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Abstract

In a transaction-time temporal object database management system (TODBMS), updat-
ing an object creates a new version of the object, but the old version is still accessible. A
TODBMS will store large amounts of data, and in order to provide the necessary comput-
ing power and data bandwidth, a parallel system based on a shared-nothing architecture
is necessary. In order to benefit from a parallel architecture, a suitable declustering of the
objects over the nodes in the system is important. In this paper, we study three low-cost
declustering algorithms: 1) declustering based on the hash value of the OID of the objects,
2) range partitioning, based on the timestamp of the objects, and 3) a new hybrid algorithm,
where current object versions are declustered according to the hash value of the OID, and
the historical versions are range partitioned based on timestamp. In contrast to many sim-
ilar studies, we study the performance with a workload including both read and update
operations. We show that strategy 1 and 3 are the most scalable strategies, and that the
new hybrid declustering strategy is especially suitable for low update rates, for example in
geographical information systems and decision support systems with support for temporal
data. However, in general declustering based on the hash value of the OID of the objects
has the most stable and predictable performance.

Key words: object database systems, temporal database systems, parallel database
systems, declustering

1 Introduction

In a number of application areas, support for temporal data management is needed,
in combination with the modeling power of object database management systems.
Examples include accounting systems, geographical information systems, scientific
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and statistical databases, multimedia systems, and more recently: temporal XML
databases/warehouses where document elements are stored as objects (see for ex-
ample [13,17,18]). In such systems, it should be possible to query the contents of
the database as it was a certain point in time, and query changes between versions
of objects/documents.

In a transaction-time temporal object database management
system (TODBMS), updating an object creates a new version of the object, but the
old version is still accessible. A system-maintained timestamp is associated with
every object version, usually the commit time of the transaction that created this
version of the object.

In a TODBMS, every previous object version is stored, and objects are in general
never deleted. The result is large amounts of data, which we also want to be able
to query. To provide the necessary computing powerand data bandwidth, a paral-
lel architecture is necessary. The shared-everything architecture which symmetric
multiprocessors are based on, is not truly scalable, so our primary interest is in
TODBMSs based on shared-nothing multicomputers. With the advent of high per-
formance computers, and high speed networks, we expect multicomputers based
on commodity workstations/servers and networks to be cost effective.

In order to benefit from a parallel architecture, a suitable declustering of the ob-
jects over the nodes in the system is important. Declustering in traditional database
systems is now a quite well-understood area (see Section 2.2), but declustering in
TODBMSs has received little attention. There are several factors that make this
issue important (and difficult!):

� Navigational accesses are common in an object database management system
(ODBMS), in contrast to relational database management systems where ac-
cesses are mostly set based. In an object database management system, an object
is uniquely identified by an object identifier (OID), which is also used as a “key”
when retrieving an object. It is important that the mapping from OID to physical
location (including the node) has a low cost.

� In a temporal database, time-alignment operations, for example temporal join
and temporal aggregation/grouping, are important. In a time-alignment opera-
tion, objects valid at the same time have to be accessed. Time-alignment oper-
ations can be very expensive, and execution of these operations can become a
bottleneck if a suitable declustering strategy is not used.

In this paper, we will study declustering strategies that have a low cost and that
facilitate efficient retrieval of current as well as historical objects (most recent ob-
ject version versus the previous object versions). The work in this paper has been
performed in the context of the Vagabond project [16]. When discussing the per-
formance of the declustering strategies under different workloads, we also give
examples of systems and application areas where the particular declustering strate-
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gies are suitable. It is important to note that few systems for these application areas
currently support temporal data management. However, a need for temporal data
management in these areas has been identified, and should be supported in the fu-
ture. It is important to note that although variants of the declustering algorithms
have been used in other contexts (relational database management systems, non-
temporal ODBMSs etc), the combination of retrieval based on (object-) identifier
and time at the same time is a new context. Thus, the contributions of this paper are
1) the adaption of the declustering strategies to the new context, 2) the introduc-
tion of a new hybrid declustering strategy, 3) a study of the characteristics of the
declustering strategies, and finally 4) a study of the performance of the strategies.

The organization of the rest of the paper is as follows. In Section 2 we give an
overview of related work. In Section 3 we give some introductory examples. In
Section 4 we describe the system model used as the context of this paper. In Sec-
tion 5 we describe different declustering strategies. In Section 6 we develop analyt-
ical models for the most interesting declustering strategies, and in Section 7 we use
the cost models to study how different workload parameters affect the performance
using the different declustering strategies. Finally, in Section 8, we conclude the
paper and outline issues for further research.

2 Related work

In this section we give an overview of related work: first an overview of TODBMSs,
and then an overview of declustering in different contexts.

2.1 Temporal object-database management systems

The area of TODBMSs is still immature, as is evident from the amount of research
in this area, summarized in theTemporal Database Bibliography [23] (last pub-
lished in 1998). The main reason for this low research activity is probably the
number of problem still unsolved in the less complex case of temporalrelational
database management systems.

Most of the work in the area of TODBMSs has been done in data modeling, while
less have been done on implementation issues. Few systems have been imple-
mented [2]. Common for most of these, is that they have only been tested on small
amounts of data, which makes the scalability of the systems questionable. In most
of the application areas where temporal support is needed, the amount of data will
be large, and scalability is an important issue.

