attributes
is denoted Fy = (1/2)", where m = F In 2/D.

The average object access cost employing signatures is:

T eadoj S8 — Cost of non-PMA access
+Cost of PMA access where
signature not in SigCache
+Cost of PMA access where
signature in SigCache

=(1- PPMA)THOSig

readobj
_ nosig
+PPMA(1 Pscache)Treadoj
nosig
+ PPMAPscache (PA Treadobj

(1 = PAF T
This means that of the Ppya accesses that are for perfect
match, we only need to read the object page in the case of
actual or false drops.

6. Performance

In this section, we study how different workloads and
system parameters affect the gain from using signatures.
Based on the cost functions from Section 5, we calculate
the gain from using signatures as:

nosig sig

P readobj readobj
Gain = 100 — s
readobj
When studying parallel database systems, we can choose to

study speedup or scaleup. If the choice is speedup, we keep

the database size constant but increase the processing power
and disk bandwidth by adding more nodes. If scaleup is the
choice, the database size is increased linearly with the
number of nodes. The most important reason for adding
more nodes is to be able to handle larger databases, so in
this paper we concentrate on scaleup. The number of objects
Noy; 1s scaled with the number of nodes so that when the
number of nodes is increased by a factor S the number of
objects is increased with the same amount.

The system model parameters are summarized in Table 1.
For the workload, we consider two main cases:

Workload I: This is the workload of a traditional applica-
tion. The object size is relatively small and the signatures
are generated from a small number of attributes. In such
applications, there will be a mix of access types and only
some of them can benefit from using signatures.

Workload II: This is a possible workload in one of the
emerging application areas, for example XML storage. As
described by DeWitt et al. [13], the space overhead would
be very high if each XML element was stored as a separate
object. Instead, one object is used to store one XML docu-
ment and the XML elements stored as ‘light-weight
objects’ inside one storage object. The result is larger
objects than in workload I, and each object contains a
higher number of attributes. The attributes are frequently
text strings and a large fraction of the queries in such
systems will be for perfect match of one or more words.
In order to be able to use signatures for such queries, the
object signatures are generated by superimposing the indi-
vidual text word signatures. As a result, the value of D will
be large.

The default parameter values for the two workloads are
given in Table 2. Note that with the default parameters, we
keep the total database size constant. The signature sizes
used are F' = 32 for workload I, and F = 1024 for workload
II. The signature sizes are chosen so that they minimize

sig
Treadobj for a large range of parameter values.

6.1. Gain

Fig. 4a shows the gain from using signatures under work-
load I with different access patterns and number of nodes.
We see that using signatures is especially beneficial for
access patterns with a narrow hot spot area. The gain is
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Fig. 4. Gain from using signatures with different access patterns and number of nodes, workload I to the left and workload II to the right. The memory size is

the amount of main memory available for buffering on each node.

highest when all signatures of hot spot objects fit in main
memory, but the main memory size is too small for the
objects themselves to fit. With a larger number of nodes
(Ny = 32 in the figure), this point is not reached on the
memory range used in Fig. 4a.

Fig. 4b shows the gain from using signatures under
workload II. In this case, the gain is high in the order of
200%.

6.2. The effect of Ppya

The value of Ppy, is the fraction of the read accesses that
can benefit from signatures.

Fig. 5 shows the gain with different values of Ppya. As
can be expected, a small value of Ppya results in small or
negative gain. As we increase the value of Ppys, the gain
increases. With large values of Ppya, as we have assumed
for case II we can achieve a very high gain.
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6.3. The effect of P,

The value of P, is the fraction of PMA that are actual
drops (selectivity). The purpose of signatures is to reduce
the number of objects that actually have to be retrieved and
we can only benefit from signatures if this number is suffi-
ciently low.

Fig. 6 shows the gain with different values of P, for
workload I and II and it is interesting to note that signatures
will be beneficial even with a relatively large value of P,.