In the area of TODBMS, we are only aware of one prototype,
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POST/C++ [21]. In addition, there are implementations of temporal object data
models on top of traditional ODBMSs, for example TOM, built on top of O� [20],
and temporal document databases, for example [1].

Related is also work on representing and querying changes in semistructured data
by Chawathe et al. [3,4].

2.2 Declustering

In order to reduce the query costs, optimal allocation and fragmentation is very im-
portant, but complex objects, object classes and inheritance increase the size of the
solution space for the data distribution problem in an ODBMS. In a TODBMS, the
aspect of time makes this problem even more difficult. Although these issues have
been studied by a number of researchers, the corresponding update costs have not
been studied, and experiments have been performed on relatively small databases.
This leaves a lot of questions unanswered. We will now give a brief overview of
the most relevant work on object declustering in non-temporal ODBMSs and in
parallel temporal database systems in general.

Relational database management systems. Declustering is a well understood
topic in relational database management systems. A good early example is Gamma [6],
which provided support for hash-based, range-based, and round-robin based declus-
tering. Later, a hybrid-range partitioning techniques was also integrated into the
system [8]. These techniques are now also available in commercial parallel rela-
tional database management systems.

Non-temporal ODBMSs. Declustering based on the hash value of the OID has
been shown to perform well in an ODBMS where set-based operations are com-
mon [19]. However, declustering based on hashing the OID is not guaranteed to
perform well for applications with an access pattern that is more based on pointer
navigation.

To reduce the cost of pointer navigation, class wise fragmentation can be used.
Chen and Su [5] describe an heuristic partitioning approach based on class wise
fragmentation and allocating these classes, one or more, to each node. This is
mainly interesting in databases with small class sizes and a large number of classes
compared to the number of nodes. With a large number of objects in each class,
this approach can easy give load-balancing problems.

Another fragmentation approach has been proposed by Ghandeharizadeh et al. [9].
They use greedy algorithms to place all objects on the nodes in an optimal way.
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Fig. 1. Object versions versus time. To the left, the circles denote object versions, and ver-
sions of the same object have the same hatching/coloring. To the right, we have illustrated
a timeslice, by hatching all objects versions valid at time� � �.

However, these algorithms are very workload dependent, and for these algorithms
to work, 1) access statistics are needed, and 2) a costly index lookup is needed to
determine on which node a particular object is located if the fragmentation should
be dynamic. We also question the scalability of the algorithms. The paper says
little about the CPU cost, and in the experiments reported, a very small database
with only 19531 objects was used.

Parallel temporal database systems. In a study of temporal query processing
and optimization in multiprocessor database machines (in the context of a temporal
relational database), Leung and Muntz [12] range-partitioned the tuples based on
the timestamp. In a study of parallel query processing strategies for TODBMSs,
Hyun and Su [10] used class wise fragmentation, similar to the approach used by
Chen and Su [5] described above. Other relevant work includes work on decluster-
ing temporal index structure, for example [11] and [14].

3 Introductory examples

Fig. 1 illustrates the evolution of objects with time. In a parallel system we want
to decluster the objects over the servers. In order to avoid some kind of directory
lookup when retrieving objects, the objects are declustered over the servers using
some mapping based on OID, timestamp, or both.

When retrieving an object version, we may want to retrieve the current version of
an object, or to retrieve the version of an object that was valid at a particular time. If
emphasis is on low cost retrieval of the current object versions, a declustering based
on hashing of the OID is very suitable. However, in a transaction-time TODBMS,
we often want to operate on a snapshot of the database, i.e., on a consistent version
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Fig. 2. Two declustering strategies. To the left a declustering based on hashing of the OID,
to the right a declustering based on range partitioning of the timestamp.

of the database as it was at time��. This is called a timeslice operation, and is
illustrated in Fig. 1, where all object versions that were valid at time� � � are
hatched.

If communication cost is an expected bottleneck in a system, it is important to
decluster the object versions in a way that minimizes communication as well as
balancing the load. Two such strategies are illustrated on Fig. 2.

To the left in Fig. 2, a declustering based on hashing of the OID is illustrated. In
this case, the hash value of the OID is used to determine on which node to store an
object version. This gives efficient and predictable access to all object versions, but
when operating on a snapshot this approach can be less efficient. As is illustrated,
object versions valid at a certain time will in general be stored on different nodes.

To the right in Fig. 2, a declustering based on timestamp is illustrated. This declus-
tering increases the probability that object versions valid in a certain time interval
are stored on the same node. In the figure, we see that most of the objects valid at
time � � � will be stored on the same node if this declustering strategy is used.
If the (sub)transaction accessing these object versions runs on the same node, we
reduce the communication costs. Such a declustering is also useful for other oper-
ations that can benefit from a declustering where object versions valid at the same
time are stored on the same node, for example:

� Temporal selection: Many temporal queries involve a selection on time on a col-
lection of objects (this includes objects valid at a certain time, or objects valid in
a particular time interval). If objects valid at the same time are stored at the same
node, the transfer volume can be significantly reduced. This is similar to parallel
selection queries in non-temporal databases.

� Temporal grouping: This is also an example where the transfer volume can be
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significantly reduced if objects valid at the same time are stored on the same
node. In an aggregate query with temporal grouping, most of the objects in a
group are already on the same node.

4 System model

In this paper we assume a database system executing on a number of nodes com-
municating through a message-based communication network. An instance of the
database system runs on each node. On each node, a number of objects are stored.
In general, a client is connected to one of the nodes. Simple queries can be run on
the same node as the client is collected, more complex queries are parallelized and
run in parallel on all nodes.

When objects are created or updated, they are stored on one of the nodes, according
to a declustering strategy. The declustering strategy is used when retrieving objects,
in order to be able to know on which node a certain object or object version is
stored. Each node indexes the objects stored on that node. In this paper, we only
assume the availability of a primary index with support for OID and OID/TIME
lookups (an example of such an index is described in [15]).

In addition to traditional object retrieval and object relational operations, temporal
operations have to be supported. The most costly temporal operations are those
requiring time-alignment of objects.

In a database system, there will in general be both intra- and inter-transaction paral-
lelism. How this should be utilized is in general decided by the systems/optimizers.

5 Object declustering strategies

The object declustering problem has much in common with the traditional object
clustering problem. In both cases, the existence of applications with very different
access patterns makes it difficult to predict which objects will be accessed together,
and should be stored close to each other. Clustering in TODBMSs is yet “uncharted
territory”, and given the problems of simply clustering a small number of related
non-temporal object on disk pages (see for example [22]), it is very likely that
clustering a large number of temporal objects on nodes will prove to be even harder.
This makes us believe that instead of using large resources to try to cluster objects
together, it is better to simply distribute data as evenly as possible over the nodes, in
a way that simplifies retrieval of current versions and keeps down the cost of time-
alignment operations. For other query types, we rely on data redistribution during
the query execution.
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Fig. 3. OID-based declustering. In the figure, a version is identified by the OID O:� and the
timestamp T:�.

Declustering can be horizontal (storing all attributes of an object on the same node),
vertical (where the attributes of an object can be stored on different nodes), or a
combination. We will in this paper concentrate on strategies for horizontal declus-
tering, and in the rest of this section we will describe three different low cost declus-
tering strategies: 1) declustering based on the hash value of the OID of the objects,
2) range partitioning, based on the timestamp of the objects, and 3) a new hybrid
algorithm, where current versions are declustered according to the hash value of
the OID, and the historical versions are range partitioned based on timestamp.

5.1 OID-based declustering

In most ODBMSs, an object in a database is stored in a container/file, which can be
logical or physical. A container identifier is often included in the OID, in addition
to the unique number. In order to keep the discussion general, we consider an OID
with the following attributes:

� CONTID: Container identifier, which identifies the container the object belongs
to.

� USN: Unique serial number. Each object to be included in containerCONTID
gets aUSN that is one larger than the previousUSN allocated in the same con-
tainer.

Simple OID-based declustering can be based on one or both attributes of the OID.
To be applicable, the strategy should decluster objects in a way that makes subse-
quent retrieval possible without the need for an additional (and costly) OID-to-node
mapping index. We will now discuss the two strategies, and their characteristics.

5.1.1 Declustering on OID

When theOID declustering strategy is used, the node is determined by hashing the
USN, or the combination ofUSN andCONTID. In this way, objects will be evenly
distributed over the nodes, and skew is unlikely to be a problem for queries that
only access current versions of the objects. Fig. 3 illustrates theOID declustering
strategy in a system with� � � nodes. The node of an object is determined from
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the equation����� , where % is the MOD operator.

This declustering strategy is especially applicable in the case of very large collec-
tions or sets, and where queries are mostly performed on the current versions of the
objects. A typical example is aggregation, where a skew free initial distribution is
ideal for the first phase of a parallel aggregation involving grouping, in which local
aggregation is performed. In the second phase, the results from the local aggrega-
tion are redistributed, based on a hash partitioning value. However, there are two
problems with this declustering strategy:

(1) All versions of an object will be stored on the same node. If operations on
historical versions of objects are frequent, for example historical aggregation,
and the number of versions for each of the objects involved is skewed or only a
small subset of the objects are accessed, we can get a load balancing problem.

(2) Versions of different objects that are valid at the same time will be on different
servers, making time-alignment operations expensive.

5.1.2 Declustering on CONTID

If only the CONTID is used as a parameter to the hash function, all objects that
belong to a container will be stored on the same node. This also includes all the
historical versions of the objects in the container. This can result in the same prob-
lems when doing queries on historical versions as when only theUSN was used, and
more important, the probability of skew is very high when all objects of a container
is stored on the same node.

This declustering strategy is not as good for large sets as theUSN only strategy.
However, there are cases where declustering on theCONTID still can be beneficial:

� Operations on medium sized collections, where member objects are processed
together. One example is aggregate operations. With medium size collections, the
collections are not large enough to make parallel processing (on several nodes)
beneficial.

� In cases where there are many references between the objects in a collection.

Because of the possible skew problem when usingCONTID-based declustering,
we do not consider this strategy as appropriate, and do not discuss it further in this
paper.
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Fig. 4.TIME declustering. On top of the figure, over the nodes, the time ranges covered by
each node are illustrated. For example, node 0 covers the intervals from 0 to 9 and 40 to 49,
node 1 covers the intervals from 10 to 19 and 50 to 59, etc.

5.2 Timestamp-based declustering

In a declustering strategy based on the timestamp� only, both hash partitioning
and range partitioning can be used. If the timestamp is used as input to a hash
partitioning function, we would effectively distributeall versions of all objects over
the nodes, with little skew. However,we would not be able to know which node that
contained a particular object, as we would in most cases not know the timestamp
of a particular version (note that this problem also applies to the current versions
of the objects). In order to retrieve an object, broadcasting would be needed. This
is very costly, and is not compensated by any other benefits from declustering by
hashing the timestamp.