6.4. Optimal SigCache size

The fraction of memory that should be used for caching
signatures depends on the total memory size, database size
and workload. The SigCache size can either be static (but
tunable) or it can be adaptive (using cost functions to deter-
mine the size). Fig. 7 shows the optimal SigCache size as the
fraction of the total main memory size.
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Fig. 5. Gain from using signatures with different values of Ppys With Ny = 4. Workload I to the left and workload II to the right.
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Fig. 6. Gain from using signatures with different values of P, with Ny = 4. Workload I to the left and workload II to the right.

For workload 1, it is beneficial to use most of the memory gain with larger main memory sizes up to the point where
to cache signatures when the main memory size is small. It the whole database fits on each node (i.e. the database is
is most important to keep the most frequently accessed replicated on each node).
signatures in the SigCache so that when the SigCache is Fig. 8 shows the gain from using signatures with large
large enough to keep them increasing the SigCache size main memory sizes. We see that using signatures is espe-
further has less impact on performance. In that case, the cially beneficial for access patterns with a narrow hot spot
optimal SigCache size decreases. area. However, there are two cases when gain is negative or

For workload II, the optimal fraction of memory used for only marginal:
caching signatures is larger than for workload I. The main
reason for this is the la'rger 51gnat.ure size used for workload 1. When the memory size is large enough to keep most of
II. Given a certain SigCache size, the actual number of

signatures that fits in the SigCache is smaller.

the hot spot object pages. In this case, it is more bene-
ficial to use all the memory for page buffering so that the
hot spot objects can be kept in main memory. It should be

6.5. Gain with large memory sizes noted that when the memory size is smaller so that only
some of these pages fits in the page buffer using signa-
The analysis have until this point been done under the tures is beneficial.
assumption that only a relatively small amount of data fits in 2. The number of object pages necessary to store a
main memory. However, as the price of main memory database will be larger if signatures are stored as well.
decreases, it will be common with servers that can keep If the main memory is large enough to keep most of
most of the database in main memory. Fig. 8 shows the the object pages in main memory (large values of M)
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Fig. 7. Optimal SigCache size as the fraction of the total main memory size with Ny = 4. Workload I to the left and workload II to the right.
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Fig. 8. Gain from using signatures with large memory sizes with Ny = 4. Workload I to the left and workload II to the right.

when signatures are not used, using signatures will result
in decreased or negative gain because of a lower page
buffer hit rate.

6.6. Scalability and speedup

One of the problems with a parallel page server ODB is
limited scalability. One of the main reasons for this is
navigational accesses to data belonging to locality sets of
computations on several nodes in combination with a size of
main memory that is not sufficient to cache the actual pages.
The SigCache approach does not entirely solve this problem
but reduces the impact of the problem because caching
signatures can also be regarded as ‘cheap replication’.

Speedup in a parallel ODB is a result of increased number
of nodes (until a certain point). Using the SigCache
approach is orthogonal to this but for a certain number of
nodes using the SigCache approach will in most cases be
beneficial. This can also be seen on Fig. 4, where the gain
when using 32 nodes can be compared with the gain when
using four nodes. In general, using a very high number of
nodes in an ODB can be counter-productive, as the com-
munication cost will increase with the number of nodes as a
result of navigational accesses. The exception is in a context
of relatively few updates and sufficient main memory at
each node to keep the working set.

7. Conclusions

In this paper, we have described how object signatures
can be cached in main memory in a signature cache and how
the use of the signatures in perfect match object accesses
can be used to reduce the average object access cost in a
parallel ODB. We developed a cost model that we used to
analyze the performance of the proposed approaches and
this analysis showed that substantial gain can be achieved.

When storing signatures together with their objects

instead of in separate signature files the signature main-
tenance cost in terms of disk space as well as I/O is only
marginal. This makes the SigCache technique an interesting
supplement to traditional signature files as well as tradi-
tional indexes, which have a higher maintenance cost and
in the case of indexes a higher storage cost as well.
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