Range partitioning based on the timestamp is a more interesting strategy. Although
the problem of retrieving current versions of objects is still present, this problem
is partially compensated by the increased probability of having objects with time-
stamp values close to each other on the same node [12], which is very beneficial
when processing time-alignment operations.

When range partitioning, hereafter calledTIME declustering, is used, the number
of time ranges should be much larger than the number of nodes, and these ranges
should be distributed round robin across the nodes. The reason for this is that time
has an essentially unbounded value, as it is ever increasing, and that this strategy re-
duces the probability of skew. If many heavily accessed objects are created close in
time, many short ranges instead of a few large ones reduce the probability of skew.
However, at the same time, by increasing the number of ranges, and distributing
them over the nodes, we gradually loose the possible benefits in time-alignment
operations so that the probability that objects related in time are on the same node

� Note that in a transaction-time temporal database, we do not know the end timestamp
when we create a new version. Therefore, only the start (commit) timestamp can be used,
using the end timestamp is not an option as it would be in a valid time temporal database.
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decreases. In this case, we have to make a tradeoff. This partitioning problem is
similar to the partitioning problem in thepartitioned band join algorithm proposed
by DeWitt et al. [7]. DeWitt et al. used sampling methods to determine the range
sizes, but in our context the problem is more difficult because the partitioning is not
bound to the relatively short duration of a query. If sampling should be applicable in
our context, it is likely that non-uniform range sizes should be used (at the expense
of a lookup table to be able to determine which node covers a particular point in
time).

Fig. 4 illustrates theTIME declustering strategy. The node where an object version
is stored is determined from the timestamp of the object. On top of the figure, we
have illustrated the time ranges covered by each node. In this case, a node only
covers two time ranges, but in general, the number of ranges will be higher. Note
that even if an object covers (is valid) in more than one time range it is only stored
once, on the node that covers its timestamp.

When declustering on timestamp, object access operations can be executed as fol-
lows:

Create or update object: The object version is stored on the node determined
by the commit timestamp.

Retrieve an object version valid at time ��: When requesting the object version
valid at time��, we first send a “get version valid at time��” message to the node
�� which includes the time range�� �[��� ���, where�� � �� 	 ��. An object
version can cover more than one time range, and in that case it is possible that the
object version was created in one of the previous time ranges. If the object version
valid at time�� was not created in the time range [��, ��], � we have to search
previous time ranges as follows:

(1) The probe message is forwarded to the predecessor node. We “follow the time-
line” when searching for the object version valid at time��, which means that
we only consider objects created during���� at this time. The message is for-
warded until the actual object version is found, or all nodes have been probed.
This can be illustrated with the following example, based on the declustering
of objects on Fig. 4:

Example: Assume a search for the object with��� � � valid at time� �
��. We first probe node 1, but an appropriate object version is not found on
that node, and we continue with node 0. The node contains an object version
created at time� � �, but we follow the timeline, and only consider object

� Note that the node can also contain versions created in the time range���, ���, but
these versions are of no interest in this search.
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versions created during the time range [40, 50�. However, no object versions
of object��� � � were created in that time range, so we continue with
node 3 which covers the time range [30, 40�. Here we find an object version
created at� � ��, and this is the desired result of the search.

(2) One node will in general cover many time ranges. It is not necessary to for-
ward the probe message several times through the “ring of nodes” to follow
the timeline. To avoid this, we determine for each node we probe what is the
most recent version of the searched object created before time�� stored on
that node. The timestamp of this version is included in the probe message.
If the probe message already contains such a timestamp, the new timestamp
replaces the existing timestamp if it is more recent than the previously de-
termined most recent version. When the probe message has been through all
nodes in the ring, and has reached the node that has node�� as its predecessor,
we are able to know which node stores the relevant object version. This can
be illustrated by the following example, also based on Fig. 4:

Example: Assume a search for the object with��� � �� valid at time
� � ��. We start the search at node 3. However, no object version of the
object with��� � �� was created between [70, 75], so we have to probe
the predecessor node, which is node 2. No object version of the object with
��� � �� was created in the time range [60, 70�, so we have to probe node
1. However, an older object version is stored on node 2, so that in the probe
message to node 1 we also include the timestamp of the most recent object
version stored on node 2, i.e.,� � 	�. No relevant object version is found
on node 1, and the probe message is forwarded to node 0. This is the last
node to probe. It contains no object version of the object with��� � ��, so
that at this time, we know that the appropriate object version is the one with
timestamp� � 	�. A request message is sent to node 2 where this version is
stored, and node 2 sends the actual object version to the requesting node.

(3) It is also possible that the object was not yet created at time��. If this is the
case, it can be determined from the probe message, where the timestamp of
the most recent object version as described above will not have been set.

Retrieve the current version of an object: We do not know anything about the
timestamp of the current version, so we have to probe all nodes to determine which
node has the most recent version. This can be done in a number of ways:

(1) First send a “get timestamp of most recent version of object
” message to all
nodes, and then retrieve the object version from the node containing the most
recent timestamp.

(2) Send a “get most recent version of object
” message to all nodes. All nodes
return their most recent version of object
. In this way, we avoid some delay,
but use more of the communication bandwidth.

(3) Every time we create a new current version, we send a message about this
to the node where the previous current version was stored (in general, when
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an object is updated, we know the timestamp, and implicitly the node, of the
previous version). When we want to retrieve the current version of an object,
we send a “get current version” message to all nodes. The node containing
the current version knows this, so that only this node has to send an object
back to the requesting node. We consider this to be the best strategy, as it
keeps both delay and use of communication bandwidth to a minimum. This
will compensate for the increased update cost.

A better alternative, especially if efficient broadcast is not supported, is to consider
the retrieval of a current object version as the retrieval of an object version valid
at time now. Assuming that most read current accesses are to the most heavily
updated objects, this strategy will have a lower cost than involving all the nodes in
the object retrieval as is the case when broadcasting is used. The drawback of such
an approach is a possibly increased latency.

5.2.1 Possible problems with TIME declustering

The main problem with range partitioning is the same as with declustering on the
hash value of the timestamp, we still do not know which node contains an object
with a particular OID. Therefore, this strategy is only useful if timeslice operations
are frequent compared to object navigation. Another problem in the context of a
transaction-time database, is that all updates at a given time are performed on one
node, the node which contains the [��� ���� time interval.� In a system with
high update rates, this node can become a bottleneck. The fact that many of the
requests for current versions of the object will be satisfied by this node as well
makes this problem very serious.

To reduce the cost of subsequent timeslice operations, it is possible to store an
object version on all nodes whose timestamp range is (partially) overlapped with
the time the actual object version was valid. This increases the storage cost, but
by using a reasonable size of the timestamp range, the amount of replication does
not have to be too high. However, every time we start on a new time range, i.e.,
writing to a new node, all objects that are still current have to be written to this
node (but note that an object version will only be written once to each node, so that
in a system with� nodes, an object version that is very infrequently updated will
be rewritten only during the first
���� time ranges after the version has first been
written).

Replication is a very costly operation, and implies that timestamp-based decluster-
ing with replication is only beneficial if most objects are either updated very often
or very seldom. In the first case, the object version is only written once, while in the
other case, it will be written� time, on each node, but after it has been stored on all
nodes, it will not incur any further replication cost. However, the storage costs in a

� ��� is the current time.
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Fig. 5. OID-TIME declustering. The replicated current version objects are illustrated by
hatched boxes in the figure.

database where data is not deleted is already very high, so we expect the additional
storage costs from using replication to be unacceptable, and do not consider the use
of replication in the analysis in this paper.

Retrieving the history of a particular object can be more expensive withTIME
declustering than withOID declustering, because the versions will be stored on
different nodes. However, storing all versions on the same node can result in skew.
Which strategy is best in this case, depends on what kind of operations will be
subsequently applied to these versions.

If TIME declustering should be used in a data warehouse context, data loading has
to be done with care. If the data load time is used as timestamp, we will get very
large amounts of objects in the time range where loading occurs. This potentially
gives a very high storage skew. However, using the load time as basis for the time-
stamp on objects will normally not make sense: if we query a data warehouse, we
will expect the timestamps on objects to be the time when the objects were origi-
nally created. The solution should be in a data warehosue context to use the create
times from the databases where the objects were originally stored, rather than the
time when they are inserted into the data warehouse. By doing this, the storage
skew problem is avoided.

5.3 Hybrid OID-TIME declustering

We have now discussed declustering based on one of the attributes of the OID or
the timestamp, and have seen that each of these strategies have both advantages and
shortcomings. We will now outline a more suitable declustering strategy, theOID-
TIME strategy, which aims at a skew free distribution, facilitates simple retrieval
of the current version of objects, and keeps the costs of time-alignment operations
low.

The OID-TIME strategy is based on replication of the current version. When an
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object is created or modified, the new current version is stored both on the node de-
termined by hashing theOID, and on the node determined by the range partitioned
timestamp value. Retrieving the current version of an object is done by accessing
the node determined by hashing theOID, and retrieval of a version valid at time��
is done in the same way as withTIME declustering.

Fig. 5 illustrates theOID-TIME declustering strategy. The node of an object version
is determined from the timestamp of the object. In addition, the current version is
stored on the node determined from the hash value of the OID. Note that when a
new current version is created, it replaces the previous current version. Hence, the
previous current version is not accessible on the node determined from the hash
value of the OID, only on the node determined from the timestamp.

The OID-TIME declustering strategy carries an increased create and update cost,
compared to theOID declustering strategy. To compensate for this cost, the amount
of time-alignment operations has to be sufficiently high. Similar to the timestamp-
based declustering, all updates at a given time are performed on one node. This
means that this strategy is most suitable in systems with low or moderate update
rates.

In a temporal database system, the database is partitioned, with current objects
in the current database, and the previous versions in the other partition, in the
historical database. When an object is updated, the previous version is first moved
to the historical database, before the new version is stored in-place in the current
database. When usingOID-TIME declustering, the current versions declustered on
OID will typically be stored in the current database, while the version declustered
using onTIME will typical be stored in the historical database on that node. This
implies than we do not need to move an object version when an object is updated,
the previous current version is already stored in the historical database. WhenOID
declustering is used, we need to move an object version every time an object is
updated. This is an important point to note. In the cost analysis in this paper we
only consider inter-node communication, and not the cost of storing the objects
in the nodes. Thus, in practice, theOID-TIME strategy will have a slightly better
performance than the analysis shows.

Similar to TIME declustering, replication can be used inOID-TIME declustering
as well. However, similar toTIME declustering, we expect the storage costs to be
unacceptably high.

6 Cost model

The goal of our analysis is to compare the different declustering strategies in a
system with� nodes, and investigate under which conditions they should be used.
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We use a qualitative approach, where our goal is to achieve a cost model of the
bottleneck in such a system. We do the following assumptions:

(1) In a balanced system, the CPU and disk costs will be the same for the different
declustering strategies. Thus, we only consider the communication costs.

(2) We assume a sufficient degree of intra- and inter transaction processing to be
able to exclude response times in the processing from the cost model.

(3) We assume that a number of messages and objects can be packed together in
each packet, so that the number of messages in itself can be ignored, it is the
bandwidth usage that counts.

Under these assumptions, the transported data volume of the objects and messages
can be used as a measure. We denote the cost of sending an object (including the
object as well as object identifying information), in terms of bytes from the com-
munication bandwidth, as��, and the cost of sending a message, for example a
message requesting an object, as�� . The parameters and functions used in the cost
model are summarized in Table 1.

Not all the objects stored in a TODBMS are temporal, for some of the objects,
we are only interested in the current version. In order to improve efficiency, the
system can be made aware of this. In this way, some of the objects can be defined
as non-temporal, and old versions of these are not kept. Access and declustering of
these objects are independent from temporal objects, and in this analysis we only
consider access to and declustering of the temporal objects.

6.1 Workload model

As described previously, we assume accesses to objects in the TODBMS to be ran-
dom, but skewed (some objects are more often accessed than others). We model
queries as a workload consisting of object updates and read accesses. In order to
study the performance of the different declustering strategies, it is important to
study the costs of the updates and read accesses together. In the modeled workload,
write of the accesses are object updates, and of these,new are creations of new ob-
jects.
��write� of the accesses are accesses caused by read accesses/read queries.
Denoting the average write and read costs as�� and��, we calculate the cost�
as the average bandwidth needed for each object access operation, i.e.:

� � write�� � 
�� write���

The average cost of a write is the weighted sum of the average object create cost
�� and the average object update cost�	 :

�� � new�� � 
�� new��	
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Parameter Definition Default

Value

	 Fraction of accesses to hot spot objects 0.95


 Fraction of total number of objects that are hot spot objects 0.05

�� Cost of sending anOID/TIME object probe message 16 B

�PP Cost of sending anOID/TIME/TIME object probe message 24 B

�� Cost of sending an object (including overhead) 256 B

� Number of nodes � � � � �� nodes

write Object write probability 0.2

new Probability that a write creates a new object 0.2

RC Probability that a read is for the current version 0.7

RH Probability that a read is for a historical version 0.1


 S Probability that a read is a timeslice operation 0.2

Function Definition

� Average cost of an object access

�� The average cost of an object create operation

�� The average cost of a read operation

�RC The average cost of reading a current object version

�RH The average cost of reading a historical object version

�TS The average cost of a timeslice read

�	 The average cost of an update operation

�� The average cost of a write operation

RU Probability that an object has been updated

during the current time range
Table 1
Summary of system parameters and functions.

The read pattern from different applications can be divided into several categories,
for example:

� Applications only accessing current versions.
� Applications that mostly access current versions, and a few historical versions

through navigations.
� Applications that do timeslice operations, i.e. operating on a snapshot valid at

time��.
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� Set accesses (queries) only accessing current versions.
� Set-based accesses involving temporal operators.

The object accesses from these different application categories can be incorporated
into 3 read classes, each representing a certain fraction� of the read accesses,
where the invariantRC � RH � TS � �� should be true:

(1) RC: Read the current version of an object. The cost of this operation is�RC.
(2) RH: Read a historical version of an object, i.e., an object version valid at

a particular time��. This category of read operations also includes the case
when we want to retrieve all object versions of a particular object. The cost of
this operation is�RH.

(3) TS: Timeslice read operations, which can benefit from a declustering strategy
that aims at storing object versions valid at the same time on the same node
(see Section 3). The cost of this operation is�TS.

The average cost of a read is:

�� � RC�RC � RH�RH � TS�TS

We will now present the cost models for theOID, TIME, andOID-TIME decluster-
ing strategies.

6.2 OID declustering

When an object is created, the node where it is to be stored is determined from
applying a hash function to the OID. With a probability of�

�
, this is the same node

as the creating node. If it is another node, which has the probability
� � �

�
�, the

new object has to be sent to the actual node. This also applies to object updates.
The average object create and update costs are:

�� � �	 � 
��
�

�
���

All versions of an object reside on the same node, so that the costs of reading
current and historical versions as well as doing a timeslice read are the same. If the
requested object version is not stored on the requesting node (the node that does
the operation), the average access cost is the sum of the cost of the object retrieve
message and the cost of returning the object:

�RC � �RH � �TS � 
��
�

�
�
�� � ���
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6.3 TIME declustering

When an object is created, the node where it is to be stored is determined from
the value of its timestamp. With a probability of�

�
, this is the same node as the

creating node, and no communication is necessary. If it is another node, which has
the probability
�� �

�
�, the new object has to be sent to the actual node. The average

create cost is (assuming replication is not used):

�� � 
��
�

�
���

When an object is updated, the new object version is sent to the node determined
from the timestamp. In addition, a message is sent to the node where the previous
current version was stored, so that the end timestamp can be set for the previous
current version (this reduces the current version access cost):

�	 � 
��
�

�
��� � 
��

�

�
���

To read the current version of an object can be a very expensive operation when
TIME declustering is used. All nodes have to be probed if the current version is not
stored on the requesting node. The cost is the sum of sending a probe message to all
other nodes, and sending the requested object back to the requesting node (the node
that stores the current version can determine this from the end timestamp which is
not set in the current version):

�RC � 
��
�

�
�

� � ���� � ���

An object is valid in a given time interval, from the value of the timestamp, and
until the timestamp of the next object version. This interval covers one or more
ranges in the range partitioning, including one or more nodes.

We assume an access pattern with a small number of frequently updated objects,
where� of the updates are applied to these objects. We assume that the frequently
accessed objects are updated often enough to be updated more than once during
each time range. The infrequently updated objects are updated very seldom, so
that each version covers more than� time ranges. This is a simplification, but
the following example shows that it is not unreasonable: Consider a database in a
stable condition, with size�� � �	 GB of data and average object size���� �
	�� bytes, giving���� � ������� � �	�M object versions. If we assume the
number of time ranges to be�� � �	�, the number of object versions in each time
range is���������� � �M versions. During each time range,��� � �	 of the
object versions are new objects, while
�� ���� � �� are new object versions of
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existing objects. The number of distinct objects (i.e., distinct OIDs) in the database
when in a particular time range
 is approximately�� � �������

�
���

objects, on
average�������

�

�
� �	��M objects. Under the assumptions above,� � ��� of

the updates are applied to� � �� of the�� objects, this means that� of the
updates are applied to��� � ���M objects, i.e.,� ��� updates of each hot spot
object in each time range.

When requesting the version of an object that was valid at time��, we first send
a probe message to the node that stores objects with timestamps in the time range
which includes�� (with a probability of �

�
this is the requesting node, and it is

not necessary to send the probe message). If we assume the read pattern is equal
to the write pattern,� the probability that the requested object version is stored
on this node is� �. Given a particular time in a time range, the probability that
one of these objects has already been updated in this time range is 0.5 (assuming
more than one update per time range, and that we on average are halfway into the
time range), and with a probability of 0.5 we have to probe the previous node. The
average cost of retrieving one of these object versions is:

� �

RH � 
�� �

�
��� Send probe message

���
�� �

�
��� Return object

���
��� � 
�� �

�
���� Forward probe message

which returns object

We make a pessimistic assumption about the less frequently updated objects, and
assume the average time between each update is larger than� time ranges. Thus,
the probe message has to be forwarded
���� times. The average cost of retrieving
a historical object version of one of the infrequently updated objects is:

� ��

RH � 
�� �

�
��� Send probe message

�
� � ����� Forward probe messages�

�

�� �

�
��� � 
�� �

�
���� Return object

The average cost of retrieving a historical object version is:

�RH � �� �

RH � 
�� ��� ��

RH

� As will be discussed later in this paper, this assumption is possibly too optimistic.
� Here we assume that all forward probe messages includeOID/TIME/TIME. However, if
the number of object versions of each of these objects is low, it is possible to reduce the
communication cost by only includingOID/TIME in the messages until the first node with
a version of the object is reached.
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The timeslice read is essentially a read of a historical version on the node that
covers the actual timeslice. However, we do not need to send the first probe message
because we are already on the actual node covering the timeslice time, and if the
object is stored on this node we do not have to send it:

� �

TS � ��
��� � 
�� �

�
���� Forward probe message

and return object

� ��

TS � �
� � ����� Forward probe messages

�

�� �

�
��� � 
�� �

�
���� Return object

�TS � �� �

TS � 
�� ��� ��

TS

As described in Section 5.2, using the same algorithm for retrieving current ver-
sions as historical versions can be beneficial. In that case we also avoid the need
for maintaining the end timestamp, and the update cost is reduced to:

� �

	 � 
��
�

�
���

In the rest of this paper, we will denote the approach where we use the same algo-
rithm for retrieving current versions as historical versions asTIME2 declustering.

6.4 OID-TIME declustering

When creating and updating an object, the object is sent to the node where it is to
be stored, based on the hash value of the OID. In addition, the object is sent to the
node where it is to be stored based on the timestamp:

�� � �	 � 	
��
�

�
���

When reading the current version of an object, we can avoid communication in two
cases:

� If the requesting node is the same node as determined by hashing the OID, the
current version is stored on the requesting node. The probability for this is�

�
.

� The current version of an object is also stored on the node determined by its time-
stamp. If the requesting node is the one that covers the current time rangeand the
requested object was written during this time range. In that case, we know that
there can not exist a more recent version on another node. The probability for this
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is �R�
�

, whereRU �
�
�

is the probability that an object has been updated during
the current time range. Note that if the current version of an object was written
during a previous time range covered by the requesting node, we do not have
enough information to know that this is still the current version the object. The
reason for this, is that whenOID-TIME declustering is used, we do not maintain
the end timestamps for the objects.

In all other cases, communication is necessary. The average cost of reading the
current version is:

�RC � 
��
�

�
�
��

RU

�
�
�� � ���

The cost of retrieving a historical object version and the cost of a timeslice read is
the same as when usingTIME declustering.�

6.5 Broadcasting

Efficient broadcasting/multicasting is often supported by the communication net-
work. If this is the case, the cost of sending the same message to all the nodes can
be significantly less than the cost of sending� messages. This can be utilized to
reduce the number of probe messages when reading the current version usingTIME
declustering.

Broadcasting can also be used when reading historical versions and doing timeslice
read. However, this implies that all machines have to participate in every historical
read/timeslice read operation. A parallel database system where all the nodes much
of the time perform the same operation is not very cost efficient, and we do not
consider broadcasting used in this context a good solution.

7 Analysis

The value of the parameters used in the cost model will be different from database
to database, and even between different applications accessing a particular database.
We will in this section study under which conditions the different declustering
strategies are most beneficial, using a wide range of workloads and number of
nodes.

� It is possible that the current version of an object is the matching object in the case of
retrieval of an historical object version or timeslice, but the probability of this is low enough
to ignore.
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Fig. 6. Cost with different update rates.

The total communication cost increases with an increasing number of nodes, be-
cause the probability of finding an object on the same node decreases. In this anal-
ysis, we study the cost with different number of nodes, and the declustering goal
is to minimize the communication costs given a certain number of nodes. We also
want to study the scalability of the declustering strategies, i.e., that the increase in
communication cost with increasing number of nodes is acceptable.

The effect of different update rates. Fig. 6 illustrates the cost with different up-
date rates. We see that theOID-TIME declustering is most suitable in the case of
databases with low update rates. Typical examples of applications where this oc-
curs, are GIS (geographical information systems) and DSS (decision support sys-
tems). The cost ofTIME declustering is high, because of the cost of retrieving
current versions. The cost ofOID declustering is low, predictable, and stable.

The effect of different object sizes. Different object sizes obviously affect the
communication costs, and Fig. 7 illustrates the cost with different object sizes. The
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Fig. 7. Cost with different object sizes.

performance ofOID-TIME declustering gets worse with increasing object sizes
because of the replication of the current object versions. The cost of usingTIME and
TIME2 declustering is significantly lower thanOID andOID-TIME declustering in
the case of larger objects. The reason for this, is that the cost of the probe messages
is less significant. However, it will not scale to a larger number of nodes. If the
number of nodes is increased, this increases the number of probe messages and the
total cost ofTIME andTIME2 declustering.

The effect of different read mix. Fig. 8 illustrates the cost with different read
mixes. We see how the performance of theOID-TIME and TIME2 declustering
increases relative toOID declustering with a larger amount of timeslice read oper-
ations. However, the amount of timeslice read operations needed to outperform the
OID declustering is higher than what can be expected to occur in practice.

Scalability. From the figures, we have seen that theTIME declustering does not
scale as well asOID andOID-TIME declustering. The main reason for this is that
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Fig. 8. Cost with different read mix.

the navigational accesses to the current version objects are very expensive. Even
with small values ofRC this declustering strategy performs worse than theOID-
TIME strategy.

In the figures in this paper, we have only illustrated the cost with up to 32 nodes.
With a larger number of nodes, the cost of usingTIME2 declustering also becomes
worse. A larger number of nodes increases the number of time the probe messages
have to be forwarded. This also increases the response time, also an important is-
sue. A larger number of nodes also make it necessary to use more time ranges in
order to avoid skew. This is likely to further increase the cost of usingTIME and
TIME2 declustering because it increases the probability of having to forward probe
messages.
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8 Conclusions and future work

The object declustering problem presented in this paper has much in common with
the traditional object clustering problem. In both cases, the existence of applications
with very different access patterns makes it difficult to predict which objects will be
accessed together, and should be stored close to each other. This makes us believe
that instead of using large resources to try to cluster objects together, it is better to
simply distribute data as evenly as possible on the nodes in the cluster, in a way that
simplifies retrieval of current versions and keeps down the cost of time-alignment
operations. For other query types, we rely on data redistribution during the query
execution.

We have in this paper analyzed strategies for declustering objects in parallel TODBMSs.
Cost models were developed and used to study the characteristics of the decluster-
ing strategies, and under which conditions the different declustering strategies are
most beneficial. The results show that:

(1) In a parallel TODBMS, theTIME andTIME2 declustering strategies are in
general not suitable for primary declustering (but this does not rule out these
strategies as a part of the later stages in the query processing).

(2) In systems with mixed workloads, the difference in performance between the
OID andOID-TIME strategies is not large, but in our choice of parameter val-
ues,OID declustering outperformsOID-TIME more often than the opposite.

(3) Even in systems with a high degree of temporal operations, the cost of object
traversal will be the most important cost.

It is also likely that the assumptions we made for theTIME, TIME2 andOID-TIME
declustering strategies were too optimistic:

(1) Except some systems with mostly static data, for example data warehousing
systems, a much larger number of time ranges will be used.

(2) A low value of� was implicitly assumed. A higher value of� would imply
that each time range has to be larger, or a lower number of time ranges in total.
In a more accurate model, this fact should be included in the model.

If any of these assumptions does not hold, the result will be a higher cost if using
theTIME, TIME2 or OID-TIME declustering strategies.

The final conclusion is that similar to traditional database systems, an hash-based
declustering (OID-based declustering) should be used in parallel TODBMSs as
well. However, we believe that the use ofOID-TIME declustering during query
execution is interesting, and this should be studied further.
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